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The phenomenon of liquid bridge formation due to an applied electric field is investigated. A solution of a
charged catenary is presented, which allows one to determine the static and dynamical stability conditions where
charged liquid bridges are possible. The creeping height, the bridge radius and length, as well as the shape of
the bridge are calculated showing an asymmetric profile, in agreement with observations. The flow profile is
calculated from the Navier-Stokes equation leading to a mean velocity, which combines charge transport with
neutral mass flow and which describes recent experiments on water bridges.
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I. INTRODUCTION

A. The phenomenon

The formation of a water bridge between two beakers under
high voltage is a phenomenon known for over 100 years [1].
When two vessels are brought into close contact and a high
electric field is applied between the vessels, the water starts
creeping up the beakers and forms a bridge which is maintained
over a certain distance, as schematically illustrated in Fig. 1.
Due to the voltage applied by the vessels, the electric field is
longitudinally oriented inside the cylindrical bridge. This has
remained an attractive phenomenon in current experimental
activities [2,3]. On one hand, the properties of water are so
complex that a complete microscopic theory of this effect is
still lacking. On the other hand, the formation of water bridges
on nanoscales is of interest both for a fundamental under-
standing of electrohydrodynamics and for applications ranging
from atomic force microscopy [4] to electrowetting problems
[5]. Microscopically, the nanoscale wetting is important to
confine chemical reactions [6], which reveals an interesting
interplay between field-induced polarization, surface tension,
and condensation [7,8].

Molecular dynamical simulations have been performed
in order to explore the mechanism of water bridges at the
molecular level, leading to the formation of aligned dipolar
filaments between the boundaries of nanoscale confinements
[9]. A competition was found between the orientation of
molecular dipoles and the electric field, leading to a threshold
where the rise of a pillar overcomes the surface tension [8]. In
this respect, the understanding of the microscopic structure is
essential to explain such phenomena in microfluidics [10]. The
problem is connected with the dynamics of charged liquids,
which is important for capillary jets [11], current applications
in ink printers, and electrosprays [12,13]. Consequently, the
nonlinear dynamics of the breakup of free surfaces and flows
has been studied intensively [14,15].

Much physical insight can be gained already on the macro-
scopic scale, where the phenomenon of liquid bridging is not
restricted to water but can be observed in other liquids too [16],
which shows that it has its origin in electrohydrodynamics [17]
rather than in molecular-specific structures. The traditional
treatment is based on the Maxwell pressure tensor where the

electric field effects comes from the ponderomotoric forces and
are due to the boundary conditions of electrodynamics [18].
This is based exclusively on the fact that bulk-charge states
decay on a time scale of the dielectric constant divided by
the conductivity, εε0/σ , which for pure water takes 0.14 ms.
This decay time of bulk charges follows from the continuity
of charge density ρ̇c = −∇ · j combined with Ohm’s law
j = σE = −σ∇φ, where the source of the electric field is
given by the potential ∇2φ = −ρc/εε0. An overview of the
different forces occurring in microelectrode structures is given
in Ref. [19].

This simple Ohm picture leads to a problem in partially
charged liquids. Following the Ohm picture, one has a constant
velocity or current density of charged particles caused by
the external field and limited by friction. In contrast, for
incompressible fluids, the total mass flux cannot be constant
but is dependent on the area where it is forced to flow through.
Both pictures seem to be impossible to reconcile. In this paper,
we will present a discussion of this seeming contradiction,
leading to a dynamical stability criterion for the water bridge
and a combined flow expression. This is in line with the idea
of Ref. [17], where the bulk charges have been assumed to
be realized in a surface sheet. While there the migration of
charges to the surface has been considered to form a charged
surface sheet, we adopt here the viewpoint of homogeneously
distributed bulk charges which flow in the field direction rather
than forming a surface sheet.

