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Catastrophes of all kinds can be roughly defined as short-duration, large-amplitude events following and
followed by long periods of “ripening.” Major earthquakes surely belong to the class of “catastrophic” events.
Because of the space-time scales involved, an experimental approach is often difficult, not to say impossible,
however desirable it could be. Described in this article is a “laboratory” setup that yields data of a type that is
amenable to theoretical methods of prediction. Observations are made of a critical slowing down in the noisy
signal of a solder wire creeping under constant stress. This effect is shown to be a fair signal of the forthcoming
catastrophe in two separate dynamical models. The first is an “abstract” model in which a time-dependent quantity
drifts slowly but makes quick jumps from time to time. The second is a realistic physical model for the collective
motion of dislocations (the Ananthakrishna set of equations for unstable creep). Hope thus exists that similar
changes in the response to noise could forewarn catastrophes in other situations, where such precursor effects
should manifest early enough.
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I. INTRODUCTION

Catastrophes as defined in the abstract are related to a class
of phenomena sometimes called “relaxation” oscillations.
The observation of two widely separated time scales makes
relaxation oscillations a good a priori subject of theoretical
investigation, because one may suspect that their formation
results from the existence of a (more or less hidden) small
parameter. This gives some hope of a general theory based
upon the small size of the parameter. To take an example,
some major earthquakes lasting a few tens of seconds occur in
the same general area about every hundred years. They thus
involve a ratio of “typical” times in the neighborhood of 10−9,
which is a very small number. In the present study a laboratory
experiment was devised which displays similar relaxation
oscillations, but acting timewise on a scale that is convenient
for investigation. Experimental observations are explained in
light of a two-part dynamical bifurcation model of catastrophe.
Comprising the local form of a physical model shown to be
valid when close to the catastrophe, the striking result is as
follows. In response to an external source of noise the two
models (the local one and the physical one) predict fluctuations
with a correlation time that increases before the catastrophe,
just as is observed experimentally. The important point is that
this well-known critical slowing-down phenomenon occurs
significantly before the transition and could be used to
forewarn it.

We study the creeping of a soft metal under constant
stress. Accurate time records show that this creeping actually
displays the following time-dependent noisy component. The
wire typically lengthens slowly with background (nonthermal)
noise, with sometimes a “large” sliding event, followed again
by a noisy slow lengthening regime, etc.

Plastic deformation of solids is a complex phenomenon that
is not yet fully understood [1]. It has long been observed to take
place in a nonsmooth manner. Most studies have focused on the
Portevin–Le Chatelier effect observed under constant-strain-
rate conditions, whereas the present experiment is concerned

with creep at constant stress. In both cases large steps (cyclic
slips) are embedded in a noisy background. There is a general
agreement that this is due to the complex dynamics of networks
of dislocations whose motion is a means for the stressed solid
to flow. As reported in Sec. II below, careful observations of the
creep in strained Sn-Pb quasieutectic material (a solder wire)
show the following: (i) On average a sample under constant
stress lengthens at a constant rate. (ii) Continuous monitoring
shows time-dependent fluctuations of this length superposed
on its secular increase. (iii) From time to time the length jumps
by steps. Afterward a noisy and steady (on average) length
increase is recovered until the next jump, etc.

Explaining all this remains a challenge for the common
models of creep. Nevertheless, it is of great interest because it
can be seen as a laboratory model of other far less accessible
phenomena such as earthquakes, where on average there is
also a continuous slow sliding with random microseismic
noise, interrupted by large fast sliding steps characterizing
major earthquakes. We recently introduced the idea [2] that in
such systems the slow-to-fast transition can be described by a
saddle-node bifurcation in a dynamical system evolving slowly
with time. We pointed out the interest in such a modelization,
which allows one to theoretically predict the response of this
dynamical system to a noise source. It was shown that the
induced fluctuations drift toward low frequencies (i.e., toward
large correlation times) re the transition and so could be used
as a forewarning.

