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This article pursues the idea that the degree of striations, called lamination, could be engineered to complement
stretching and to design new sequential mixers. It explores lamination and mixing in three new mixing sequences
experimentally driven by electromagnetic body forces. To generate these three mixing sequences, Lorentz body
forces are dynamically controlled to vary the flow geometry produced by a pair of local jets. The first two sequences
are inspired from the “tendril and whorl” and “blinking vortex” flows. The third novel sequence is called the
“cat’s eyes flip.” These three mixing sequences exponentially stretch and laminate material lines representing
the interface between two domains to be mixed. Moreover, the mixing coefficient (defined as 1 − σ 2/σ 2

0 where
σ 2/σ 2

0 is the rescaled variance) and its rate grow exponentially before saturation. This saturation of the mixing
process is related to the departure of the mixing rate from an exponential growth when the striations’ thicknesses
reach the diffusive length scale of the measurements or species and dyes. Incidentally, in our experiments, for the
same energy or forcing input, the cat’s eyes flip sequence has higher lamination, stretching, and mixing rates than
the tendril and whorl and the blinking vortex sequences. These features show that bakerlike in situ mixers can
be conceived by dynamically controlling a pair of local jets and by integrating lamination during stirring stages
with persistent geometries. Combined with novel insights provided by the quantification of the lamination, this
paper should offer perspectives for the development of new sequential mixers, possibly on all scales.
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I. INTRODUCTION

Mixing processes are important for industrial, biological,
physical, and environmental flows. For example, mixing
impacts on chemistry [1,2], biological processes, and clinical
diagnostics [3–5], geophysical systems [6–8], plasma systems
[9,10], and astrophysical flows [11,12]. When the scale and
Reynolds number are reduced, the flows are laminar and
cannot be mixed using turbulence [13]. Consequently, new
flows need to be engineered [14]. In an attempt to reproduce
turbulent mixing in laminar flows, turbulentlike multiscale
flows have recently been discussed in literature [15,16]. An
older approach to enhance mixing in low Reynolds number
flows is to use chaotic advection and bakerlike processes to
achieve mixing [17–20]. Indeed, since 1893 and the seminal
talk of Reynolds [21], it is well known that, like a baker
making pastry, a proper combination of stretching and folding
within flows is amenable to generate an exponential growth
of material interfaces. It can be noted that numerous flows,
producing chaotic trajectories, have been studied in literature,
e.g., Refs. [22–35].

Lamination is the ensemble of mechanisms generating stri-
ations within flows. It includes folding, rolling, bending, line
encounters, foliation [36], etc. Combined with shear and/or
strain, lamination is key for producing exponential growths
of interfaces in complex flows [37]. Moreover, lamination
enhances mixing when the thicknesses of the striations are
reduced. In a diffusive mixture, this enhancement is at the
heart of the merging of filaments [38] and the building of
mixing as aggregation and self-convolution processes [39–41].
To date, despite being of importance for mixing processes [42],
the lamination of complex flows is still partially explored
[43–45] and is often considered as a subproduct of stretching.
Recently, a process and a new measure have been proposed to
explore lamination [37,46]. The lamination process identifies a
lamination rate based on the spatial variation in the Lagrangian

angular velocity extracted using spatial measurements of the
Lagrangian acceleration [37,47]. The measure of lamination
compares the total length [area in three dimensions (3D)] of an
interface within a disk (sphere in 3D) centered on the interface
to the disk’s diameter (main section in 3D) and is used in
Ref. [46] to show good agreement between the lamination rate
and the lamination measured for single- and multiscale flows.

This article pursues the idea that lamination can be
engineered [37,46,48,49] to design new mixers with tailored
properties. A study of stirred interfaces (without molecular
diffusion) is performed with direct measurements of their
stretching and the distribution of their striations’ thicknesses.
It can be noted that the striations’ thicknesses of the stirred
interfaces are the distance over which the diffusion would
need to act to finalize the mixing of diffusive dyes or species.
In the present paper, these thicknesses are locally extracted
using the new lamination measurement proposed in Ref. [46].
We prefer this direct investigation rather than using Lyapunov
exponents to estimate these quantities [45]. Indeed, the use
of Lyapunov exponents to characterize the properties of
nonuniform mixing processes (e.g., the presence of islands)
may lead to approximations. Moreover, if due to the flow’s
incompressibility, local Lyapunov exponents can be related
to the decrease in striations’ thicknesses, it is not obvious
that such a method can predict the long run multiplication of
layers in complex flows. For example, such exponential trends
cannot predict the generation of striations due to the rolling of
interfaces within persisting eddies [37,43].

Lamination, stretching, and mixing are explored in three
new sequences of flows before discussing the interweaving
between the lamination and the saturation of the mixing
rate. These sequences result from the combination of mixing
“building blocks” using the temporal persistence of different
flow geometries. The first two sequences are inspired from
milestone flows proposed to produce mixing by chaotic
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advection, the “blinking vortex” (BV) and the “tendril and
whorl” (TW) [17,22]. The third novel sequence relies on the
flipping of a cat’s eyes flow and is named “cat’s eyes flip” (CF).

To generate these mixing sequences, the authors dy-
namically control the position of a pair of jets driven by
electromagnetic forces. The experimental apparatus is similar
to the ones described in Refs. [50,51]. One novelty comes from
a three-axis mechanical device controlling the position of the
magnets in space and time. It is worth mentioning that, within
the past 30 years, the study of mixing and time-dependent
two-dimensional (2D) chaotic advection have led to the
conception of different experimental setups, which are not
driven by electromagnetic forces, e.g., rotating cylinders [52],
baffled cavity flow [53], moving rods [54–56], flow suction
and injection [24], oscillatory convection in binary mixtures
[57], time-dependant Rayleigh-Bénard convection [23], and
rotating devices with flow inlets and outlets [58,59].

II. FLOWS DRIVEN BY ELECTROMAGNETIC FORCES

A. Experimental setup

Tailored flows are produced within a shallow layer of brine
using electromagnetic forces. The experimental apparatus used
to generate these flows driven by body forces is described
in Fig. 1. The use of body forces presents the advantage of
adding a source of momentum within the flow, and the shallow
layer permits working with quasi-two-dimensional flows
[50,51,60].

The experiments are performed in brine made of a mixture
of water and 60 g/l of sodium sulfate Na2SO4. The horizontal
size of the rig is about 800 mm × 600 mm, and the thickness
of the shallow layer is about H = 4.3 mm. The vertical height
of the water on the side of the tank is about 300 mm. The brine
is left at rest to produce a stable stratification. Conductivity
measurements are performed to check the properties of the
upper layer of the brine, i.e., within the mixing domain.
The measured conductivity is about σ = 3.5 S/m. The average
concentration within the upper layer is then estimated to be
about 40 g/l of Na2SO4 [61,62]. The corresponding viscosity

FIG. 1. (Color online) (a) Schematic and (b) photograph of the
experimental rig. (c) The three-axis robot and the pair of permanent
magnets (North and South) are illustrated in the photograph. The ar-
rows labeled j indicate the direction of the electrical current crossing
the brine. The arrow labeled B indicates the direction of the magnetic
field (produced by the permanent magnets placed underneath the
wall) contributing to the generation of horizontal body forces.

is ν = 1.126 × 10−6m2/s for a density of ρ = 1.0343kg/m3.
Moreover, the flow domain is reduced to 200 × 200 mm2 to
study mixing in a bounded domain. As illustrated in Fig. 1,
this is achieved using plastic (LEGO) walls on two sides and
foam on the other sides.