In the absence of bulk charges, the forces on the water
stream are caused by the pressure due to the polarizability
of water described by the high dielectric susceptibility ε. This
pressure leads to the catenary form of the water bridge, such as
a hanging chain [20]. While the simplified model of Ref. [16]
employing a capacitor picture already leads to a critical field
strength for the formation of the water bridge, the catenary
model [20] has not been reported to yield such a critical field.
In this paper, we will show that even the uncharged catenary
provides indeed a minimal critical field strength for the water
bridge formation in dependence on the length of the bridge.
This critical field strength is modified if charges are present
in the bridge, which we will discuss here with the help of
a charged catenary solution. This allows us to explain the
asymmetry found in the bridge profile [3].
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FIG. 1. (Color online) The schematic picture of a water bridge
between two beakers.

B. Overview

The scenario of water or other dielectric bridges is under-
stood as follows. Applying an electric field parallel to two
attached vessels, the water creeps up the beaker and forms
a bridge, as is nicely observed and pictured in Ref. [2]. This
bridge can be elongated up to a critical field strength and forms
a catenary, which becomes asymmetric for higher gravitation
to electric field ratios [3]. The critical value for stability
is sensitively dependent on ion concentrations breaking off
already at very low concentrations. The amount of mass flow
through the bridge does not follow simple Ohmic transport, as
we will see in this paper. The schematic picture of the water
bridge is given in Fig. 1.

In this paper, we want to advocate the following picture.
Imaging a snapshot of the charges flowing through the bridge,
we cannot decide whether the observed charges are due to static
bulk charges or to the floating motion of Ohmic bulk charges.
We can associate this flow of charges within the liquid bridge
with a dynamical bulk charge in the mass motion, which is not
covered by the decay of Ohmic bulk charges discussed above.
Such a picture is supported by the experimental observation
of possible copper ion motion [21] and by the observation
that the water bridge is highly sensitive to additional external
electric fields [22]. Strong fields even create small cone jets [2].
This dynamical bulk charge will lead us to the necessity to
solve the catenary problem including bulk charges. Though
charged membranes have been discussed in the literature [23],
the analytical solution of the charged catenary is offered in this
paper.

The picture of Ohmic resistors and capacitors as described
above is not sufficient, as one can see from the observation
that adding a small amount of electrolytes to the clean water
destroys the water bridge almost immediately. In other words,
good conducting liquids should not form a water bridge. We
will derive an upper bound for charges possibly carried in
water in order to remain in stable liquid bridges. Though we
present all calculations for the water parameters summarized
in Table I, the theory applies as well to any dielectric liquid in
electric fields.

Four theoretical questions have to be answered: (i) How is
the electric field influencing the height zmax in which water
can creep up? (ii) What is the radius R(x) along the bridge?
(iii) What is the form z = f (x) of the water bridge, and what
are the static constraints on the bridge? (iv) Which dynamical
constraints can be found for possible bridge formation?

TABLE I. Variables and parameters used within this paper for
water.

Density ρ = 103 kg/m3

Dielectric susceptibility ε = 81
Surface tension σs = 7.27 × 10−2 N/m
Viscosity η = 1.5 × 10−3 Ns/m2

Conductivity of
clean water σ0 = 5 × 10−6 A/Vm

Molecular conductivity
of NaCl λ = 12.6 × 10−3 Am2/Vmol

Heat capacity cp = 4.187 J/gK

We will address all four questions with the help of four
parameters composed of the properties of water summarized
in Table I. The first one is the capillary height,

a =
√

2σs

ρg
= 3.8 mm, (1)

with surface tension σs , particle density ρ, and gravitational
acceleration g. The second parameter is the water column
height balancing the dielectric pressure, called creeping height,

b(E) = ε0(ε − 1)E2

ρg
= 7.22Ē2 cm, (2)

where the dimensionless electric field Ē is in units of
104 V/cm. The third one is the dimensionless ratio of the
force density on the charges by the field to the gravitational
force density,

c(ρc,E) = ρcE

ρg
= 15.97Ēρ̄c, (3)

where the charge density ρ̄c is in units of ng/l. For dynamical
consideration, the characteristic velocity

u0 = ρga2

32η
≈ 3.02 m/s (4)

will be useful as the fourth parameter.
The outline of the paper is as follows. In the next section,

we briefly repeat the standard treatment of creeping height and
bubble radius of a liquid, but add the pressure by the external
electric field on the dielectric liquid. Then, in Sec. III, we
present the form of the bridge in terms of a solution of the
catenary equation due to bulk charges. In Sec. IV, we present
the flow calculation proposing the picture of moving charged
particles due to the field which drag the neutral particles. This
will lead to a dynamical stability criterion. Then we compare
with the experimental data and show the superiority of the
present treatment. A summary and conclusion finishes the
discussion in Sec. V.

