
PHYSICAL REVIEW E 86, 026208 (2012)

Blocking and transmission of traveling flow-distributed-oscillation waves in
an absolutely unstable flowing medium

Patrick N. McGraw and Michael Menzinger
Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

(Received 22 December 2011; published 17 August 2012)

For a flowing, self-oscillating medium, we study the competition between traveling flow-distributed-oscillation
waves excited by periodic driving at the upstream boundary and bulk oscillations originating downstream from
the boundary. As previously observed in the case of stationary driving, we find that there is a region in parameter
space where boundary-driven traveling waves of sufficiently high amplitude can impose themselves on the entire
medium despite the presence of an absolute instability, which otherwise tends to block information from upstream.
For sufficiently low flow rates, however, the imposed waves are arrested at a nonlinear blocking transition. Unlike
the stationary case, we find that the region of imposed waves extends well into regions where, according to the
linear approximation, there should be no traveling waves at all. This suggests that the extinction of the traveling
waves is analogous to a subcritical Hopf bifurcation.
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I. INTRODUCTION

The flow-distributed-oscillation (FDO) mechanism of pat-
tern formation can occur in a flowing chemical medium with a
Hopf instability (i.e., subject to self-sustaining oscillations)
[1–3]. Unlike other pattern-forming mechanisms such as
the Turing mechanism [4] and differential-flow instability
[5], FDO does not require different rates of transport for
different chemical species. Instead, it requires self-sustaining
oscillations whose phase can be controlled at the upstream
boundary, causing the limit cycle to be spatially distributed
as the initial phase recurs at periodic positions downstream.1

FDO can also occur in a medium that grows by addition at
a moving boundary, and in this guise it may constitute a
mechanism [9,10] for the gene-expression waves leading to
the formation of somites (precursors of vertebrae) in growing
vertebrate embryos [11,12].

A distinctive feature of FDO is that it allows patterns to be
controlled by manipulating the upstream boundary condition.
A stationary boundary condition results in stationary waves,
while oscillatory driving can generate traveling waves which
travel downstream if the driving is faster than the natural
oscillation frequency of the medium and upstream otherwise
[9,10,13]. If the driving frequency is identical to the natural
frequency, then the Hopf mode, i.e., synchronous oscillation
throughout the medium, is excited [14]. It is this Hopf mode
which always has the largest spatial growth rate [15]. In
general, the existence of FDO depends on the flow velocity v by
way of the ratio D/v2, where D is the diffusion constant [15].
FDO waves become evanescent (spatially decaying) when the
flow velocity falls below a threshold.

In a flowing medium, an instability may be either convective
or absolute. In the first case, perturbations grow in the frame

1A closely related phenomenon which does include the possibility
of differential transport is referred to in some works as flow and
diffusion distributed structures (FDS). This more general case can
also lead to structures controlled by the boundary [6] and interactions
among different types of waves [7]. The relationship between the
cases with and without differential flow or diffusion is also discussed
in [8]. Here, we only consider cases without differential transport.

of reference which moves with the fluid, but are advected
downstream so that at any fixed position they decay. Absolute
instability, on the other hand, means that disturbances may
propagate upstream as well as downstream and can therefore
grow at a fixed position [1,16,17]. If the underlying Hopf
instability that makes FDO possible is absolute, then this
raises the possibility that oscillations originating downstream
in the bulk of the medium can not only persist but propagate
upstream so as to compete with FDO waves that are driven
by the upstream boundary. For this reason, FDO has usually
been studied under convectively unstable circumstances—
this allows the upstream boundary condition to fully control
the pattern formation in the rest of the medium, while any
disturbances that originate farther downstream are eventually
advected out of the system. However, Kuptsov [18] has
examined numerically and theoretically a more complicated
case in which an absolutely unstable medium is driven by
constant forcing at the upstream boundary. In this case, there is
direct nonlinear competition between uniform bulk oscillations
originating downstream and stationary waves driven by the
boundary. Penetration of the stationary waves may then be
amplitude-dependent—a sufficiently strong perturbation at the
boundary can push the Hopf oscillations away despite their
tendency to propagate upstream.

The current paper extends the previous work [18] by
examining the effect of periodic (rather than steady) driving
on an absolutely unstable medium. Periodic driving in the
convectively unstable case leads to traveling waves. As in
the case of steady forcing and stationary waves, we find for
periodic driving that there is a regime of nonlinear competition
between the traveling waves originating at the boundary and
the absolutely unstable Hopf mode. As with stationary waves,
we find that there is a portion of parameter space where the
penetration of the traveling wave signal into the medium is
amplitude-dependent. We also find a threshold flow velocity
below which the transmission of traveling waves is blocked
regardless of the driving amplitude.

