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Dripping faucet dynamics is determined by synchronization of drop oscillations and detachment
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A dripping faucet is an example of an everyday system that exhibits surprisingly rich dynamics ranging
from periodic to chaotic. Using a simple capacitive device, we experimentally demonstrate that the dynamics is
determined by the degree of synchronization between two temporally disparate processes: the time at which a
drop attains a critical mass and an oscillatory process that accompanies the formation of a drop. We present a full
experimental phase-space reconstruction of the ensuing dynamics.
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A dripping faucet exhibits surprisingly rich dynamics that
arises from an intricate interplay between the time scales
involved in the dripping process. These time scales can be very
different from each other because of their dependence on the
physical parameters that influence the flow [1–3]: the surface
tension and the viscosity of the fluid, and the external forces
acting on the drops. Since its introduction by Shaw and co-
workers as a paradigm for everyday chaotic behavior [4,5], the
dripping faucet has been the subject of extensive experimental
and theoretical investigations [2,3,6–14]. A common practice
among the researchers in this field has been to divide the
treatment of the dripping process into two distinct regimes.
The first is the formation of individual drops, governed largely
by the interplay between hydrodynamics and surface tension,
including the strong nonlinearities that develop in conjuncture
with the drop breakup [1,15–21]. The second regime deals
with the time evolution of dripping of the formed drops, with
its very rich dynamics, culminating with the emergence of
chaotic behavior [3,6–14].

This artificial division occurs not only because the the-
oretical tools and frameworks needed in order to under-
stand these processes are different but also because their
measurement requires distinct techniques: The formation of
drops has conventionally been studied using high-speed and
high-resolution video capturing necessary to pinpoint the
liquid-surface breaking event [15–21], while for the dripping
dynamics, whose study requires acquisition of long, discrete
time traces {T (n)}, a laser-based drop-counter apparatus is
typically employed [5–9,11,12,22]. In these latter measure-
ments, information regarding drop development cannot be
recorded. This division obscures a central aspect of the drip-
ping process that was recently discovered by several theoretical
groups [2,13,14], namely the significance of synchronization,
between different processes that occur during dripping on the
dynamics.

To circumvent this difficulty, we developed a simple device
comprising an electrical capacitor near the nozzle of a pipette,
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which allows monitoring of the dripping process at high
temporal resolution over a long time, giving us access to
all relevant time scales. This enabled us to concomitantly
study both drop formation and dripping. Our method employs
custom-made nozzles that incorporate two facing electrodes,
whose mutual capacitance during the dripping process reflects
the development of drops emanating from the nozzle (Figs. 1
and 2). The capacitance signal is continuous, simple to
measure, and correlates with the various stages of drop
formation from buildup to breakup (Fig. 2).

Two types of nozzles were constructed: pipettes made of
either glass or quartz, on which electrodes were placed to form
the capacitor. The glass nozzles served for the measurements of
the dynamics and were made from commercial Pasteur pipettes
that had an inner diameter of 6.9 mm and outer diameter of
8.96 mm. Two conductive adhesive strips, which were placed
along the pipettes facing each other, served as the capacitor.
Smaller quartz nozzles, which had an inner diameter of 0.5
mm and an outer diameter of 1 mm, were used to establish
the correlation between the capacitance signal and dripping.
For these nozzles, the two facing electrodes were made
of evaporated Ti-Au strips. In all experiments, capacitance
between the electrodes was monitored by measuring the
voltage across the balancing arm of a ratio-arm transformer
capacitance bridge, using a standard ac lock-in technique
employing an excitation voltage of 5 V at 10 KHz. The fluid
we used was double-distilled water with a resistance of �17
M�. To drive the liquid through the glass pipette, we used a
gravitational-based system that maintains a fixed water level
(Fig. 1). For the small quartz pipette, a syringe pump drove the
flow at a desired constant rate with ± 2% accuracy.

All experiments were conducted in an enclosed chamber, at
22 ◦C ± 0.5 ◦C, which provided both electrical and mechanical
noise isolation. The entire setup was mounted on an optical
table to prevent vibrations.

Figure 2 demonstrates the correlation between the capaci-
tance signal, acquired at a rate of 5000 Hz, and the evolution
of a single drop recorded by time-lapse video images of
the forming drops at a rate of 44 frames per second. The
solid line in Fig. 2 shows the capacitance trace measured
during the buildup of one drop in the small quartz nozzle. To
exemplify the geometry of the drop at the various stages of drop
formation, we superimposed on the trace, at the appropriate
time points, microscope images of the drops. As can be seen,
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FIG. 1. The measurement system: The water dispenser applies
constant pressure to the needle valve connected to the nozzle.
Closeup: Glass nozzle with two conducting electrodes facing each
other, forming a capacitor. This capacitor allows measurement of
variations in drop geometry during formation and breakup. For the
measurements on the small nozzle a syringe pump replaced the water
dispenser.

the evolution and breakup of a drop has a clear signature in the
capacitance trace.