II. CREEPING HEIGHT AND RADIUS OF BRIDGE

We start to calculate the possible creeping height and use
the pressure tensor for dielectric media [18],

σ ik = −pδik−σs

(
1

R1
+ 1

R2

)
+εε0EiEk− 1

2
ε̃ε0E

2δik, (5)
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where p is the pressure in the system, and R1,R2 are the
principal radii of curvature such that the second term on
the right-hand side describes the contribution due to surface
tension and the last terms are the parts due to the forces in
the dielectric medium. We assume a density-homogeneous
liquid such that for the dielectric susceptibility, ε̃ = ε −
ρ(dε/dρ)T ≈ ε. Further, we consider first the stationary
problem, which means that viscous forces can be neglected
in Eq. (5).

Denoting the components of the normal vector by ek , the
stability condition between water (W) and air (A) is given by

σ ik
(A)e

k
(A) = −σ ik

(W )e
k
(W ) = −σ ik

(A)e
k
(W ). (6)

Since the principal curvature of the tube is much larger radially
than parallel, we have R2 ∼ ∞, and denoting the coordinate
in the direction of the height with z, the pressure difference
between water and air is pW − pA = ρgz. We employ the
boundary conditions for the normal En and tangential Et

components of the electric field,

En
(A) = εEn

(W ) = εEn, Et
(A) = Et

(W ) = Et, (7)

and the balance (6) with (5) reads

ρgz + σs

R1
= 1

2
ε0(ε − 1)

(
εE2

n + E2
t

)
. (8)

Please note that due to the migration of charges to the surface,
one should consider a surface charge here in principle. We
adopt throughout the paper the simplified picture that the
charges remain bulklike due to the preferred motion along the
field and no surface charges are formed. The influence of such
surface charges is considered as marginal since the curvature
of the bridge is minimal, leading to preferential tangential
components of electric fields.

We assume the electric field in the x direction such that Et =
−E cos α, En = E sin α, where z′(x) = tan α is the increase of
the surface line of the water, as illustrated in Fig. 2. Using the
parameters (1) and (2), we obtain from the stability condition
(8) the differential equation

2z − a2 z′′

(1 + z′2)3/2
= ε0(ε − 1)

ρg

(
εE2

n + E2
t

) ≈ b, (9)

E

z

θ

αzmax

x

FIG. 2. (Color online) The schematic picture of a water bridge
creeping up the vessel due to the applied electric field.

where we used the approximation of small normal electric
fields, which is justified if there are no surface charges. This
shows the modification of the standard treatment of capillary
height by the applied field condensed on the right-hand side.
The first integral of Eq. (9) is

z2

a2
+ 1√

1 + z′2 − bz

a2
= 1, (10)

and we have used the condition that for x → ∞, the surface
is z = z′ = 0. The explicit solution of the surface curve z(x)
is quite lengthy and not necessary here. Instead, we can give
directly the maximally reachable height in dependence on the
electric field. Therefore, we use the angle θ = 90 − α of the
liquid surface with the wall such that z′(x) = − cot θ , and from
Eq. (10), we obtain

z = b

2
+

√
b2

4
+ a2(1 − sin θ ) � b

2
+

√
b2

4
+ a2 = zmax,

(11)

which shows that without the electric field, the maximal
creeping height is just the capillary length (1), as is well
known. The other extreme of very high fields leads to the field-
dependent length (2), which justifies the name creeping height.
This answers the first question concerning creep heights.