Unlike the stationary-wave case, however, we find that
traveling waves may still exist and be able to penetrate
into the medium even at velocities well below the threshold
where a linear approximation predicts that the waves should
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be extinguished (evanescent). This suggests that under these
circumstances, the evanescence bifurcation for traveling waves
is subcritical. We observe that there are in general two types
of domain boundaries (DBs) separating the traveling waves
from the uniform (Hopf) oscillations, which we call smooth
and rough DBs. Smooth DBs in general propagate much more
rapidly, and a DB may change rather abruptly from one type to
the other as the driving amplitude or flow velocity is altered.

In general, the FDO mechanism has been studied more
extensively in the case of stationary driving than periodic
driving. Among our motivations for examining periodic
driving more closely is the biological application of FDO
as a mechanism for the gene-expression waves involved in
somitogenesis. A candidate scenario for the regulation of
somitogenesis involves a cellular oscillator, the segmentation
clock [11,12], whose frequency decreases with downstream
distance (i.e., away from the moving growth boundary of
the embryo) but which is driven by the faster oscillations at
the tip [9,10]. The mechanism by which embryos arrest the
formation of somites and thus achieve a fixed, species-specific
number of segments remains open to debate [19,20]. We
speculate that the dynamical blocking of waves described in
this paper may be the key to this mechanism. With this in
mind, we focus mainly on the case in which the driving is at a
frequency higher than the natural oscillation frequency, which
also presents somewhat fewer complications than the other
case with driving below the natural frequency. (Specifically,
in the latter case, the effects we consider here compete with
resonant breakup of the type described in [21] in a way that is
hard to disentangle in numerical experiments.)

In the following section, we review briefly the behavior of
traveling and stationary waves and the types of bifurcations
that separate different regimes of wave behavior. Then in
Sec. III, we illustrate these different behaviors with space-time
plots for a model reaction-diffusion-advection system. We
show qualitatively the meaning of the two linear thresholds
(absolute instability and evanescence) for the behavior of the
Hopf and FDO modes, and then we show how a third distinct
threshold (the blocking transition) comes into play when
there is nonlinear competition between modes. Section IV
discusses types of domain boundaries that arise in this
nonlinear competition. Finally, in Sec. V we present and
discuss numerical measurements of blocking thresholds, i.e.,
the threshold velocities at which waves of several different
frequencies are blocked by the Hopf oscillations. This is
followed by some concluding remarks.

II. EVANESCENCE AND ABSOLUTE INSTABILITY
THRESHOLDS FOR THE FDO SYSTEM

The FDO mechanism generically occurs in a system
described by the reaction-diffusion-advection (RDA) equation

∂U
∂t

= f(U; C) − v
∂U
∂x

+ D
∂2U
∂x2

, (1)

where U(x,t) is a vector of dynamical variables (concen-
trations of species), v > 0 is the flow velocity, D is the
diffusion coefficient, and f(U; C) is a vector-valued function
that encodes the reaction kinetics and may depend on some
control parameters C. In the current work, we consider as a

simple kinetic model the van der Pol or FitzHugh-Nagumo [22]
system,

∂U

∂t
= E(U − U 3 − W ),

∂W

∂t
= −U + AW + B. (2)

Although not chemically realistic (unlike chemical concen-
trations, the variables can be negative), this model has been
used frequently as a toy model in studies of chemical pattern
formation because it has many of the essential features of
more directly chemically inspired oscillator models such as the
Lengyel-Epstein [23], Brusselator [24], and Oregonator [25]
models while being simpler to analyze and understand. The
parameters A and B can be tuned to allow bistability or
excitable behavior if A < 1 or B �= 0. In the current work,
we take A = 10 and B = 0, which allows only oscillatory
or monostable dynamics, while allowing E to vary as the
single control parameter. For all A > 1, the model undergoes
a supercritical Hopf bifurcation at E = 1 and has a stable
limit cycle for E > 1. With increasing E, two separate time
scales develop, the oscillations become less nearly sinusoidal,
and the nonlinearity becomes stronger [15]. Without loss of
generality, we also set D = 1 because a change in the diffusion
constant can be absorbed into a rescaling of units together
with the velocity. As discussed elsewhere [15], only the ratio
D/v2 is dynamically important. In experiments, v is easier
to manipulate than D, so it is usually taken as the control
parameter.