Here we show that the dynamical saddle-node bifurcation
model is the reduced form of a set of equations, the (AK)
model, previously introduced by Ananthakrishna and Sahoo
[3] to describe the Portevin–Le Chatelier effect in metals
or metallic alloys, which also describes the creeping effect
because the solution undergoes a Hopf bifurcation by changing
continuously a parameter, which leads to steps on the creep
curve [4]. The saddle-node model describes fast transitions
resulting from the intrinsic dynamics of the original system,
which can be described locally (close to the step) as a
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slowly rocking potential system. Using the AK model as
well as the saddle-node reduced model we show that, with
an added external source of noise, the correlation time of
the fluctuations increases before the transition, following the
classical scenario of slowing down at bifurcation points. As
was shown long ago by Dorodnicyn [5], the same local
dynamics describes the transition from slow manifold to fast
transients in relaxation oscillations of dynamical models, such
as the van der Pol equation in the strongly nonlinear limit. In
the present experiment, by looking at the fluctuations of the
length of our samples, we found this behavior near the steplike
transitions, with the characteristic drift to low frequencies
before the transition, as predicted by the model.

Unlike recent publications that have presented the idea
[6] that precursors of earthquakes could be found in the
mechanical response to external perturbations (such as the
increase of the fluctuations and their slowing down near
transitions) our idea goes further, by giving an order of
magnitude of the precursor time. The authors of [6] do
not introduce the effect of a given time dependence of the
parameters and consider only systems with steady parameter
values on both sides of the bifurcation. To quote Ref. [7],
“The suggested approach to analytical study of any kind of
catastrophes is based essentially on the solution of a stationary
problem of the possibility and conditions of the unstable
equilibrium state in the system in question.”

In the same spirit, used time-to-failure models [8] have also
been to predict the time at which the catastrophic event occurs
with a given time-independent potential. There the failure
occurs via an activation energy, which usually comes from
a noise source, that provides a transition from one equilibrium
state to another one. These models lead to a predictor time
depending upon the noise strength, not upon the dynamical
property of the system itself. In the present paper the avalanche
occurs from internal dynamics, which induces a hidden
parameter sweeping effect, and therefore the catastrophe
would exist even without any external noise. The effect of noise
is to modify slightly the trajectory with respect to the no-noise
case; but contrary to what happens with time-to-failure models,
the avalanche time does not depend statistically on the noise
amplitude, which by definition is supposed to be small.
Without taking into account explicitly the time dependence
of the parameters sweeping the bifurcation set, it is impossible
to get the time scale for predictions. As we show, this scale
depends crucially on the rate of change of the parameters near
the bifurcation, which may be estimated from knowledge of the
ratio of the two time scales (fast and slow ones) for saddle-node
models.

Many studies have been devoted to earthquake statistics [9].
They concern their frequency of occurrence, their magnitude,
and other measurable parameters. This type of study can hardly
be useful for prediction purposes in our sense, that is, for the
occurrence of a catastrophe just prior to it. Our purpose is to
rationalize possible physical changes in observable signals that
could be used to forewarn the catastrophe, without trying to
understand statistical properties that require the observation of
many events. For example, in the experiment that we describe,
even though the statistics of the time intervals between
successive sliding events seems to be well characterized, it
does not help us in any way to predict the occurrence of an

individual slide, without first looking at the perturbations of
the measured noise, as was done.

An important challenge lies in the difficulty of stating a
suitable model for a given catastrophic event. Actually, there
is more than one class of possible slow-to-fast transitions in
dynamical systems. The dynamical saddle node can be seen
as belonging to the class of systems with an equilibrium point
losing stability as a parameter changes. It is not a loss of
stability, but rather a loss of existence of the equilibrium point,
occurring at the folding point of the slow manifold. However,
slow-to-fast transition may happen without any folding of
the slow manifold. As shown in [10] by exploring a very
often used mathematical representation of stick-slip behavior,
the Dieterich-Ruina equations, the slow-to-fast transition can
originate from the finite-time singularity of the slow dynamics
itself [11]. In that case, critical speed-up, or drift of fluctuations
toward large frequencies, is found to replace the critical
slowing-down effect. This nonlinear phenomenon is obviously
outside the class of phenomena explainable by a stability
analysis of equilibria of dynamical systems. We refer the
interested reader to the paper on this subject [10]. In the present
paper we do not consider this case, because it is clearly not
the one observed in the creeping experiments. Note that at
this time it is unknown whether real earthquakes (as well as
other observed catastrophes) belong to the saddle-node case
with a slowing down near the transition or to the finite-time
singularity case with speed-up expected, or else to another
type, yet to be discovered, of slow-to-fast transition.