The second question, i.e., how large is the radius of the
bridge, is answered by equating the pressure due to surface
tension with the gravitational force density,

σs

R
= ρgz ≈ ρg2R, (12)

such that the radius of the water bridge is at the beaker,

R ≈ a/2. (13)

Without using this approximation, we could express the
curvature again by differential expressions in z(x) defining a
radial profile, as can be found in the literature [18]. The radius
of the bridge at the beaker is nearly independent of the applied
electric field and only depends on the surface tension and
gravitational force. Along the bridge, the radius will change
with the applied electric field, as we will see later in Sec. IV C.

III. LIQUID BRIDGE SHAPE

A. Charged catenary

Now we turn to the question of which form the water bridge
will take. Therefore, we consider the center-of-mass line of
the bridge described by z = f (x) with the ends at f (0) =
f (L) = 0. The force densities are multiplied with the area and
the length element ds =

√
1 + f ′2dx to form the free energy.

We have the gravitational force density ρgf and the volume
tension ρgb, as well as the force density by dynamical charges
ρcEx that contributes. The surface tension is negligible here.
The form of the bridge will then be determined by the extreme
value of the free energy,∫ L

0
F(x)dx = ρg

∫ L

0
[f (x) + b − cx]

√
1 + f ′2dx → extr,

(14)

where c is given by Eq. (3) and b is defined in Eq. (2).
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As shown in [24] and briefly outlined in the Appendix, the
solution can be represented parametrically as

f (t) = 1

1 + c2

{
ct + ξ

[
cosh

(
t

ξ
− Ld

2ξ

)
− cosh

(
Ld

2ξ

)]}
,

x(t) = t − cf (t), t ∈ (0,L), (15)

with

d = 2
ξ

L
arcosh

b

ξ
(16)

and ξ as the solution of the equation

c = cm(ξ,b),
(17)

cm(ξ,b) = −2ξ

L
sinh

L

2ξ

⎛
⎝b

ξ
sinh

L

2ξ
−

√
b2

ξ 2
− 1 cosh

L

2ξ

⎞
⎠ .

B. Static stability criteria

Without dynamical bulk charges, c = 0, d = 1, the solution
(15) is just the well-known catenary [20]. The boundary
condition (17) reads, in this case,

2b

L
= 2ξ

L
cosh

L

2ξ
� ξc = 1.5088 . . . , (18)

which means that without bulk charges, the condition for a
stable bridge is

b >
1

2
Lξc. (19)

Together with Eq. (2), this condition provides a lower bound
for the electric field in order to enable a bridge of length L.
This lower bound for an applied field clearly appears already
for the standard catenary and has not been discussed so far.

Let us now return to the more involved case of bulk charges
and the solution of charged catenary (15). The field-dependent
lower bound condition (17) is plotted in Fig. 3. One can see
that in order to complete (17), the bulk charge parameter c has
to be lower than the maximal value of cm at some ξ0,

c � cm(ξ0,b), (20)

which is plotted in the inset of Fig. 3. Remembering the
definition of the bulk charge parameter (3), we see that (20)
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b(L)

0

0.5
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c m
(ξ

0,b
)
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ξ(L)
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-2

0

2

c m
(ξ

,b
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2b/L = ξc

2b/L = ξc+2

2b/L = ξc+4

FIG. 3. The upper critical bound for the parameter c according
to Eq. (17). The inset shows the maximum in dependence on the
creeping parameter b.

sets an upper bound for the bulk charge in dependence on the
electric field. The lower bound (19) of the electric field for
the case of no bulk charges is obeyed as well, since the curve
in the inset of Fig. 3 starts at b > Lξc/2, which is the lower
bound already present for uncharged catenaries (19).

This completes the third question concerning the static
stability of the bridge. We have found a catenary solution
even for bulk charges in the bridge.