The electromagnetic body forces are generated by the
combination of a pair of square permanent magnets (denoted
as N and S in Fig. 1) producing a magnetic field B and an
electrical current j crossing the brine. The permanent magnets
are two cubes of LM = 40 mm sides. Their measured intensity
is Br = 1.2T . They are placed on a 2 cm thick iron plate,
and their upper surface is at 6.1 mm from the brine. As
indicated in Fig. 1, the magnets are placed underneath the wall
supporting the brine, and the main component of the magnetic
field contributing to the electromagnetic forcing ( j × B) is
perpendicular to the wall. The alternated configuration of the
pair of magnets, i.e., with North and South poles, permits
the generation of opposite forces above each magnet. The
electrical current crossing the brine is imposed by two sets of
platinum electrodes placed on each side of the experimental
rig. The electrical current intensity is I = 30 mA, which leads
to a current density of j = 11.6 A/m2 within the shallow layer.
The direction of the electrical current is indicated by the arrows
labeled j in Fig. 1. It can be noticed that the electrical power
consumed by these experiments is about 0.13 W.

The dynamic control of the magnets’ positions is one
novelty since [50]. This is achieved using a three-axis me-
chanical device driven by three servomotors with independent
controllers. Figure 1(c)) gives a top view photograph of the
magnets’ pair mounted on the mechanical device with alter-
nated polarity. The position and orientation of the magnets’
distribution can be varied in time. A centered rotation of the
pair of magnets permits controlling the main geometry of the
flow. A two-dimensional translation of the pair of magnets
allows varying the spatial position of these geometries. This
translation is achieved using one rotation and one translation
(similar to cylindrical coordinates) in addition to the centered
rotation. For the three sequences, the magnets cyclically move
in 1.8 s between two positions where they stay steady for a
time. This time is chosen longer than the viscous diffusion’s
time, i.e., H 2/ν ∼ 16 s so as to establish quasisteady flows
during the steady stages.

The cat’s eyes flip and the tendril and whorl sequences
are performed with a rotation of the pair of magnets, which is
centered within the flow domain. The orientation 0◦ is defined
as the configuration with the pair of magnets orthogonal to the
electrical current. With this reference, the steady positions of
the cat’s eyes flip are oriented at − 15◦ and + 15◦. The steady
positions of the tendril and whorl are oriented at 0◦ and 90◦.
The blinking vortex sequence is a translation of the pair of mag-
nets oriented at 90◦. The translation is along the median axis in
the direction of the electrical current. The two steady positions
are at ±0.5LM where the origin is the center of the mixer.
Figure 2 illustrates these displacements. Except, if stated
differently, the pair of magnets stays steady for 22 s, and
the period of the forcing cycle is Tcyc = 47.6 s for the three
sequences.

It can be noted that annular electromagnetic rigs, allowing
the oscillation of an array of magnets [63,64] and/or its
continuous displacement [65], can be found in literature.
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FIG. 2. (Color online) Schematic of the displacements of the pair
of North and South magnets (denoted as N and S) for the three mixing
sequences. The cat’s eyes flip, the tendril and whorl, and the blinking
vortex sequences are denoted as CF, TW, and BV, respectively. The
arrows labeled j indicate the direction of the electrical current.

Continuous recordings of the flows are performed, during
more than 20 min, at 6 Hz with a 2048 × 2048 pixel2 14
bit camera using a LaVision acquisition system. A particle
image velocimetry (PIV) method is then applied to pairs
of consecutive pictures to measure the velocity fields. The
in-house PIV code used is an iterative process with a subpixel
interpolation to estimate the most likely displacement with
a numerical accuracy of 0.05 pixels. The effective accuracy
of the most likely displacements measured is 0.2 pixels,
which is about 1% of the maximum displacement. It can be
noted that the code includes an efficient parallelization of the
tasks for multicore computing. For practical guides about PIV
techniques, the reader can refer to Refs. [66,67].

The PIV measurements are highly resolved in space with
8.375 pixels per millimeter. The 16 pixels final correlation
windows are about 1.9 mm, which is more than 20 times
smaller than the size of the magnets. The distance between
two points of the PIV grid is 8 pixels. Taking advantage of a
50% overlap, a standard 3 × 3 mobile average smoothing is
performed on the validated PIV data. The temporal resolution
of the experiments is also high with 285 PIV measurements
for each period.

B. Electromagnetic forcing of flow sequences

Body forces have been growingly used to manipulate flows
for 15 years [68–77]. These forcing schemes rely on the
introduction of a term source f /ρ within the momentum
equation,

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇P + ν �u + 1

ρ
f .

In the case of the electromagnetic forcing, the term source
results from the combination of an electrical current crossing
the flow in the presence of a magnetic field producing a Lorentz
force f /ρ = ( j × B)/ρ.

The physical and numerical descriptions of the electromag-
netic forces are now mature [60,78,79]. As a consequence,
they provide an interesting tool for fundamental studies, and
they have been successfully used in numerical simulations
[60,71,80].

Figure 3 gives the horizontal distribution of the Lorentz
body forces (computed accordingly to Refs. [60,78]) driving
the flow for the three sequences (CF, TW, and BV) investigated.
The electromagnetic forces are located above the magnets.
They are locally pumping the flow in the directions indicated
by the superimposed arrows. According to the displacement
of the magnets, see Fig. 2, the sequences are produced by the

FIG. 3. (Color online) The three columns show the horizontal
distribution of the body forcing, normalized by gravity, during the
steady stages (denoted as A and B) of the three sequences, from left
to right: cat’s eyes flip, tendril and whorl, and blinking vortex. The
chevrons indicate the directions in which the flow is pumped.

cyclic variations in the electromagnetic forces. These forces
vary between two steady positions denoted as A and B in
Fig. 3. Varying the relative positions of the local pumping by
the electromagnetic forces permits the control of different flow
geometries so as to design the mixing sequences.

C. Flow sequences

The flow sequences are explored using velocity measure-
ments. The velocity fields are obtained using continuous
PIV measurements over the entire mixing domain of size
5LM × 5LM . The temporal average of the root mean square
velocities urms (computed over space) are given in Table I for
CF, TW, and BV sequences. Their mean uref = 3.96 mm/s is
taken as the reference velocity. The reference turnover time is
then built as Tflow = LM/uref = 10.1 s. With t∗ = t/Tflow, the
sequences’ dimensionless period is T ∗

cyc = 4.7. The Reynolds
number based on the reference velocity and the brine thickness
is Re = urefH/ν ∼= 15. The flows are then laminar. Moreover,
the flows being quasi-two-dimensional can be considered as
Hamiltonian in the first approximation [17,81].