The creeping experiment is described in Sec. II together
with the striking spectral observations. In the two sections
following Sec. II, we present our theoretical approach. We
present in Sec. III the abstract dynamical model showing fast
jumps recently introduced by two of us [2], postponing the
mathematics to Appendix A. Let us present its issue. In this
model, one assumes that, as a dynamical system, the jump
follows a “saddle-node” bifurcation. There a pair of fixed
points, one locally stable and the other locally unstable, merge
and disappear as a control parameter changes. Afterward,
the system moves quickly to a new equilibrium state that is
at finite distance (in phase space) from previous equilibria,
whence the jump. After reviewing the saddle-node bifurcation
in this light, we assume that the parameter changes with
time, namely, that the parameter defining the bifurcation is
itself a slow function of time. When, by this change, the
parameter crosses the bifurcation value, the dynamical system
makes an abrupt transition and jumps “generically” from one
equilibrium state to another.

In Sec. IV we show that this “abstract” model is pertinent for
describing the slow-to-fast transition in the relaxation regime
of a set of equations derived by Ananthakrishna and Sahoo [3]
for unstable creeping, or creeping in the relaxation regime.
This set of equations describes the dynamics of populations of
dislocations in the unstable creeping solid. The model shows
relaxation oscillations in which slow drift is interrupted by
fast variations. Near the slow-to-fast transition, we show that
this model reduces to the generic equation quoted above, for a
certain range of parameters. Therefore it displays a typical
critical slowing down in its response to external noise, in
agreement with the real data reported in Sec. II. Of particular
interest is the fact that, from the experimental data, one can
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predict in advance a “large-slip” event. The event is preceded
by a shift toward low frequencies in the random fluctuations
of specimen length.

II. CREEPING EXPERIMENT

We choose a uniform “wire” that creeps under small stress
at room temperature, fabricated from a much-studied material,
Sn-Pb solder, alloyed to be nearly eutectic. To establish creep
at virtually constant stress, let one end of the wire be fixed
and at the other end establish a constant force of tension.
By this means we found the length of the wire to increase on
average at a constant rate. By highly accurate monitoring of this
length versus time we observed a small time-dependent part
with the following pattern: on a background of fluctuations,
from time to time a large slip event was observed, after
which the continuous lengthening with a small background
noise was recovered. The observed noise is nonthermal,
since thermal noise has a far too small amplitude to be
relevant. It is assumed to result from rearrangement of defect
structures in the polycrystalline structure of the quasieutectic,
involving dislocation dynamics. We assume that this noise
originates from a source that is to first order independent
of the overall lengthening of the wire. This is equivalent to
saying that it is due to ongoing microscale events triggered
by the imposed stress, independent of the global creeping.
Therefore we analyzed the response to this noise source
according to the AK equations subject to an external noise (see
below).

A. Apparatus

The instrument used in these experiments, which is
pictured in Fig. 1, is an extensometer [12]. Young’s modulus
can be accurately measured with a wire specimen, by placing
different size masses on the weight pan. The trace of the
vertical wire holding up the boom–weight pan in Fig. 1 has
been enforced (colored in black) to be visible in the image.
Though not presently used, the black clamp was for the

FIG. 1. (Color online) Extensometer used in the experiment.

purpose of holding a power resistor that was employed to
measure the specimen’s thermal coefficient of expansion. To
measure temperature changes, a solid state thermometer was
placed down into the sample space, through the hole seen
near the top knurled clamp.