IV. DYNAMICAL CONSIDERATION

A. Mass flow of the bridge

We consider now the actual motion of the liquid in the
bridge. Here we propose that possible charges in the water
will move according to the applied electric field and will drag
water particles such that a mean mass motion starts. Due to the
low Reynolds numbers (40–100) for water, we can consider
the motion as laminar and we can neglect the convection term
u∇u in the Navier-Stokes equation [25], which reads then, for
the stationary case,

η∇2u − ∇p + ρcE = 0. (21)

The gradient of the electric pressure (8) can be given in the
direction of the bridge by

−∇p = ε0(ε − 1)E2

2L
= b

2L
ρg. (22)

Here we can adopt the stationary pressure since the viscous
pressure is accounted for by the Navier-Stokes equation.
Assuming that the flow in the bridge has only a transverse
component which is radial dependent, u(r), we can write the
Navier-Stokes equation (21) as

η

ρg

d

dr

(
r
du

dr

)
+ r

(
b

2L
+ c

)
= 0, (23)

with the resulting velocity profile in the direction of the bridge,

u(r) − u(R) = 2u0

(
b

2L
+ c

) (
1 − r2

R2

)
, (24)

where R is the radius of the bridge and we have introduced
the characteristic velocity (4). Please note that we keep the
undetermined velocity at the surface of the bridge, u(R). We
will assume in the following that it is negligible. The resulting
profile (24) has the form of a Poiseuille flow, but with an
interplay between forces due to bulk charges and dielectric
pressure in relation to gravity.

The mean current relative to the surface motion is easily
calculated,

I = 2πρ

∫ R

0
drr[u(r) − u(R)] ≡ ρvπR2, (25)

providing the mean velocity of the bridge from Eq. (24) as

v = u0

(
b

2L
+ c

)
. (26)

One sees that the ratio of the field-dependent creeping height
(2) to the bridge length determines the mean velocity together
with possible dynamical bulk charges described by Eq. (3).
Since we presently do not have good control over the surface
velocity u(R), we approximate it in the following as zero.
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FIG. 4. The mean mass current through the bridge in dependence
on the electric field and for two different bulk charge densities. The
thick lines are for a bridge length of 1 cm and the thin lines for the
corresponding length of 2 cm. The minimal field strength for stability
(19) is indicated by corresponding vertical lines.

The bulk charge transport described by Eq. (3) leads
to Ohmic behavior and the neutral particle transport due
to dielectric pressure leads to a quadratic field dependence
condensed in Eq. (2). The formula (26) now combines the
effect of charge transport and neutral particle mass transport.
It answers the problem raised in Sec. I of how the two pictures
can be brought together: the one of incompressible fluids where
the velocity is dependent of the area and the one of Ohmic
transport where the velocity is only dependent on the electric
field.

The resulting total mass current is given in Fig. 4. The
current increases basically with the square of the applied field
scaled by the bridge length. For additional bulk densities, the
mass flow is higher.

B. Comparison with the experiment

To convince the reader of the validity of the velocity formula
(26), we compare now with the mass flow and the charge flow
measurements. The experimental values of Fig. 4 in Ref. [2]
are reported to be 40 mg/s for a bridge of 1 cm length, and a
diameter of 2.5 mm for the stationary regime. For this situation,
we compare in Fig. 5 the results obtained from Eq. (26) with
a pure Ohmic transport using the lowest-order conductivity
expression

σ = λ
ρc

eNA

+ σ0, (27)

where for clean water the conductivity is σ0, λ is the molecular
conductivity of the solved charge (electrolyte), and NA is the
Avogadro constant; see Table I. We see that our formula (26)
leads to a realistic necessary voltage—which was 12.5 kV
in the experiment—even if no bulk charge is presented. In
contrast, for the Ohmic transport, one has to assume 13 orders
of magnitude higher bulk charges to come into the same range.
This illustrates the advantage of the model presented here.

Considering the charge transport, we do not expect such big
differences between our model and the pure Ohmic picture
since there the charged particles matter. To this end, we
compare the applied voltage versus bridge length with a
constant charge current, as was given in Fig. 6 of Ref. [2].

0 50 100 150 200 250 300
Ρc (ng l)

9

10

11

12

13

14

U
(k

V
)

40ml s
Ohmic 1013Ρc

FIG. 5. The necessary applied voltage vs bulk charge densities
in order to maintain a mass current of 40 ml/s. Following [2], the
length of the bridge was L = 1 cm and the diameter was 2.5 mm.
The result using the flow expression (26) of the present paper (solid
line) is compared to an Ohmic transport (dashed line). For the latter,
the bulk charge has been multiplied with 13 orders of magnitude.