The starting point for the analysis of wavelike disturbances
in the medium described by (1) is the dispersion relation,
obtained by substituting the ansatz

U = U0 + A exp[i(ωt − kx)] (3)

into the RDA equation (1), where U0 is a (generally unstable)
equilibrium point of the kinetics, i.e., f(U0; C) = 0, and the
frequency ω and wave number k may be complex. As shown
in [15], the dispersion relation can be reduced to

iω = α + iβ + ivk − Dk2, (4)

where λ = α + iβ is the (complex) eigenvalue of the Jabobian
matrix ∂f/∂U evaluated at the equilibrium point. [In our model
with kinetics given by Eq. (2), the equilibrium is at the origin
of phase space, (U,W ) = (0,0).]

To understand the effect of small-amplitude driving at
the boundary, one is interested in solutions to the dispersion
relation that match the upstream boundary condition, which is
taken to be an oscillatory function with steady amplitude. This
therefore involves solving (4) for k, using ω = ωD (where
ωD is the driving frequency) as the independent variable.
Stationary waves correspond to the most frequently studied
case ω = 0. k(ω) is in general complex. Im k > 0 implies
that a small-amplitude disturbance at the boundary creates
a wave that grows with downstream distance (and, in general,
matches up with a nonlinear wave with saturated amplitude).
Im k < 0, on the other hand, implies an evanescent wave,
one that decays with downstream distance and therefore fails
to establish itself throughout the medium. Typically, Im k

increases with increasing velocity. As noted above, decreasing
v is equivalent to increasing the diffusion in the ratio D/v2,
and thus waves with nonzero wave number are increasingly
damped as v decreases.
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FIG. 1. (Color online) Three types of threshold velocities as
functions of control parameter E. Thick solid line: absolute instability
(AI) threshold. Dotted lines: evanescence thresholds (based on
linearization about the unstable equilibrium) for waves at several
indicated frequencies. Solid lines with data points: thresholds for
the blocking (see Sec. V) of boundary-driven waves, obtained
numerically.

The group velocity dω/dk can also be obtained by solving
the dispersion relation. If dω/dk > 0 for all modes, which
is generically true for large enough v, then the system is
convectively unstable, as no disturbances propagate upstream
and even a disturbance that grows with downstream distance is
advected away and therefore does not grow at a fixed position.
The system, on the other hand, becomes absolutely unstable
when the flow velocity is reduced below the intrinsic spreading
velocity of disturbances. In this case, the group velocity is
negative for some modes, meaning that some disturbances
can travel upstream and the system’s asymptotic behavior is
no longer controlled exclusively by the upstream boundary
condition. The mode with Re k = 0, ω = β, corresponding to
uniform oscillations (also called the Hopf mode), always has
the highest spatial growth rate and is also the first to cross the
threshold from positive to negative group velocity.

In Fig. 1 (which is discussed more fully in Sec. V), we plot
these threshold velocities for absolute instability and for the
transitions to evanescence of waves at several different fre-
quencies, as functions of the control parameter E in the model
(2). The shapes of these curves as functions of the control
parameter show features typical of many other kinetic models
[2,26,27]. In particular, as the kinetic system approaches a
Hopf bifurcation, at E = 1 in this case, the absolute instability
threshold vanishes and the evanescence thresholds approach
infinity. This is because for parameter values below the Hopf
bifurcation, all oscillations are intrinsically damped, even
without the effects of diffusion. Another noticeable feature
of the curves occurs at E = 38, where the imaginary part of
the Jacobian eigenvalue vanishes and the unstable equilibrium
changes from a focus to a node. The ω = 0 evanescence
threshold vanishes at this point (zero-frequency waves can no
longer be linearly damped), and the other (ω > 0) threshold
curves exhibit cusps.

III. QUALITATIVE WAVE BEHAVIOR, NONLINEAR
COMPETITION, AND THE BLOCKING THRESHOLD

The absolute instability and evanescence thresholds dis-
cussed above govern the linear behaviors of different wave
modes. In this section, we illustrate these thresholds qualita-
tively and then show how nonlinear interaction can arise. This
will lead us to describe a third, nonlinear threshold.