The typical velocity fields during the steady forcing stages
are given in Fig. 4 for the three mixing sequences. The three
rows correspond to the different flow sequences (denoted
as CF, TW, and BV), and the two columns to the steady
configurations which are denoted as A and B. The maxima of
the velocities are observed above the magnets, i.e., where the
flow is pumped. The typical intensity of these velocity maxima
is about three times the root mean square velocity of the flows
as illustrated by the distributions of ‖u‖/uref . The centers
of the elliptical regions are indicated by circles showing the

TABLE I. Temporal average of the root mean square values of
velocity urms, pure strain λrms, and pure shear sh rms for the three
mixing sequences CF, TW, and BV.

urms (mm/s) λrms (1/s) sh rms (1/s)

CF 3.69 0.11 0.24
TW 3.78 0.1 0.22
BV 4.42 0.1 0.22
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FIG. 4. (Color online) The three rows show the velocity fields
during the quasisteady flow stages (denoted as A and B) of the three
sequences, from top to bottom: cat’s eyes flip, tendril and whorl, and
blinking vortex. See also, the forcing distributions given in Fig. 3. The
color map gives the spatial distribution of ‖u‖/uref . The white arrows
indicate the local direction of the velocity. Only one arrow is plotted
for 256 measurement points. The circles indicate the centers of the
eddies (elliptical stagnation points), and the arrows indicate the main
direction of the central hyperbolic stagnation points. Shaded shapes
are superimposed on the velocity fields to illustrate the different flow
geometries.

positions of elliptical stagnation points. The main directions
of stretching are indicated by arrows in the vicinity of the
central hyperbolic stagnation points. The different directions
of the arrows highlight that, within these hyperbolic regions,
the flow is compressed in one direction and is stretched in the
other direction.

Although, the viscous diffusion’s time leads to a transient
about Tcyc/3, the flow geometries are persistent during most of
the duration of the mixing cycles. This persistence is confirmed
by the temporal correlations of the velocity fields with the
reference velocity fields A and B obtained during the steady
stages. Figure 6 gives the maximum of these correlations,
i.e., max{cor[U(t),UA],cor[U(t),UB]} with the correlation
between velocity fields U1 and U2 defined as

cor(U1,U2) =
∑

u1 · u2

Nu2 rmsu1 rms
,

where u1, u2, u2 rms, u1 rms are the N velocity vectors and the
rms values of the velocity fields U1 and U2. These correlation

values are higher than 0.9 during 80%, 83%, and 91% of the
mixing cycles, respectively, for CF, TW, and BV sequences.
Moreover, the maxima correlation values obtained are higher
than 0.99 for the three sequences, whereas, the minima values
are about 0.1, 0.04, and 0.36, respectively, for CF, TW, and
BV sequences. As a consequence, the geometries of the flows
illustrated in Fig. 4 are characteristic of the flow geometries
during most of the mixing sequences.

Then, the three mixing sequences rely on combinations of
flows with persisting geometries. It is interesting to briefly
quantify the stretching properties of these persisting flows
while details about lamination within steady flows with akin
forcing and geometries can be found in Refs. [37,46]. The
local stretching of flows includes terms leading to exponential
and linear variations in the material element’s length. They are
called “pure strain” and “pure shear,” respectively. To identify
these two components of stretching, we use geometrical
transformations of the velocity’s Jacobian J defined as J ij =
∂ui/∂xj . The first transformation writes the Jacobian in a new
orthonormal frame of reference where the first direction is an
eigenvector and the second direction is orthogonal to the first
direction,

J ′ = R−1
E JRE =

[
λ b

0 −λ

]
=

[
λ 0

0 −λ

]
+

[
0 b

0 0

]
.

When det J < 0, λ is a real number, and the flow region is
hyperbolic. In this case, the pure strain component is |λ|, and
the pure shear component is sh = |b|, which is also‖∇ × u‖.
It can be noticed that the pure strain form (first matrix in the
split of J ′) is stretching in one direction and is compressing in
the other with equal intensities due to the mass conservation
in incompressible 2D flows. In Fig. 4, these two directions are
illustrated in the vicinity of the hyperbolic stagnation points
using arrows.

When det J > 0, λ is an imaginary number, and the flow
region is elliptic. A second transformation is required to get

J ′′ = RJ ′ R−1 =
[

0 −KG

KG 0

]
+

[
0 G(1 + K)

0 0

]
.

In this case, the pure shear component within the elliptical
domains is defined as sh = |G(1 + K)|, which is also |b|
by construction. It can be noted that there is no pure strain
component within the elliptical domains. The first matrix, in
the splitting of J ′′, corresponds to a solid rotation. The reader
may refer to Refs. [81–83] for further considerations about
geometrical properties in 2D and 3D flows.

Table I gives the rms values λrms and sh rms for the
three sequences. Using Tflow as the time reference, the mean
dimensionless values are about 1 for pure strain and 2.3 for pure
shear. Although the values obtained are higher for the shear
than the strain, the exponential nature of the pure strain form
is expected to make a significant contribution to the stretching.

Figure 5 complements the illustration of the persisting flows
given in Fig. 4. Figure 5 shows the dimensionless distribution
of pure strain (first row) and pure shear (second row) for three
selected flows: CF-B, TW-A, and TW-B. The highest values of
pure strain are observed in the vicinity of the central hyperbolic
stagnation points with intensities typically four times higher
than the rms values. Moreover, black (zero) values in the
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FIG. 5. (Color online) Distribution of dimensionless pure strain
λ∗ (first row) and pure shear s∗

h (second row) for three selected flows:
CF-B, TW-A, and TW-B. The values of pure strain are set to zero
within the elliptical domains, which then appear as black areas in the
first row. The reference time is Tflow.

distribution of pure strain indicate elliptical regions and main
recirculations. The presence of high values of shear within
these recirculations produces a differential velocity amenable
to laminate the flow [37,43,46].

Based on Figs. 4 and 5, the three flow sequences can
be described before introducing their mixing and lamination
properties.

The tendril and whorl sequence (second row in Fig. 4) varies
the flow topology between configurations TW-A and TW-B.
TW-A has a central high strain hyperbolic region surrounding
a hyperbolic stagnation point, which is cornered by four
recirculations. TW-B possesses a main central recirculation
with two smaller recirculations on its side.