In Fig. 6, we compare the result from Eq. (26) with the pure
Ohmic transport. We use a bulk charge of 2.3 ng/l. In order to
obtain a comparable Ohmic result, we had to multiply the bulk
charge with a factor of 3 × 103, which illustrates the difference
between our model and the Ohmic transport.

While the difference in charge transport is not very
significant provided that the conductivity of water itself varies
on the order of three magnitudes, the mass flow of Fig. 5 has
shown that our result (26) is superior since it considers the drag
of neutral particles due to dielectric pressure together with the
charge transport.

Having the current at hand, one estimates the Joule heating
easily as


T


t
= jE

ρcp

. (28)

From Fig. 5 of Ref. [2], one sees that the reported increase
of 10 K in 30 min would translate into field strengths of
0.7 kV/cm in our calculation. This is much lower than our
result. We would obtain here 2–3 orders of magnitude higher

4 6 8 10 12 14 16
L (mm)

12

14

16

18

20

U
 (

kV
)

0.5 mA

FIG. 6. The necessary applied voltage vs bridge length in order
to maintain a charge current of 0.5 mA. The data are from Fig. 6 of
Ref. [2]. The result using the flow expression (26) and a bulk charge
of 2.3 ng/l (solid line) is compared to an Ohmic transport (dashed
line). For the Ohmic transport, the bulk charge has been multiplied
with a factor of 3 × 103. The same offset of U0 = 8 kV is used as in
the experiments.
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heating rates. Please note that the cooling mechanisms such as
evaporating and cooling due to water flow are beyond the
present consideration. Since these are probably the major
cooling effects in the experiments [26], we cannot compare
seriously the theoretical heating rate with the experimentally
observed ones.

C. Profile of bridge

Let us now calculate the profile of the bridge along the
length. We consider to this end the total mass flow of the
bridge and neglect the viscous term compared to the kinetic
energy (which includes part of the convection term), u∇u =
1
2∇u2 + curlu × u ≈ 1

2∇u2. Then, one arrives at the Bernoulli
equation

ρ
v(x)2

2
+ ρgf (x) + σs

[
1

R(x)

]
− ρcEx = ρ

v2

2
+ σs

1

R
.

(29)

Here we have neglected the curvature of the bridge compared to
the curvature due to the radius and have compared the position-
dependent radius R(x) and velocity v(x) in the bridge with the
situation at the beaker, R(0) = R,v(R) = v. The Bernoulli
equation (29) can be rewritten in terms of the capillary height
(1) and the velocity (26) as

f (x) − cx = v2 − v2(x)

2g
+ a − a2

2R(x)
, (30)

which determines the radius R(x) from the profile of the
bridge (15) and the velocity v(x) if we observe the current
conservation through an area

R(x)2v(x) = R2v. (31)

The results are presented in Figs. 7 and 8. We plot the shape
of the bridge, i.e., the radius and the velocity together, with
a 3D plot. The case of no bulk charges, which leads to the
standard catenary, can be found in Fig. 7, while Fig. 8 shows the
situation for extreme bulk charges almost at the stability edge
(20). We see a deformation of the catenary due to the applied
field. This deformation is observed, e.g., if an additional field
is brought near the bridge [2,22]. One sees that the radius is
becoming smaller at one end of the bridge accompanied with
higher velocities, as is known from falling water pipes [27].
The bulk charge leads to deformations of this profile, which
are exaggerated in the plot due to the choice of unequal scales.

Interestingly, such asymmetry is experimentally observed
[2], where after 3 min of operation, the asymmetry for the
bridge of 0.9 cm length ranges from a diameter of 2.1 to
2.6 mm. This is in agreement with the profile calculated in
Fig. 8. Also, the measured asymmetry in the left and right
catenary angle [3] in glycerin can be explained with the present
model.