To illustrate the three thresholds under discussion, we
present some space-time plots (Figs. 2 and 3) of numerical
solutions of the RDA equation (1) showing the behavior of
FDO waves and Hopf oscillations in several different regions
of parameter space. In these plots, the gray level represents
the value of U in the kinetic model (2). Since we are most
interested in the competition between bulk oscillations and
boundary-driven waves, all numerical integrations use uniform
initial conditions in order to set up bulk Hopf oscillations,
while the upstream boundary conditions are varied. The left
column of plots in Fig. 2 illustrates the meaning of the absolute
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FIG. 2. Space-time plots at three different flow velocities, illus-
trating the evanescence threshold (for a traveling wave) and the
absolute instability threshold. In the left column of plots, there is
no driving at the upstream boundary (i.e., the boundary condition is
held at the equilibrium point), whereas in the right column, there is
oscillatory driving at a frequency higher than the natural oscillation
frequency, which tends to produce downstream traveling waves. At
sufficiently high flow rate (top row), the traveling waves are sustained
and fill the entire system. Below some threshold velocity, however,
the traveling waves are evanescent; i.e., they decay with downstream
distance. On the other hand, the uniform oscillations set up by the
initial conditions are advected downstream and out of the system. At
a still lower velocity, the uniform oscillations are no longer advected
out of the system but fill the entire system except for a boundary
of fixed thickness near the inflow. Comparison of the left column
with the right column suggests that the uniform oscillations and
the boundary-driven traveling waves do not significantly affect each
other. Axes are measured in units of the model equation (2), and the
gray level represents the variable U (more precisely, it is proportional
to the positive number U + 2) in that model.
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FIG. 3. Interaction between boundary-driven traveling waves and
Hopf oscillations in the case ω = 27,E = 30,v = 6, where the
evanescence threshold falls below the absolute instability threshold.
The top plot, with no driving (zero amplitude driving) at the boundary,
shows that the Hopf oscillations are absolutely unstable: they fill the
entire system except for a thin boundary layer. When oscillatory
driving with an amplitude η = 0.1 is imposed, the resulting traveling
waves are blocked by the Hopf oscillations—they do not propagate
beyond the thin boundary layer. When the amplitude is increased
to η = 0.125, however, the traveling waves are able to push the
Hopf oscillations away from the boundary and a downstream-moving
domain boundary (DB) is formed. The dotted white lines are a guide
to the eye showing the approximate trajectories of the DB’s that
separate traveling waves from Hopf oscillations.

instability (AI) threshold: in the upper two plots, the Hopf
instability is convective, and the uniform oscillations which
are established by the initial conditions are advected out of
the system with time. No disturbances are able to propagate
upstream and disturb the equilibrium state. In the bottom plot,
the flow velocity is below the AI threshold, and the bulk
oscillations therefore can propagate against the flow, so that
they fill the whole system except for a thin boundary layer. In
the right column, an oscillatory driving

(
U (t,0)

W (t,0)

)
= η

(
cos ωDt

sin ωDt

)
(5)

with amplitude η and driving frequency ωD is added at
the upstream boundary, and traveling waves are generated.
(For ωD > 0, this boundary condition circulates in phase
space in the same direction as the limit cycle, and has a
significant overlap with the growing FDO modes; see also
Refs. [15] and [8] for discussions of the driving waveform.)
At sufficiently high flow velocities, these traveling waves
grow to an asymptotically steady amplitude and eventually
fill the whole system, once the initial bulk oscillations have
been swept away by the flow. At somewhat lower velocities,
however (second row), the traveling waves are evanescent
rather than growing.

Comparison of the two columns (with and without os-
cillatory driving) in Fig. 2 shows that the bulk oscillations
and traveling waves affect each other very little: the bulk
oscillations are either swept downstream or form a thin
boundary layer, independently of whether there are traveling
waves or not. This is generally true in regions of parameter
space where the evanescence transition lies well above the
AI transition. A different situation can occur when the AI
threshold occurs at a higher flow velocity than the evanescence
threshold. This is illustrated in Fig. 3, which shows a series
of plots for a flow velocity vev < v < vAI. In this case,
there is a direct nonlinear competition between the Hopf
oscillations generated by the initial conditions and the traveling
waves generated by the upstream driving. In the absence of
upstream driving, the system is clearly absolutely unstable.
Low-amplitude driving expands the boundary layer slightly,
but at a sufficiently high amplitude, the traveling waves can
push the Hopf oscillations out of the way and propagate into
the whole system. The situation is analogous to what was
referred to as “imposed convective instability” in Ref. [18].