The blinking vortex sequence (third row in Fig. 4) switches
between two flows (BV-A and BV-B) where the main recircula-
tion has been translated. The flows BV-A and BV-B are similar
to TW-B with different positions of eddies and small variations
in the velocity maxima. In contrast with the tendril and whorl
sequence, the blinking vortex sequence conserves the flow
topology and does not present a central hyperbolic region with
high strain. Also, it can be noted that the duration required
to switch between BV-A and BV-B is small compared to the
viscous and flow turnover times. Nevertheless, this duration is

cormax A B

cyc

FIG. 6. (Color online) Maximum of correlations between the
velocity fields at time t/Tcyc and the steady velocity fields
(denoted as A and B) for CF, TW, and BV sequences.
max{cor[U(t),UA],cor[U(t),UB ]} are plotted over one period con-
structed using phase averaging of the PIV data.

not null, and so the blinking vortex sequence is not, strictly
speaking, blinking.

The cat’s eyes flip sequence (first row in Fig. 4) cyclically
changes the flow between configurations CF-A and CF-B.
These two flows have streamlines with inclined shapes of
8, i.e., cat’s eyes, which are highlighted by shaded shapes
superimposed on the velocity field. Moreover, two secondary
recirculations are indicated on the sides of the 8. The cat’s
eyes flip sequence combines the properties of the tendril and
whorl and blinking vortex sequences. It varies the geometry of
the flow by changing the positions of the elliptical stagnation
points and introduces a hyperbolic region (with high strain)
to further stretch the flow. Some differences and novelties of
the cat’s eyes flip can be highlighted. First, the high strain
(hyperbolic) region persists during the entire mixing cycle for
the cat’s eyes flip sequence. Second, the principal directions
have different angles in between them. In the cat’s eyes flow,
the central hyperbolic region is a combination of shear and
pure strains, whereas, for the tendril and whorl sequence,
it is closer to pure strain where the principal directions are
almost orthogonal. Third, the variation in the main directions
of stretching between CF-A and CF-B is a novelty of the cat’s
eye flip sequence.

III. MIXING AND LAMINATION

A. Mixing

The mixing properties of the three sequences are quantified
using particle color methods, e.g., Refs. [4,84–87] for single-
and multispecies approaches. The flow is seeded with millions
of white and black numerical particles representing the
distribution of two nondiffusive dyes. The particles are tracked
in time (integration of dx/dt = u where x is the position of
the particle and u is its velocity) within the flow using the PIV
velocity fields. The particles’ velocity is extracted from the
velocity fields using polynomial interpolations on the order
of 2. A Runge-Kutta four (RK4) algorithm is used for the
advancement in time with a constant time step ensuring that the
maximum displacement of the particles between two time steps
is smaller than half the PIV mesh size. The local concentration
Cblack is measured by the number of black and white particles
in 3 × 3 pixel boxes of the 358 μm side, i.e.,0.009LM ,

Cblack = nblack/(nblack + nwhite),

where nblack and nwhite are the numbers of black and white
particles within the boxes. On average, there are 126 particles
per box.

The size of the counting boxes defines a diffusive length
scale that we can compare to Batchelor’s scale

√
D/λ [88] in

the case of a diffusive dye. With a typical pure strain rate λ �
0.1 s−1, an equivalent diffusivity would be D ∼ 10−8 m2 s−1

for a Péclet number Pe = UrefLM/D ∼ 104.
Figure 7 illustrates the mixing processes of the three

sequences. The reader can also refer to the Supplemental
Material, which complements Fig. 7 by giving temporal
animations of these mixing sequences [89]. The first, second,
and third columns are showing the cat’s eyes flip, the tendril
and whorl, and the blinking vortex sequences, respectively.
The black dye is initially distributed above the diagonal of
the mixer, and the white dye is distributed below. The rows
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FIG. 7. The columns show the temporal evolution of the distri-
bution of black and white numerical dyes. The three sequences are
given, from left to right: CF, TW, and BV. The t∗ times are: 0, 2.2,
4.5, 6.8, 9.2, 18.5, and 37.4. The time t∗ = 2.2 corresponds to the end
of the first steady forcing stage. Consecutive temporal increments are
in 0.5 (until t∗ = 9.2), 2, and 4 periods.

give the temporal advancement of the mixing. The first row
shows the initial distribution of the two dyes. The second row
shows the distribution of the dyes at the end of the first steady
forcing stage. To highlight the different patterns regularly
imposed on the dyes, Fig. 7 shows the progress of the mixing
with increments of half a period during the first two periods
(i.e., at times t∗ = 2.2, 4.5, 6.8, and 9.2) before illustrating the
mixing with temporal increments of two periods (t∗ = 18.5)
and four periods (t∗ = 37.4). Each sequence can then be briefly
described.

FIG. 8. (Color online) Poincaré map of the three mixing se-
quences CF, TW, and BV. The Poincaré maps are obtained using
periodic, phase averaged velocity fields. The 22 numerical particles
are tracked in time (forward and backward advancements) over 1000
periods.

For the cat’s eyes flip sequence, the numerical dyes
are rolled within the cat’s eyes and the secondary eddies.
Moreover, the dye is compressed and is stretched around the
central hyperbolic stagnation point. The alternated patterns of
CF-A and CF-B flows, see Fig. 4, clearly translate in alternated
patterns of the dyes. After eight forcing cycles, most of the flow
domain appears to be mixed.

For the tendril and whorl sequence, the numerical dyes alter-
natively follow the patterns imposed by the flow configurations
TW-A and TW-B. During TW-A, the dyes are compressed and
are stretched around the central hyperbolic stagnation point
and are rolled within the four recirculations. During TW-B, the
dyes are rolled within a central eddy and within two secondary
eddies on its sides. It can be noticed that this central eddy is
of a larger scale than the four previous recirculations.

For the blinking vortex sequence, the numerical dyes are
rolled within (and around) a main eddy, which is displaced in
time between two different positions. Again, the flow pattern
translates to the dyes’ pattern.

It is interesting to note that no islands, which often inhibit
chaotic mixing [20,42], are observed for the cat’s eyes flip
and the tendril and whorl sequences, whereas, an island seems
to be present within the heart of the central eddy for the
blinking vortex sequence. Such observations are corroborated
by the Poincaré maps, e.g., Refs. [49,81,90–92], illustrated in
Fig. 8. The Poincaré maps of the cat’s eyes flip and tendril and
whorl sequences show a significant chaotic activity within the
entire mixed domains, whereas, the blinking vortex sequence
presents a central region with a weaker density of points. This
region is highlighted by a superposed ellipse. It can be noticed
that no closed orbits are found within this region. This is
attributed to secondary flows, which are persistent within the
heart of the translated eddy of the blinking vortex sequence.
Even if these secondary flows are of weak intensity [50,51,60],
they break the strict two dimensionality of the blinking vortex
sequence. This dissipative feature leads to a departure from a
strictly speaking Hamiltonian flow.