D. Dynamical stability

We turn now to the question of the dynamical stability of
the flow and consider the motion of water together with the
motion of charged particles characterized by the mass mi and
charge ei . This charge current is given by Ohm’s law σE and
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f (
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0 0.2 0.4 0.6 0.8 1
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v 
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/s
)

FIG. 7. (Color online) The center-of-mass coordinate (above), the
radius (middle), and the velocity (bottom), together with the three-
dimensional (3D) plot of the water bridge (in units of L) for no bulk
charges, c = 0. The parameters are b = 1.5 cm and according to
Table I. Please note the different length scales in the x and y,z

direction.

the corresponding mass current can be written as

ji = mi

ei

j = xi

ρ

ρc

σE, (32)

where we introduced the mass ratio of the number of charged
particles (e.g., NaCl) to the water particles,

xi = #imNaCl

#wmH20
= ρcmi

ρei

. (33)

The mass current of the neutral (water) particles is then

jn = ρnvn =
(

ρ − mi

ei

ρc

)
vn = (1 − xi)ρvn, (34)

such that the total mass current reads

ρv = ji + jn = xi

ρ

ρc

σE + (1 − xi)ρvn. (35)
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FIG. 8. (Color online) The center-of-mass coordinate (above), the
radius (middle), and the velocity (bottom), together with the 3D plot
of the water bridge (in units of L) with bulk charges, c = 1. The
parameters are b = 1 cm and according to Table I.

The total current (left side) should be larger than the current
only from the charged particles (last term on the right side).
However, the velocity of charged particles, σE/ρc, should be
larger than the velocity of the dragged water molecules, vn, and
therefore larger than the mean velocity v of the mass motion.
Together with Eq. (26), this is expressed by the inequalities

σE

ρc

> u0

(
b

L
+ c

)
> xi

σE

ρc

, (36)

which gives an upper and lower bound on the possible mass
motion created by the drag of particles due to the force on
charged particles.

If we now take into account the dependence of the
conductivity on the density of the solved ions in water, we
can find a condition on possible bulk charges in water to
maintain a stable bridge. To this aim, we consider very small

FIG. 9. (Color online) The range of possible water bridges for an
electric field of E = 0.64 kV/cm. The upper limit is due to the static
stability condition (20) and the lower cut is due to the dynamical
condition (37). The bulk-charge-free condition is the upper straight
line.

charge densities solved in water, which allows one to consider
the lowest-order dependence of the conductivity on the bulk
charge concentration (27).

Noting the charge-density dependencies of xi , b, and c via
(33), (2), and (3), one obtains from Eq. (36) the dynamical
restriction on possible bulk charges,

ρc ∈ ρ1 − ρ2 ±
√

(ρ1 − ρ2)2 + ρ2
3 ,

(37)
ρc(1 − 2ρ2/ρi) > ρ2

3/ρi − 2ρ1,

with the auxiliary densities

ρ1 = ε0(ε − 1)
E

2L
, ρ2 = 16ηλ

eNAa2
,

(38)

ρ2
3 = 32ησ0

a2
, ρi = eiρ

mi

.

The results for NaCl in water (Table I) are plotted in Figs. 9
and 10. The static stability condition (19) gives the upper
and charge-density-independent limit in Fig. 10. The static
condition (20) with bulk charges leads to the border of maximal
densities on the right side, which agrees with Eq. (19) at zero
densities, of course. The lower minimal length of the bridge
at a given field strength and bulk charge is provided by the
dynamical condition (37). For no bulk charge, the possible
range of lengths of the bridge starts at zero and is limited by
the upper length (19). If there are charges present, then there
is a minimal length required to have a stable bridge.

From the 3D plot in Fig. 10, one can see that for finite
charges and for fixed bridge lengths, there is a lower and an
upper critical field where bridges can only be stable. From the
experiments [2], it is seen that the bridge forms jets for fields
higher than 15 kV/cm and therefore becomes unstable. With
a bridge length of 0.5 cm, this translates into a bulk charge
of 4 ng/l, according to our found boundary conditions. This
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FIG. 10. (Color online) The range of possible water bridges in
dependence on the bridge length, the electric field, and the electrolyte
bulk charges.

is in agreement with the value needed to reproduce the flow
measurements described in Sec. IV B.