To calibrate the instrument a 0.1-mm-diameter tungsten
wire was mounted in the extensometer, and signal output
level changes were recorded as various gram-mass standards
were placed on the weight pan. By using the known Young’s
modulus for tungsten, the resulting measurements yielded a
constant of δ� = 1.0 nm per analog to digital count, for the
24-bit analog-to-digital converter employed, which is sold by
Symmetric Research [15]. This constant is applicable to the
data presently reported. A different measurement technique
yielded essentially the same calibration constant. A He-Ne
laser was used with a mirror, operating as an optical lever,
to measure boom position change as different masses were
placed on the pan.

Ordinary solder was chosen for the present study, which
was initiated by the observation of unusual spectral features
in the output from a novel seismograph [16]. The unusual
low-frequency motions of the Earth’s crust that were then
observed to precede an earthquake [17] are readily seen by
the VolksMeter. This is due to the instrument’s use of a
“displacement” sensor, rather than the “velocity” sensor used
by conventional seismometers. It was therefore natural to
consider an alloy of tin, with the expectation that its defect
properties should be more like those of the Earth than is
possible for a pure metal. The tin alloy for our study was
ordinary soft solder (60% Sn/40% Pb), used universally in
the electronics industry. Although the pure “eutectic” alloy is
actually 63% Sn/37% Pb, we will nevertheless use this word
to describe our specimen in the discussions that follow.

The stress level due to the load placed on the Pb-Sn wire
used in the present experiments was considerably smaller
than the typically 10 MPa used in usual creep studies. The
present load was due solely to the weight of aluminum
comprising the boom plus the empty weight pan of the
extensometer. This stress value was estimated to be 0.5 MPa,
based on considerations that include the distance of the wire’s
attachment point from the position of the (fine) roller bearing
in the upright housing, which supports the boom on its end
opposite the pan.

During a typical avalanche, the elongation of a 13.5-cm-
long, 1.6-mm-diameter specimen would be about 30 μm.
Before the avalanche, the typical lengthening velocity is
5 μm/s and typical rms fluctuations observed in the wire
length (with secular term removed by high-pass filtering)
would be about 50 nm.

An example of creep record (length growth versus time) is
shown in Fig. 2(a). The fluctuations of the raw signal are not
visible because they are much smaller than the average length
variations.

B. Data analysis

To eliminate the average growth, we use a standard
technique of filtering. At the exit of a high-pass single-pole
filter, the filtered signal xn = x(n) is given by the recursive
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FIG. 2. (Color online) (a) Raw signal 10−3�(n) of the wire elongation vs time, in digitalized sensor units. The true elongation is � = �nδ�,
and the true time is t = nδt . (b) Filtered signal x(n) = xn at the exit of the single-pole high-pass filter defined by Eq. (1).

formula

xn = 1 + p

2
(�n − �n−1) + pxn−1, (1)

where �n = �(n) stands for the raw creep signal, and we set
x1 = 0 and xN = xN−1. In other words the filtered signal is
the convolution product of the raw signal derivative by an
exponential response function R(t) = exp (−2πfct), where fc

is the (low-frequency) corner frequency of the high-pass filter.
In Eq. (1) the parameter p is given by p = exp (−2πfcδt),
where δt is the sampling time of the record, equal to δt = 1

130 s
in the experiment. By using a corner frequency fc = 50 mHz,
the filtered signal takes the form shown in Fig. 2(b).

In order to analyze the spectral properties of the fluc-
tuations, and see how they evolve with time, we must
consider separate sequences of a given time duration Nδt .
The sequences may or may not overlap, and we have tested
both cases. One significant difficulty in this analysis is the
proper choice for the magnitude of this time duration. The
window cannot be too large, lest the spectrum becomes
invariant with time. Conversely, if the window is too narrow,
there will be excessive noise in the spectral (or correlation)
signal. We believe the time windows have been judiciously
chosen, so that there is a significant increase of the correlation
time before a “burst.” Such an increase of the correlation
time (actually the decrease of the frequency width of the
signal) was found to occur before every sliding event, giving
some hope that this “critical slowing down” is pertinent for
predicting the “catastrophe” before it occurs. For the present
work a time duration of order 1/10 of the interval between
adjacent bursts was chosen. The spectral density of the portion
[xni