A first common feature of these three flow sequences is that
they do not mix the corners of the mixer and some areas close
to the walls. Indeed, regions close to the walls are affected
by the creation of boundary layers, which act like buffers
(and/or stocks of poorly mixed fluid) and reduce the mixing
performance, e.g., Refs. [32,93–95]. Moving the forcing closer
to the wall (and/or corners) [96] would permit two actions
enhancing the uniformity of mixing within the entire mixer.
First, this can flush unmixed regions towards the central
region where the mixing is faster. Second, the stagnation
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points resulting from the impact of jets on boundaries can
be controlled and can be used to introduce sequential mixing
close to the wall. It can be noticed in Figs. 4 and 7 that
the three mixing sequences partially use this ability to act
on the flow close to the walls. The limitation due to the
corners could also be tackled by using different shapes for
the boundaries of the mixer so as to suppress the corners. Such
potential improvements are kept for future papers, whereas,
this article focuses on the intrinsic properties of these three
mixing sequences.

A second common feature is the multiplication with time of
the dyes’ layers inside imposed patterns. Indeed, the evolution
of the dye pattern in rows 3, 5–8 reveals the reproduction of
a large scale pattern with a multiplication of the number of
layers, whereas, the dyes’ patterns at intermediate times,
e.g., row 4, are significantly different. This is in agreement
with previous observations of strange eigenmodes in chaotic
flows, e.g., Refs. [42,97–100]. Moreover, this growth in the
number of layers is combined with a reduction in the layers’
thicknesses until the dyes appear to be mixed. One novel
insight explored in this article is the quantification of these
layers (and the corresponding thicknesses of the striations)
for the three canonical mixing sequences CF, TW, and BV.

B. Lamination

The lamination is the degree of striations of an interface.
Various processes generate striations within flows, e.g., rolling
and folding. The measure of lamination Mlam estimates the
local degree of striations. In 2D flows, the interface is reduced
to a material line. Mlam is then defined as the ratio between
the total length of the line within a circle centered on the line
and the diameter � of the circle [46],

Mlam = 1

�

∫ ∫
disk

dl.

Moreover, the local measure of the lamination translates
into the local striations’ thicknesses. This is an important point
as the striations’ thicknesses are the distance over which the
molecular diffusion would need to act to finalize mixing in the
case of diffusive dyes or species. In 2D flows, these thicknesses
d are defined as

d = φ/(1 + Mlam).

It can be noticed that this method presents a few advantages
when compared to previous methods based on the intersection
of the line with prescribed sets of lines [44,45]. For example,
it neither requires the definition of a set of lines or “angular
corrections” nor the filtering of inappropriate orientations.
Also, it does not crisscross the striations’ thicknesses with
“chords” [44].

To explore the lamination of the flow sequences, material
lines representing the interface between two domains to be
mixed are tracked in time. The line is made of interconnected
virtual particles, which are tracked as described for the particle
color methods with a time step used for the RK4 method two
times smaller. The numerical methods used in Refs. [45,46]
ensure that all particles are issuing from the initial line. In fact,
due to the fast growth of the material line, this tracking method
is limited as it needs to add particles between particles with an

ever reducing distance, which quickly reaches the numerical
accuracy of the computations. Similar to Refs. [44,101], a
different method is then used. Particles are added to the line
during the tracking to ensure that the distance between two
consecutive particles (defining a line segment) stays small.
At all times, the maximum distance between two consecutive
particles is set to one tenth of the PIV mesh, i.e., 0.0024LM .
When a line segment is longer than this maximum distance, a
new particle is inserted at the center of this segment.

Figure 9 gives the temporal evolution of a material line,
representing the interface of the dyes shown in Fig. 7, for the
three mixing sequences: CF, TW, and BV. The reader can also
refer to the Supplemental Material [89], which complements
Fig. 9 by giving temporal animations of the line and its
striations’ thicknesses. The color scale indicates the typical
thicknesses of the striations measured with φ = 1 cm, i.e.,
0.25LM . The line (and striations’ thicknesses) is illustrated
every half-period from t∗ = 2.2 to t∗ = 11.6 before the last
display of the line one period later at t∗ = 16.3. The different
configurations of the stirring sequences drive the evolution
of the material line. Similar to Fig. 7, regular patterns are
observed, although these patterns strongly differ during a
period. In addition, for the blinking vortex sequence, the
displacement and temporal persistence of a potential island
within the heart of the main eddy can be observed. At t∗ =
16.3, this phenomenon leads to a lamination weaker within the
heart of the eddy than for the rest of the mixed domain.

During each cycle, the folding, bending, and rolling of
the line generate new striations within the flow. Indeed,
the line is rolled within eddies, and it is bent close to the
hyperbolic stagnation points in the direction of the unstable
manifolds. Moreover, the striations’ thicknesses are reduced
in the direction of the stable manifolds, which enhances mixing
locally, see, for example, the cat’s eyes flip sequence.

For the three mixing sequences, the lamination process
divides, by two or three decades, the striations’ thicknesses d

within 16 turnover times. As the characteristic time of diffusion
decreases with d2, the lamination significantly enhances
mixing by dividing the diffusion time by ten thousands or
a million in 3 minutes.

Moreover, the spatial distribution of the level of lamination
(respectively, the striations’ thicknesses) indicates where the
mixing will first be achieved and if the mixing process is
performed uniformly in space. This new insight in mixing
processes can provide an interesting tool for optimizing mixers
and reducing their energy consumption.

IV. DISCUSSION

It is important to characterize the nature of the processes
driven by the three flow sequences in terms of stretching,
lamination, and mixing. First, the stretching and lamination
properties of the three flow sequences are discussed in more
detail.

A. Lamination and stretching

To mix a flow, the nondiffusive stirring of the interface needs
to be completed by diffusion. The distribution of the striations’
thicknesses, illustrated in Fig. 9, is then key for exploring
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FIG. 9. (Color) The columns show the temporal advancement of
a material line for the three sequences, from left to right: CF, TW,
and BV. The color scale gives the striations’ thicknesses d within
measurement circles of diameter φ = 1 cm, illustrated (in red) at t∗ =
0. The line tracked represents the interface between the numerical
dyes in Fig. 7. Only the points for which the line’s length from these
points to the line’s extremities is larger than φ/2 are displayed.

the mixing process of a flow sequence. It is interesting to
characterize a typical distance over which the diffusion would
need to act to finalize the mixing within the stirred domain.
To do so, we extract the spatial average of the lamination.
Each measurement provides the value of the lamination at a
spatial position, and the ensemble of measurements generates
a cloud of values. Prior to compute the spatial average, a first
local average is performed over the lamination measurements

FIG. 10. (Color online) Stretching l/ l0 and spatial average of the
lamination 〈Mlam〉 versus time for the line illustrated in Fig. 9 and
for the three sequences: CF, TW, and BV. t∗ = t/Tflow.

contained within the elementary boxes of a regular mesh. The
boxes’ sides are equal to a quarter of the PIV mesh, i.e.,
0.006LM , which is about 800 times smaller than the mixer’s
side. The spatial average is then performed over the boxes
crossed by the line. Compared with a standard average along
the line, this removes biases due to the fact that the sections
of the flow with the highest lamination values also are crossed
by more lines.