The capacitance between the two electrodes depends on the
dielectric properties of the materials that surround the capacitor
and the geometry that they occupy in space. Since the highest
electric field is at the edge of the electrodes, the part of the
drop that is closest to the nozzle has the largest effect on the
capacitance. It is thus not only the volume of the drop but also
the thickness of the water bridge near the nozzle that influences
the capacitance.

To further illustrate the relation between the formation of
the drop and the capacitance trace we calculated the capaci-
tance by solving the three-dimensional Poisson equation for a
geometry obtained from the video images, considering axially
symmetric drops. The results of this calculation are plotted
as solid squares in Fig. 2. A clear correspondence between
the measured capacitance and the calculated capacitance is
evident. The capacitance signal acquired, therefore, provides
a high-fidelity representation of the drop formation process.

To obtain time series from our capacitance traces, we first
identified a single dripping event and then calculated the cross-
correlation of this event with the time trace obtained during
the entire flow. The dripping events are then identified with
the instances of time for which the cross-correlation function
has a maximum and the time intervals are the time differences
between adjacent maxima.

Figures 3(a)–3(c) show capacitance measurements,
obtained for average drip rates of 1.8, 2, and 3.25 drops
per second (drops/s) from a glass tube with an internal
diameter of 6.9 mm. Each period in the traces corresponds
to the evolution of a single drop and consists of a component
describing the overall growth and detachment of the drop, on

FIG. 2. Capacitance measurement of the buildup of a single
drop: Experimental (solid line) and simulation (full square) results
together with the images of the drop that was used for the simulation
calculation. Water flowed at a rate of 20 ml/h giving rise to dripping
at 0.133 drops through the smaller quartz pipette. Images were
recorded using a JAI CV-M4 + CL digital camera synchronized to
the capacitance measurements through a house-written LABVIEW

program. Regions I, II and III depict three different stages in drop
evolution. The dashed line is used to guide the eye.

which an oscillatory signal is superimposed. During the first
stage [region I in Fig. 2 and Fig. 3(a)], the drop grows, due
to the flow of water into it, while surface tension maintains
its spherical shape. At this stage, the capacitance increases
because the volume of liquid near the capacitor increases. As
water continues to flow into the drop, gravity force begins to
overcome the surface tension and the drop develops into a pear
shape with a narrow neck. This necking lowers the volume of
liquid near the nozzle and leads to a reduction in capacitance.
At first, neck formation is slow and only a mild decrease in
capacitance appears [region II in Fig. 2 and Fig. 3(a)]. As
the drop approaches its critical volume the neck diameter
decreases rapidly, resulting in a sharp decrease in capacitance
until the drop breaks up [region III Fig. 2 and Fig. 3(a)]. At
this point the capacitance signal reaches its minimum value.

An interesting feature seen in the time traces at all dripping
rates is the appearance of oscillations in the capacitance signal.
These oscillations are a manifestation of the interplay between
the force due to gravity, which pulls the drop down, and surface
tension, which pulls it up [5,12,13,17,23–27]. The oscillations
of the drop affect the time period between successive drops
and are central to the determination of the dynamics of the
system [6,13,26,27]. For a flow rate of 1.8 drops/s [Fig. 3(a)]
seven oscillations occur during the slow buildup stage of the
drop [area II in Fig. 3(a)]. An eighth oscillation sometimes
emerges at slightly different points in the rapid necking stage.
The structure of the capacitance trace for each drop is thus
slightly different. The dripping dynamics can be conveniently
studied by constructing a time return map consisting of a plot of
the time interval between consecutive drops T (n), as a function
of the time interval between the previous pair of consecutive
drops T (n − 1). The return map for dripping at 1.8 drops/s
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FIG. 3. Capacitance trace, time return maps, and phase space of dripping. (a)–(c) Dripping traces for chaotic (at an average drip rate of
1.8 drops/s), periodic (at an average drip rate of 2 drops/s), and period-two dynamics (at an average drop rate of 3.25 drops/s), respectively.
(d)–(f) Time return maps constructed from the dripping traces. (g)–(i) Phase space corresponding to the dripping trace. In (g) and (i) the arrow
points to the last oscillation.