IV. SMOOTH AND ROUGH DOMAIN BOUNDARIES

In the bottom plot of Fig. 3, the two types of patterns,
Hopf oscillations and traveling waves, are separated by a
domain boundary (DB) which moves downstream. A feature
which was not seen in the case of stationary waves is that
the nature of the DB evidently changes at time t ≈ 6 from
a slow-moving DB to a faster one. At the faster DB, unlike
the slower one, the wavefronts of the traveling waves match
continuously to the oscillations in the downstream region. The
space-time wavefronts are unbroken and simply change their
velocity. We refer to this latter type of DB as a “smooth” DB
and the other as a “rough” DB. As we will argue below, DB
type is necessarily correlated with DB velocity. Smooth DB’s
generically propagate at speeds close to the flow velocity—i.e.,
they are approximately comoving with the fluid, whereas rough
DB’s propagate more slowly. The correlation between DB
type and traveling wave amplitude seen here is also generic:
small-amplitude waves form slow-moving rough DB’s, but as
the amplitude of a growing wave increases to saturation, the
DB speeds up to an asymptotic velocity that depends on the
flow velocity and driving frequency, and may remain rough
or become smooth as in Fig. 3. In the particular case depicted
in Fig. 3, the type of DB changes quite abruptly. On the other
hand, if the driving amplitude is above the saturated amplitude,
then the amplitude decreases with downstream distance and
the DB correspondingly slows down to its asymptotic velocity
rather than speeding up. Further discussion of the dependence
of DB type and asymptotic velocity on control parameters is
given in Sec. V.

Considering a DB as a junction between two waves, each
with its own wave number and frequency, one can derive
conditions for the existence of a smooth DB. Let the wave
number and frequency of the wave to the left of the DB be ω1

and k1, and let those for the other wave be ω2 and k2. In the
special case of uniform oscillations, k2 = 0. Using the methods
described in Ref. [21], under a Galilean transformation the
frequency of a wave ωM as observed in a moving frame of
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reference is

ωM = ω + kV, (6)

where ω and k are the frequency and wave number as defined
in the fixed reference frame and V is the velocity of the moving
reference frame. ωM can be interpreted as the frequency
measured by a moving observer, or the number of wave crests
per second encountered by a trajectory which moves at velocity
V . The moving DB can be viewed as a worldline that cuts
across both waves (the one to the left and the one to the right).
A smooth DB is one which always encounters equal numbers
of wavefronts to its left and to its right, so that every wavefront
on the right joins smoothly to one on the left. This means
that the frequency of both waves is identical, as viewed in
the reference frame of the moving DB, which leads to the
condition

ω1 + k1V = ω2 + k2V (7)

and thus

V = ω1 − ω2

k2 − k1
. (8)

In the so-called kinematic [28] or low-diffusion limit, the
frequency of all phase waves in a frame comoving with the
fluid (at flow velocity v) is equal to the intrinsic oscillation
frequency ω0 of the underlying chemical system, so that

ω0 = ω1 + k1v = ω2 + k2v. (9)

It is easily shown that Eqs. (9) and (8) together imply
V = v; in other words, in the kinematic limit a smooth DB
necessarily travels at the flow velocity. The rough DB, on the
other hand, travels more slowly than the flow velocity. In
the one shown in Fig. 3, the DB cuts off several wavefronts of
the traveling wave to the left for each oscillation to the right.
In other words, we have

ωM1 = rωM2, (10)

where ωM1 and ωM2 are the frequencies in the DB’s frame of
reference, and r > 1. We are especially interested in DB’s that
separate an FDO wave on the left (upstream) from uniform
oscillations downstream, in which case k2 = 0 and ω2 = ω0.
In this case, Eqs. (9), (6), and (10) together lead to the result

V

v
= ω1 − rω0

ω1 − ω0
, (11)

where the case r = 1 is that of a smooth DB. A stationary DB
(V = 0), on the other hand, has r = ω1/ω0 as expected, while
0 < V < v for the cases

1 < r <
ω1

ω0
, ω1 > ω0 or

ω1

ω0
< r < 1, ω1 < ω0.