Similar to Refs. [45,101], the stretching of the material line
is given by the line’s length l divided by its initial length l0,

l/ l0 = 1

l0

∑
i

‖li‖,

where li are the vectors defined by the interconnected particles.
Figure 10 gives the temporal evolution of the spatial average

of the lamination, denoted as 〈Mlam〉, for the line illustrated
in Fig. 9 and the temporal evolution of the stretching of
the line 〈Mlam〉, representing the dyes’ interface given in
Fig. 7. Within this semilogarithmic plot, dashed-dotted lines
indicate exponential trends. For the three sequences, it is
striking that both 〈Mlam〉 zand l/ l0 grow exponentially with
time. Moreover, the growths observed for the three sequences
are clearly different. This indicates different properties for
stretching and lamination. Indeed, the cat’s eyes flip sequence
is found to have higher rates of lamination and stretching than
the tendril and whorl and blinking vortex sequences. Also, it
can be noted that, for the three sequences, the stretching rate
is higher than the lamination rate.

To quantify these exponential growths and their dependence
on the initial distribution of the dyes, the growths are measured
for eight different orientations of lines. The different lines are
obtained by simple centered rotations with regular angular
increments, i.e., π/8. They correspond to the interfaces of the
distributions of dyes illustrated in Fig. 12.

These results confirm the exponential growths for the
stretching and the lamination for the three sequences. More-
over, the dependence on the initial distribution of dyes is weak
for the cat’s eyes flip and tendril and whorl sequences with
standard deviations about 1% for the measured exponents. The
mean values and standard deviations obtained for the growths’
exponents are summarized in Table II, see columns under the
heading 5LM × 5LM . It can be noted that the values of the
stretching exponents, estimated using the flow periodicity as
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FIG. 11. Successive stretching, cutting, and stacking of material
bands usually called the baker’s map. The total length of the band is
regularly multiplied by 2 and then grows exponentially as 2n.

the reference of time, correspond to the topological entropy,
e.g., Refs. [102,103].

It is interesting to briefly discuss the interweaving between
lamination and stretching while considering lamination as a
key process amenable to be engineered [37,46] rather than as
a subproduct of the stretching. In this spirit, the multiplication
of layers during the flow sequences enhances the stretching
of the line. Indeed, if some stretching is applied within a flow
region crossed by an interface, the growth of the interface is
proportional to the number of layers crossing the stretched
domain. The increase in the number of layers then increases
the stretching. In fact, the increase in the number of layers
is at the heart of the well known baker’s map illustrated
in Fig. 11. In this illustration, the lamination of a material
band combined with a simple shear leads to an exponential
growth of the material band. It can be noted that such bakerlike
(exponential) growth does not need the presence of pure strain
regions within the flow. Shear being present everywhere within
the mixing domain, see Fig. 5, the exponential growth of the
lamination is then contributing to the growth of the material
line as a bakerlike process. Also, it can be noted that the
increase in stretching by the lamination of interfaces is not
restricted to laminar flows. Indeed, the folding of material lines
has been shown to increase the line’s stretching in turbulent
flows [101,104].

In addition, the exponential growth of the line stretching
is systematically higher than the one of the lamination with
a similar increment (about 0.3) for the three sequences. Two
reasons for that can be mentioned. First, the lamination is
not distributed uniformly in space. Second, the pure strain
present within the flows does not need lamination to generate
local exponential separations of particles, e.g., Ref. [15], which
leads to local exponential growths of the material lines.

Doubling the time during which the forcing stays steady
allows to significantly increase the forcing period while
keeping the persistence of the flows’ geometries for the

FIG. 12. (Color online) Illustration of the different initial distri-
butions of dyes used to estimate lamination, stretching, and mixing
statistics.

cat’s eyes, tendril and whorl, and blinking vortex sequences.
Table II gives the lamination and stretching exponents for
these sequences with a period of 91.6 s, i.e., 9.1Tflow. When
the exponents are estimated according to the periodicity of the
flows, the stretching exponents correspond to the topological
entropy, e.g., Refs. [102,103]. In this case, the exponents are
increasing with the increase in the period from 4.7Tflow to
9.1Tflow. Moreover, it is interesting to note that the relative
increase in the stretching and lamination exponents is close
to the ratio of the stirring periods. Indeed, the ratios of the
exponents given in Table II are about 1.85±4.2%, 1.69±11 %, and
1.72±3.2 %, respectively, for the CF, TW, and BV sequences,
whereas, the ratio of the stirring periods is about 1.92.
This indicates that, in these experiments, the characteristic
flows’ turnover time Tflow is a more consistent choice for the
reference of time than the stirring period. This scaling with
the flows’ turnover time is attributed to the integration of the
stretching and the lamination [37] during the stirring stages
with persistent flow geometries.

These points suggest that the line is stretched as

l/ l0 ∼ e(λad+βbaker)t/Tflow ,

where eβbakert/Tflow is the exponential growth of the spatial aver-
age of the lamination and eλadt/Tflow represents the additional ex-
ponential stretching, which does not directly contribute to the
spatial reduction in the striations’ thicknesses. For these three
sequences, eβbakert/Tflow is found to be much larger than eλadt/Tflow .

To complement the information given by the exponential
growth of the lamination, it is interesting to explore the
distribution of the lamination for the three flow sequences.
Figure 13 gives the probability distribution (over space) of the

TABLE II. Mean coefficients α of the exponential growths eαt/Tcyc , measured for the stretching l/ l0 and lamination 〈Mlam〉 for two different
sizes of mixers 5LM × 5LM and 15LM × 15LM and two different periods of the forcing cycle Tcyc = 4.7Tflow and Tcyc = 9.1Tflow. The values
in the superscripts give the standard deviations over different initial conditions.

5LM × 5LM 15LM × 15LM

Tcyc l/ l0 〈Mlam〉 l/ l0 〈Mlam〉
4.7Tflow CF 3.01±0.9% 2.71±1.2% 2.35±1.5% 2.00±2.8%

TW 2.74±1.2% 2.42±1.5% 2.31±2.4% 2.03±1.8%

BV 2.22±2.4% 1.91±4.6% 1.81±2.8% 1.51±6.3%

9.1Tflow CF 5.5±1.4% 4.75±2.7% 4.5±3.7% 3.83±2.3%

TW 5.13±2.9% 4.45±3.3% 3.57±3.8% 3.09±4.4%

BV 3.97±1.6% 3.28±4.9% 3.12±3.5% 2.5±7.4%
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FIG. 13. (Color online) Probability distribution of the lamination
for CF, TW, and BV sequences at time t∗ = 16.7 for the line plotted
in Fig. 9. Dot-dashed lines indicate the mean lamination, and dotted
lines indicate the median value of the distributions.

lamination at time t∗ = 16.7 for CF, TW, and BV sequences.
Moreover, the median and average values are indicated in
Fig. 13 using dot-dashed lines, respectively. The tendril and
whorl and the cat’s eyes flip sequences have larger tails with
high local values for the lamination. This is due to the presence
of the central hyperbolic region, see Fig. 4, which locally
reduces the striations’ thicknesses by compressing the flow in
the direction of the stable manifold. The typical ratios between
median and mean values are as follows: 0.75±4.7%, 0.86±8.2%,
and 0.91±5.6% for the sequences CF, TW, and BV, respectively.
The superscripts indicate the standard deviations in time for
t∗ > 7.3. These ratios are consistent in time with values close
to 1, whereas, the spatial average of the lamination is varying
over many decades during the mixing process. This shows that
the spatial average is a good estimation of the lamination occur-
ring within these flow sequences. Moreover, the typical ratios
between a reference value for which 90% of the lamination
values is higher than this reference and the mean lamination
are 0.22±7.9%, 0.24±25%, and 0.42±4.8%, respectively, for the
sequences CF, TW, and BV. This further confirms that the
spatial average of the lamination indicates the right order of
magnitude for the lamination of these three sequences.