V. SUMMARY

The formation of water bridges between two vessels when
an electric field is applied has been investigated macro-
scopically. Electrohydrodynamics is sufficient to describe
the phenomenon in agreement with the experimental data.
The four necessary parameters, which are constructed from
microscopic properties of the charged liquid, are (1) the
capillary height, (2) the creeping height, (3) the dimensionless
ratio between field and gravitational force density, and (4) the
characteristic velocity.

An exact solution has been found of a charged catenary.
This leads to a static stability criterion for possible charges in
the liquid dependent on the applied field strengths and on the
length of the bridge. With no bulk charges present, the maximal
bridge length is determined and no minimal length occurs. This
changes if bulk charges are present. Then also a minimal length
is required. However, only very small concentrations of bulk
charges are possible and the bridge is easily destroyed when
bulk charges exceed 50 ng/l. As a further result, an asymmetric
profile in the diameter along the bridge is obtained, which was
observed by asymmetric heating.

For the dynamical consideration, a picture is proposed of
dragged liquid particles due to the motion of the charged
ones besides the ponderomotoric forces due to the dielec-
tric character of the liquid. The resulting consideration of
dynamical stability restricts the possible parameter range of
bridge formation. The resulting mass flow combines the charge
transport and the neutral mass flow dragged by dielectric
pressure and is in agreement with the experimental data.

The presented simple classical theory applies to charged
liquids as long as the Reynolds number is so low that laminar
flow can be assumed.
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APPENDIX: SOLUTION OF CHARGED CATENARY

Here the derivation of the charged catenary [24] is briefly
sketched. We solve the variation problem (14)∫ L

0
F(x)dx → extr, (A1)

with the functional F(x) = ρg [f (x) + b − cx]
√

1 + f ′(x)2

and the boundary conditions f (0) = f (L) = 0.
It is useful to introduce

t(x) = f (x) + b − cx, (A2)

such that

F(x) = ρg t(x)
√

1 + [t ′(x) + c]2. (A3)

The corresponding Lagrange equation

d

dx

δF
δt ′(x)

− δF
δt(x)

= 0 (A4)

possesses a first integral,

t ′(x)
δF

δt ′(x)
− F = const = −ξ

√
1 + c2, (A5)

where we introduced the first integration constant ξ in a
convenient way.

The resulting differential equation

t(x̄)[ct ′(x̄) + 1] = ξ
√

t ′(x̄)2 + [ct ′(x̄) + 1]2 (A6)

with x̄ = x(1 + c2) is solved in an implicit way,

t(x̄) = ξ cosh

{
1

ξ

[
x̄ + ct(x̄) − cb + L

2
d

]}
, (A7)

with a second integration constant d. The profile is therefore
given by the implicit equation

f (x) = cx − b + ξ cosh

{
1

ξ

[
x + cf (x) + L

2
d

]}
. (A8)

The boundary condition f (0) = 0 leads to the determina-
tion of the integration constant

d = 2
ξ

L
arcosh

(
b

ξ

)
(A9)

in terms of the yet unknown ξ constant. The solution (A8) can
be written with the help of Eq. (A9) as

f (x) = cx+ξ

{
cosh

[
x+cf (x)

ξ
− Ld

2ξ

]
−cosh

(
Ld

2ξ

)}
.

(A10)
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The boundary condition f (L) = 0 leads to the determination
of the remaining constant ξ to be the solution of the
equation

c = −2ξ

L
sinh

L

2ξ

⎛
⎝b

ξ
sinh

L

2ξ
−

√
b2

ξ 2
− 1 cosh

L

2ξ

⎞
⎠ .

(A11)

Finally, we can rewrite the implicit solution (A10) in para-
metric form. Therefore, we choose as the parameter t = x +
cf (x), which runs obviously through the interval t ∈ (0,L),
and we obtain the solution (15)

f (t) = 1

1+c2

{
c t+ξ

[
cosh

(
t

ξ
− Ld

2ξ

)
−cosh

(
Ld

2ξ

)]}
,

x(t) = t − cf (t), t ∈ (0,L). (A12)
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