We note that the result (11) is not exact, since it is based on two
approximations, the first being the kinematic limit (and that all
waveforms have the same frequency in the comoving frame of
the fluid) and the second being the assumption that k2 = 0 for
the medium immediately to the right (downstream) of the DB.
In fact, if one looks closely at the plots in Fig. 3, one can see
that the initial uniform oscillations adjust slightly in response
to the presence of an upstream boundary even in the absence

of driving, so that they are no longer precisely uniformly
synchronized but instead have a gentle phase gradient and
thus a nonzero wave number.

V. MEASURED THRESHOLDS FOR
BLOCKING/TRANSMISSION, AND SUBCRITICALITY

OF THE EVANESCENCE TRANSITION

As explained above, imposed convective instability means
that a traveling (or stationary) FDO wave of sufficiently high
amplitude generated by driving at the upstream boundary
can establish itself and propagate downstream despite the
presence of an absolute instability. As in the previously studied
case of stationary driving, likewise for oscillatory driving
the imposed convective instability occurs between the AI
threshold and some lower threshold velocity at which the DB
between the boundary-driven waves and the Hopf oscillations
becomes stationary. Kupstov [18] describes the region below
this threshold as one of “coexistence” (meaning that the two
types of patterns coexist on opposite sides of a stationary
DB). We refer to this transition as the blocking threshold,
because above it, the FDO waves generated by the boundary
are transmitted asymptotically far downstream, while below it
those boundary-driven waves are blocked and only penetrate
a finite distance into the medium, regardless of the driving
amplitude.

In this section, we present our numerical results on the
blocking thresholds as functions of the control parameter E for
FDO waves in our model at several different frequencies ω. We
estimated this threshold by performing a series of numerical
integrations at different flow velocities while holding other
parameters fixed, and by examining the space-time plots. We
imposed an oscillatory driving of the form of Eq. (5) with
amplitude η = 2, significantly larger than the amplitude of the
natural limit cycle. Our reasoning was that if such a large
amplitude signal was blocked, then all traveling waves at
that frequency would certainly be blocked. In most cases, we
found that the transition was rather sharp; a small change
of the flow velocity would cause the DB velocity to change
abruptly from positive (downstream) to zero. An example of
such an abrupt transition is shown in the space-time plots of
Fig. 4. In a few cases, the transition was a bit harder to detect
because the DB took a significant amount of time to reach
an asymptotic velocity, and in those cases it was difficult to
determine whether the asymptotic velocity was truly zero or
merely slow but nonzero. We estimate an uncertainty in the
velocity threshold of at most ±0.1 space units/time unit. The
results for the thresholds are plotted in Fig. 1, which also shows
the AI threshold and the evanescence thresholds as predicted
by solving the dispersion relation (4).

A particularly interesting feature of the results is that, with
the exception of the ω = 0 case, the blocking thresholds actu-
ally fall below the evanescence thresholds within a substantial
range of E values. While surprising, this is not logically
inconsistent, since the evanescence thresholds are derived from
a dispersion relation that describes small-amplitude perturba-
tions of the unstable equilibrium. These results suggest that
the evanescence transition can be subcritical; small-amplitude
waves decay, but large-amplitude ones are stable. A subcritical
evanescence transition was noted [26] for stationary waves in
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FIG. 4. Numerical detection of the blocking threshold. Here E =
57, and the upstream boundary is driven at ω = 30. In both plots,
a DB marks the limit of penetration of the waves under control of
the upstream boundary. (White lines show the approximate location
of the DB.) In the upper plot, the flow velocity is v = 3.0. After
a transient, the DB comes to rest—the boundary-driven waves are
blocked. In the lower plot, v = 3.1, and the DB abruptly changes
to a downstream-moving one, with a DB velocity of approximately
1.25. We conclude that the blocking threshold in this case is vB =
3.05 ± 0.05.

the chlorine dioxide-iodine-malonic-acid (CDIMA) reaction,
in that case without absolute instability. In most of the cases we
examined, the blocking thresholds join the linear evanescence
curves near the points where the latter cross the AI boundary,
so that the region of subcriticality lies inside the AI region.
An exception is the high-frequency driving case ωD = 50. In
the vicinity of the cusp of the evanescence curve, we also
found propagating FDO waves at velocities below the linear
threshold (but above the AI threshold). These persist down
to a threshold velocity which we have plotted in Fig. 1 as
an extension of the blocking threshold curve (the extended
curve represents in any case the bifurcation locus above
which boundary-driven traveling waves can propagate fully
into the medium, and below which they cannot). Below this
threshold, the high-amplitude traveling waves do not decay
smoothly but instead break up into a different, irregular
traveling wave pattern of lower frequency. The dynamics of
waves at such high driving frequency (by comparison, the
frequency of the underlying kinetic model’s limit cycle at
E = 38 is 15) is only incompletely studied and is a subject
for future work. We also examined the change from a rough
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FIG. 5. Roughness ratio r and domain boundary velocity VDB as
functions of the flow velocity v, for E = 35 and ω = 30. v = 4.7
lies just above the blocking threshold—the DB velocity drops to
zero below this point. As the flow velocity increases, the DB speed
increases rapidly and the ratio r [as defined in Eq. (10)] decreases
toward unity.