Table II also gives the exponents of the bakerlike growth
measured for a larger mixing domain, i.e., 15LM × 15LM . For
the three sequences, the lamination and stretching exponents
measured are larger within the 5LM × 5LM domain. The
increments are about 0.7 for the cat’s eyes flip sequence and
about 0.4 for the tendril and whorl and the blinking vortex
sequences. Indeed, when compared to the results in the larger
domain, the mixing in the small domain leads every cycle to
extra multiplications of the lamination and line’s length by 2
for CF and 1.5 for TW and BV. From the authors’ perspective,
this is due to the effect of the boundaries which close the
streamlines in a smaller domain. This increases the differential
angular velocity [37] and reduces the turnover time at the
mixer length scale. It then reinforces the lamination within the
5LM × 5LM domain, which then, increases the stretching in a
process akin to the baker’s map.

B. Mixing

Figure 7 illustrates the particle color method used to
measure local concentrations. To complement the picture

of the stirring process (i.e., without diffusion) given by the
stretching and lamination of an interface, the mixing needs to
be quantified in terms of growth and homogeneity. To do so,
the rescaled variance in the concentration is used to define a
mixing coefficient Cmix,

Cmix = 1 − σ 2/σ 2
0 ,

that is corrected to take into consideration the discrete
sampling of the particle color method,

σ 2
0 − σ 2

σ 2
0 − σ 2

meas

=
(

1 − σ 2

σ 2
0

)(
σ 2

0

σ 2
0 − σ 2

meas

)
.

σ 2 is the variance in the dye concentration, σ 2
0 is the initial

variance in the dye distribution (also maximal value of σ 2),
and σ 2

meas characterizes the residual variance due to the discrete
sampling of the particles. Typically, σ 2

meas is determined using
a black and white chessboard (with cases of 1 pixel sides)
for the initial distribution of the dyes before applying the
stirring of the three sequences. The values obtained for σ 2

meas
are about 2.79 10−3, 2.78 10−3 and 3.25 10−3, respectively, for
the CF, TW, and BV sequences. With σ 2

0 = 0.25, the corrective
term σ 2

0 /(σ 2
0 − σ 2

meas) is about 1.01. It can be noted that this
definition of a mixing coefficient is akin to quantify the relative
entropy using particle color methods, e.g., Refs. [4,84].

When starting with an initial distribution of black dye
covering half the mixer, the mixing coefficient has the
advantage of translating into the fraction β of the mixer’s
domain, which has been mixed. Indeed,

β = 1

2 − Cmix
,

which can be expanded as

β = Cmix + (1 − Cmix)2 − (1 − Cmix)3 + O(1 − Cmix)4.

When Cmix is close to 1, e.g., higher than 0.9, β is then close to
Cmix. We assume that this also is true for the corrected mixing
coefficient.

Figure 14 gives the corrected mixing coefficients versus
time for the dye distributions of Fig. 7. After a fast growth, the
mixing coefficients saturate and reach the maximum values
about 0.95, 0.93, and 0.92, respectively, for CF, TW, and BV
sequences. As illustrated by the gray areas of the final dyes’
distribution inserted in Fig. 14, these values are in agreement
with the fraction of space occupied by the domains, which
have been mixed by the flow sequences.

To describe the intrinsic properties of these mixing se-
quences, it is important to quantify the nature of their mixing
growth. The semilogarithmic inset in Fig. 14 shows an
exponential decay for the concentration variance as the mixing
coefficients are growing, such as (eαt − 1) before saturation.
This can be expected from the results showing an exponential
growth of interfaces. Indeed, as diffusion (here, due to box
counting) occurs along the interface, an exponential growth of
the interfaces’ length should initially lead to an exponential
decay of the concentration variance.

To support this exponential behavior of the mixing pro-
duced by the three flow sequences, the mixing of a blob of
dye is explored, e.g., Refs. [39,52,70,93,105,106]. The final
variance σ 2

f , rescaled by its initial value at t∗ = 0, σ 2
0 , varies
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FIG. 14. (Color online) Mixing coefficient (σ 2
0 − σ 2)/(σ 2

0 −
σ 2

meas) versus time for the sequences: CF, TW, and BV. In the
semilogarithmic inset, the dot-dashed lines indicate exponential
growths ∼ (eαt − 1). The three picture insets at the top give the final
distributions of dye for the mixing process illustrated in Fig. 7 for
earlier times. From left to right, they correspond to CF, TW, and BV
sequences.

according to the initial α and final β fractions of space filled
by the blob of dye as

σ 2
f

σ 2
0

=
(

α

1 − α

)(
1 − β

β

)
.

As a consequence, the study of small blobs of dye presents the
advantage to increase the variation in σ 2/σ 2

0 when the flow
sequences do not mix the entire mixer’s domain. For example,
this ratio would be about ten times larger with α = 0.1 than
α = 0.5.

Different blobs of dye of diameter LM are randomly placed
within the mixer and then are stirred within the flow using the
particle color data. Figure 15 gives the temporal evolution of
〈σ 2/σ 2

0 〉, which is the assembled average of σ 2/σ 2
0 over 24

realizations. The picture insets show the initial position of a
blob of dye and the final space occupied by this mixed blob

FIG. 15. (Color online) Mixing of blobs of dye. Assembled
average (over 24 realizations) of concentration variance 〈σ 2/σ 2

0 〉
versus time for the sequences: CF, TW, and BV. The dot-dashed
line highlights an exponential trend. The picture insets illustrate the
initial and final distributions for the mixing of a blob of dye.

for the three sequences. Even though the final values obtained
for σ 2/σ 2

0 are significantly smaller than the ones in Fig. 14,
the fractions of space occupied by the blob of dye at the end
of the mixing process are similar to the ones in Fig. 14.