is shown in Fig. 3(d) and indicates that the dripping at this
flow rate is chaotic and is characterized by a single strange
attractor. For a slightly higher drip rate of 2 drops/s, the eighth
oscillation cannot develop and oscillations are synchronized
with the time it takes a drop to reach its critical mass leading to
a single period of dripping. Looking at the dripping time trace
one sees that all drops exhibit nearly identical capacitance
traces, comprised of seven oscillations and having a similar
magnitude dip in the capacitance. Periodic behavior is evident
in the return map as a single point on the diagonal of the graph
[Fig. 3(e)]. At an average drip rate of 3.25 drops/s, we observe
two alternating patterns of the evolution of individual drops.
The first pattern [T1 in Fig. 3(c)] incorporates three oscillations,
while the second [T2 in Fig. 3(c)] has an additional, smaller
amplitude oscillation. The T2 pattern also has a larger dip of the
capacitance than that of T1, indicating that the drop broke off
at a narrower neck than that of T1. As a result of the appearance

of two alternating patterns in the capacitance trace, we now
obtain two points mirrored about the diagonal [Fig. 3(f)] in the
return map indicating period-two dynamics.

To illustrate the effect of the oscillations on the dynamics
we use a simplified model that carries the main ingredients
of the actual process. In this model, the detachment of a drop
occurs when the force on the neck exceeds the maximal surface
tension fs that the liquid can support. For the static case,
this occurs when the drop reaches a mass m defined by the
relation mg = fs (g is the acceleration due to gravity). When
oscillations occur, the accelerated motion of the drop exerts
an additional force on the liquid neck modifying the condition
for detachment: fs = mg − ma. During a downward motion
this force acts in the direction of gravity reducing the mass
necessary to overcome surface tension and thereby the time
it takes to attain this mass. During an upward motion the
force acts in the direction opposite to gravity and detachment
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will occur only when the drop attains a higher mass after a
longer time. In this way, oscillations modulate the time of
drop detachment and the ensuing dripping dynamics.

A different way to describe a dynamical system is to
reconstruct its trajectory in multidimensional phase space.
This requires a continuous parameter and therefore such
reconstructions have been presented in theoretical [13,27]
but not in experimental studies of dripping. We used our
capacitance measurement as a continuous parameter in order to
reconstruct the phase space using the time delay method [28].
In this method, for a single observable xj , d-dimensional
pseudovectors yj are built, with elements being the sampled
observable separated by a constant delay time such that
yj = [xj ; xj+h; . . . ; xj+h(d−1)], where h is the delay index,
and d the embedding dimension, both of which are to be
determined. We first calculated the optimal time delays using
the average mutual information function and found it to be
T = 16 ms for the period-one reconstruction, T = 21 ms
for period-two reconstruction, and T = 17 ms for the chaotic
reconstruction. Next, we calculated the embedding dimension
and found it to be d = 3. For this purpose we used the
false nearest neighbors (FNN) method that finds the nearest
neighbor of every point in a given dimension, then checks
to see if these points are still close neighbors in one higher
dimension. Finally, we used the time delay method to build the
three-dimensional graph in which the x, y, z axes correspond
to C(t), C(t + T ), C(t + 2T ), respectively [Figs. 3(g)–3(i)].

The long trajectory in all reconstructions corresponds to
drop buildup and breakup, which occurs at the bottom of each
cycle [27]. Oscillations are most apparent in the upper right of
the reconstructions where the radius of the drop near the tip
of the capillary changes slowly. They trace an irregular spiral
whose radius decreases very slowly indicating that damping is

not significant in our experiments. The reconstruction shows
that the stage at which the last oscillation appears in each
drop [marked by arrows in Figs. 3(g) and 3(i)] determines the
type of dynamics that will ensue. Figure 3(g) shows the phase
space for chaotic dynamics. The last oscillation, in every path
(see arrow), occurs in a developed stage of instability after the
saddle node bifurcation, where the neck is rapidly decreasing
in radius. The time of breakup is thus extremely sensitive to the
exact point at which this oscillation occurs and the resulting
phase space shows many different paths for the evolution of
drops and consequently, chaotic dynamics. On the other hand,
for a drip rate of 2 drops/s the last oscillation occurs within the
spiral, prior to the saddle node bifurcation and does not affect
the onset of drop pinch-off, resulting in a single trajectory in
phase space and period-one dynamics. Figure 3(i) contains two
distinct trajectories where every second trajectory has an extra
oscillation (see arrow) as described in the previous section.
This extra oscillation occurs close to the saddle point and
thus forces the drop into one of two stable solutions resulting
in period-two behavior. These results recreate the theoretical
phase space predicted by Coullet et al. [13,27] and are in good
agreement with the simple interpretation we presented earlier
based on the capacitance time traces.

In summary, using a capacitance-based method, we have
shown that synchronization between the oscillatory processes
that accompany drop formation and drop breakup leads to
the rich dynamics observed in dripping faucet experiments
and have provided an experimentally measured phase-space
reconstruction of the dripping process.
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