,xni+N
] of the filtered signal corresponding to the time

interval [niδt,(ni + N )δt], as for example one of the two
intervals 1,2 marked in Fig. 2(a), can be written as

Si(k) =
∣∣∣∣∣ 1√

N

ni+N∑
n=ni

x(n) exp 2iπnk

∣∣∣∣∣
2

. (2)

We observe that Si(k) changes significantly during the creep
process. The striking effect is the shift of the spectral density
toward low frequencies in the last stage of the slow regime,
i.e., just before the burst. Examples of this phenomenon are
presented in Figs. 3(a) and 3(b), which show the spectra
corresponding to the time intervals (1,2) marked in Fig. 2(a).
The two spectra clearly differ. The spectral density in Fig. 3(a),

corresponding to the first time interval marked as “1” in
Fig. 2(a), displays a large number of components, whereas
the spectral density in Fig. 3(b), corresponding to the time
interval “2” just before the burst, is concentrated close to zero
frequency. To quantify this effect, we calculate the cumulative
spectrum

CSi
(k) =

k∑
1

Si(j ), (3)

which is a smooth curve whose asymptotic value (for k = N )
gives the experimental variance of the fluctuations during the
ith sequence considered:

σ 2
i = CSi

(N ). (4)

The shift of the spectral density toward low frequencies
is visually more clear in its associated cumulative spectrum
drawn in Figs. 3(c) and 3(d). We define the “low-frequency
extension” of a sequence by the width w [marked on Figs. 3(c)
and 3(d)] of the cumulative spectrum corresponding to 75
percent of its maximum value,

CSi
(w) = 3

4CSi
(N ). (5)

Shown in Fig. 3(e) is the evolution of the spectral width w

for the data of Figs. 2 and 3. The curve joins the values of w

calculated for overlapping series (see the caption). A drop in
w is clearly seen to occur before each burst.

The important point is that the decrease of the width before
the burst is experimentally foreseeable because it occurs during
a “precursor” time which is noticeably larger than the duration
of a sequence, Nδt . This is illustrated in Fig. 4(b), which
displays an enlargement of the spectral width evolution before
the burst for the data set shown in Fig. 4(a). The broken line
joins the result of the data analysis, namely, the values of wi .
Because each value can be experimentally obtained at the end
of each time interval [niδt,(ni + N )δt], the broken line joins
the wi values reported at time (ni + N )δt .

The two following sections are devoted to theoretical
models, both showing the main features of what is measured in
the experiment on creeping, namely the critical slowing down
of the fluctuation spectrum occurring before the sliding event.
The first one is a mathematical model, which is the local form
of the second one, a physical model of creeping found in the
literature which consists in a set of nonlinear coupled ordinary
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FIG. 3. (Color online) Same experimental data as in Figs. 2(a) and 2(b). Spectral density S1,2(k) of x(n) in arbitrary units for the time
intervals 1,2 marked in (a) at abscissa 18370 < n < 20 370 and 24 370 < n = 26 370, respectively, each of duration is Nδt = 2000/130 s. (c)
and (d) Normalized cumulative spectra CSi

(k)/σ 2
i , corresponding to the spectra in (a) and (b), respectively. The spectral width w defined by the

relation (5) is the horizontal segment at ordinate 0.75 visible on curve (c). [A very small w2 is barely visible on curve (d).] (e) Spectral width
w(t) (in a.u.) vs time t = nδt [where wi is the abscissa ki such that CSi

(ki)/σ 2 = 0.75]. The three vertical arrows indicate the very beginning
of the three fast steps.

differential equations, originally derived by Ananthakrishna
and Sahoo [3].

III. DYNAMICAL SADDLE-NODE BIFURCATION

This section explains why a saddle-node bifurcation with a
slow sweeping of the bifurcation parameter exhibits a slowing
down in its response to a source of noise in a window of
time extending well before the bifurcation itself. This abstract
model has no direct connection with the physical phenomenon
of creeping. In the section afterward, however, we explain that
a model of creeping shows the same slowing down in a range
of parameters, linked to a local saddle-node bifurcation.