More importantly, the variation in 〈σ 2/σ 2
0 〉, given in Fig. 15,

confirms the exponential decay of the variance over more
than one decade before saturation. These exponential decays
contrast with previous results using moving rods to mix
flows [54,93] without the need to move the walls [107,108] to
enhance mixing. From the authors’ perspective, this important
novelty is flowing from the control of the flow’s geometry
using jets. Indeed, the higher values obtained for stretching
and lamination in the small domain 5LM × 5LM seem to
indicate that these flow sequences are amenable for using the
boundaries to reinforce the lamination and the stretching. In
the present experiments, the adverse effects of the steady walls
on mixing, highlighted in Ref. [93], are counterbalanced by
positive effects of the walls on the flow’s lamination due to the
use of jets rather than rods to stir the flow.

Furthermore, to characterize the growth and robustness of
the mixing, we estimate the time T ∗

80 required to reach a mixing
coefficient of 80%. Similar to the stretching and lamination
cases, the eight different initial distributions of dyes given
in Fig. 11 are investigated. The average values measured for
T ∗

80 are 21.9±3.9%, 33.8±4.7%, and 29.1±3.1%, respectively, for
the cat’s eyes flip, the tendril and whorl, and the blinking
vortex sequences. These average values are in agreement with
Fig. 14. Moreover, the small values of the standard deviations
given in the superscripts indicate the robustness of the mixing
sequences for different initial conditions.

C. Lamination, mixing, and saturation

The saturation of the mixing growth is an important aspect
for the conception of mixers. To explore mixing saturation, the
temporal derivative of the mixing coefficient, i.e., mixing rate,
is investigated for the three mixing sequences.

In Fig. 16, the mixing rate is obtained by the temporal
derivative of the corrected mixing coefficients given in Fig. 14.
Three mixing stages can be observed in the first column of
Fig. 16. The first stage corresponds to a rapid growth of the
mixing rate, the second corresponds to a relative sustaining
of the mixing rate, and the third corresponds to a rapid decay
of the mixing rate, which then reaches relatively low values.
The dotted lines plotted in the semilogarithmic graphs (right
hand side column) indicate exponential trends. An exponential
growth is observed for the mixing rate before the saturation of
the mixing process when the mixing rate growths separate from
the exponential trends. This confirms the initial exponential
growth of the mixing coefficients and the exponential decay of
the concentration variance. Also, in Fig. 16, it can be observed
that the durations of these exponential growths differ for the
three sequences.

Considering that the saturation of the mixing rate takes
place when the striations’ thicknesses reach the diffusive
length scale of the dye (or species) to be mixed, the lamination
measurements permit the estimation of the time around which
the saturation of a mixing process occurs. This time depends
on the diffusive properties of the dyes (or species) considered.
In the case of mixing measurements using particle color
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FIG. 16. (Color online) Mixing rate coefficients corresponding to
the temporal derivatives of the mixing curves given in Fig. 14. The
dotted lines plotted in the semilogarithmic figures [labeled (b)] show
exponential trends. The dashed lines indicate the time T ∗

dif when the
spatial average of the striations’ thicknesses has reached the diffusive
length scale, which is given by the size of the counting box for a
particle color method.

methods, this diffusive length scale is the size of the counting
box. For a diffusive dye, this should be on the order of Batche-
lor’s scale or

√
2Dt , whichever is the highest. The dashed lines

in Fig. 16 indicate the time T ∗
dif when the typical striations’

thicknesses, estimated using the spatial average of the lamina-
tion, reach the size of the counting box. These times are 8.7,
9.9, and 12.7, respectively, for the CF, TW, and BV sequences.
As observed in Fig. 16, there is good agreement between these
times and the departure of the mixing rate from an exponential
growth.

Given this new insight, the temporal evolution of the mixing
rate can then be described as follows. For times below T ∗

dif , the
exponential stirring of the interface leads to an exponential
growth of the mixing coefficient and its rate. When the
striations’ thicknesses reach the diffusive length scale, the
diffusion swiftly finalizes the mixing process, although this
process does not happen uniformly in space. While the mixing
has been achieved where the typical striations’ thicknesses
of the interface (computed without diffusion) are below the
diffusive length scale, other parts of the flow are still to be
mixed. This leads to the saturation of the exponential growth of
the mixing rate. Moreover, the maximum values of the mixing
rate are sustained for some time after T ∗

dif . In light of the spatial
distribution of the line and its striations’ thicknesses given in
Fig. 9, this sustaining of the mixing rate corresponds to the
sustained growth of the space filled by the interface, whereas,
some parts of the flow have already been mixed. Later, when
most of the space is filled by the line, the mixing rate decreases.
The flow sequences are now working to ensure the homogene-

ity of the mixing while significant parts of the flow are already
mixed.

Finally, the average thicknesses of striations can be used
to estimate the range of diffusivity for which the mixing
will be effective. For example, at T ∗

80, the typical striations’
thicknesses dT80 , are 0.11 μm, 0.84 nm, and 0.19 μm for
the CF, TW, and BV, respectively. The construction of a
diffusion coefficient as D80 = d2

T80
/2T80 shows that species

with diffusivity higher than 10−16 m2/s will be mixed at
T80. For example, this includes suspensions of virus, bacteria,
human cells, and DNA [14,109].

V. CONCLUSION

The control of a pair of jets driven by body forces permits
the conception of tailored mixing sequences. This includes
the production of sequences inspired by the tendril and whorl,
blinking vortex flows, and new sequences, such as the cat’s
eyes flip. These sequences perform an original in situ mixing.

The stretching and mixing properties of these sequences
have been investigated along with a new quantification of the
lamination. It is shown that the lamination, the stretching, the
mixing coefficient, and its rate grow exponentially in time.
Comparing the exponents obtained for the exponential growth
of the stretching and the lamination within two square mixing
domains of different sizes (area ratio of 9) indicates that the
confinement of the flow reinforces lamination and stretching.
Moreover, it is shown that the lamination and stretching
exponential growths are robust by doubling the duration of
the steady forcing stages. This feature is attributed to the
integration of the lamination (and stretching) during stirring
stages with flows’ geometries persisting in time. Incidentally,
for the same energy or forcing input, the cat’s eyes flip
sequence is faster in terms of lamination, stretching, and
mixing than the two other sequences.

Moreover, the estimation of the local striations’ thicknesses
using lamination measurements sheds new light upon mixing
processes, e.g.: It shows that species with diffusivity as low
as 10−16 m2/s could be mixed by the three flow sequences
in about 6 min, which is less than 40 turnover times. It
provides the spatial distribution of the stirring process, which
translates into the spatial distribution of mixing for diffusive
species. It permits the estimation of the time at which the
mixing rate departs from an exponential growth, leading to
the saturation of the mixing process. All these new insights
indicate that the exploration of the lamination should open
new avenues for designing new mixers. In particular, the
engineering of lamination should have an impact on mixing
performances.

Finally, whereas, mixing with body forces permits the
design of programmed sequences, the simplicity inherent to
the control of jets should facilitate the transcription of these
results to other mixing devices [3,110,111], possibly at all
scales.
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