to a smooth domain boundary for only a few values of
E and ω. For this study, we again used a high-amplitude
driving, and for a series of velocities above the blocking
threshold we examined the downstream-moving DB. For flow
velocities just above threshold, the DB was a slow-moving
rough DB with the ratio r > 1 as defined in Eq. (10). As
the flow velocity increased, so did the DB velocity, while
r decreased until it reached unity and a smooth DB was
formed. The dependence of r and the DB velocity is plotted
in Fig. 5 for the parameters E = 35 and ω = 30. To clarify
the relationships of the phenomena under discussion, we now
summarize the transitions in traveling wave behavior that
generically occur as the flow velocity is decreased in the case in
which the AI threshold lies above the evanescence threshold.
Above the AI threshold, traveling waves controlled by the
upstream boundary propagate freely into the medium without
interference from the Hopf mode. Immediately below the AI
threshold, penetration of traveling waves becomes amplitude-
dependent. In this range, perturbations above a threshold
amplitude propagate into the medium despite the absolutely
unstable mode (forming a smooth DB moving asymptotically
with a fixed downstream velocity), while low-amplitude waves
are blocked and instead form a stationary DB with the Hopf
oscillations. As v decreases further, the amplitude threshold
increases from zero at the AI threshold and approaches the
saturated amplitude of the traveling waves. At still lower v, the
asymptotic DB changes from smooth to rough but still moves
downstream. At a still lower v (namely the blocking threshold),
the DB becomes asymptotically stationary and traveling
waves fail to penetrate beyond a finite distance, regardless
of the perturbation amplitude. In the present work, we have
mapped the blocking thresholds in some detail, but we have
investigated the change of DB type only for a few parameter
values.
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VI. CONCLUSIONS

Following up on the discussion of imposed convective
instability in Ref. [18], we have studied the corresponding phe-
nomenon for traveling waves driven by oscillatory boundary
conditions at the inlet of a reaction-diffusion-advection system.
It has already been widely noted that a convectively unstable
system is an arena in which pattern formation throughout
the system can be placed under the control of the upstream
boundary condition, which may be stationary, oscillating, or
noisy in the case of noise-sustained structures [17]. The current
work together with that of [18] shows that under the right
conditions, the boundary can drive pattern formation despite
the existence of an absolute instability, which, in principle,
allows disturbances to travel upstream as well as downstream.
The penetration of the boundary-driven pattern into the system
is limited by a domain boundary which separates regions
of two different wave patterns, and the behavior of that DB
depends on a nonlinear and amplitude-dependent competition
between the two patterns. We also examined the nature of
the DB itself, which may either be rough or smooth. We
noted that in general, rough DB’s move slower than the flow
velocity while smooth DB’s move much closer to the flow
velocity. In some cases, the transition from a rough to a smooth
DB can be quite abrupt. Smooth DB’s were not observed in

the case of stationary waves. Another novel feature unique
to traveling waves is that the threshold for blocking can lie
significantly below the (linear, small-amplitude) evanescence
threshold. In other words, large-amplitude traveling waves
at some frequencies can be maintained and even push the
absolutely unstable Hopf oscillations out of their way, despite
the fact that a linear analysis predicts that those waves should
decay. This suggests that the transition to damped (evanescent)
waves can be subcritical.

Since the segmentation (somitogenesis) of embryos is
driven by an oscillation at the growing tip of the embryo
(equivalent, via a Galilean transformation, to the upstream
boundary of a flow system), and the exact kinetics of this
oscillator are largely unknown, it is useful to gain further
understanding of the circumstances under which information
(in the form of an imposed pattern) is transmitted from the
boundary and when the transmission is blocked. One of
our chief motivations for this study is the possibility that
somitogenesis stops when the growth rate slows such that a
blocking threshold is crossed.
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