Consider first the saddle-node bifurcation of a “gradient
flow,” that is, a damped dynamical system such that a

coordinate x(t) is a solution of the equation of motion of the
form

dx

dt
= −∂V

∂x
. (6)

In this equation V (x) is a potential, and the dynamics tends to
everywhere lower the value of V (x).

The catastrophe theory of Thom and Arnol’d [18] studies
how steady equilibria of equations like (6) change under
smooth deformations of the potential V (x). Below we consider
a different kind of question, namely, what happens to the
solution of Eq. (6) when the potential V (x) becomes itself
a slowly varying function of time, and particularly when a pair
of equilibrium points disappears by a saddle-node bifurcation.
Indeed this question of the sweeping across bifurcations has
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FIG. 4. (Color online) Example of data with a single avalanche. (a) Elongation �(n) vs time, in sensor units. (b) Ten successive values
of the width wi of the cumulative spectra (before the burst) in arbitrary units, taken into the time interval 32 000δt < t < 42 000δt (or
32 000 < n < 42 000). The sequences (ni,ni + N ) overlap with N = 2000 and ni+1 − ni = 1000. The horizontal segments indicate the time
intervals over which the width is calculated. The broken thin line joins the values of wi taken at the end of the each sequence, at time
(ni + N )δt , to simulate an experimental observation performed in real time. The thick filled curve displays the filtered signal xn, which
indicates the avalanche time.

been already widely studied [19] with various applications in
mind [where by “sweeping” we mean crossing of a transition
point with a time-dependent parameter in the equation(s) of
motion]. However, to the best of our knowledge the occurrence
of an intermediate time scale in the case of slow sweeping has
been overlooked, although we believe it to be crucial for a
strategy of foretelling catastrophes in the real world.

A. Local cubic potential

Equation (6) is too general to be very helpful. However,
it may describe a saddle-node bifurcation where a stable
equilibrium disappears, if V depends slowly on time in
a prescribed way, to become a function V (x,t). Near the
transition, one may use a mathematical picture which is correct
for a short time around the transition if the potential V (x,t) is
a smooth function (see below for what happens afterward).

Assume first that V (x) does not depend explicitly on time
and takes the form

V (x) = − (
1
3x3 + bx

)
, (7)

with b real constant (for the moment).
For b negative V (x) has two real extrema (i.e., the roots of

∂V
∂x

= 0): one, −√−b, is a stable equilibrium and the other,√−b, is an unstable equilibrium. For b = 0 the two equilibria
merge and disappear for b positive [see Fig. 5(a)]. This is the
saddle-node bifurcation. The shape of V (x) near x = 0 and

for b small is universal: for a given smooth V (x) showing
this saddle-node bifurcation, one can always rescale x and the
external parameter to obtain the “local” problem in this form.

The extension to a time-dependent control parameter b goes
as follows. If b is a smooth function of time, one can assume
that b(t) crosses the critical value, i.e., zero in the present
case, at time zero in such a way that b(t) = at + · · · with a a
nonzero constant and the dots standing for higher order terms
in the Taylor expansion of b(t). For t and x close to zero, after
rescaling, one can represent the dynamical system (6), close to
the saddle-node bifurcation, by the “universal” parameterless
equation

dx

dt
= x2 + t. (8)

Outside of the neighborhood of x = 0, the solution of (6)
depends on other parameters defining V for finite values of x,
as explained below.

Although this is not obvious from its formulation, this
model is also valid for the transition from slow to fast motion
in the van der Pol oscillator in the limit of large nonlinearities,
as shown by Dorodnicyn [5]. We give in Appendix A a short
version of the classical calculation by Dorodnicyn, showing
that the “universal” equation (8) is also relevant for the
slow-to-fast transitions in relaxation oscillations. It is worth
mentioning that in this derivation one does not really assume
that the overall motion is periodic, as it may be extended quite
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FIG. 5. (Color online) (a) Cubic and (b) quartic potentials. The parameter values b = −1,0,1 (marked next to the curves) correspond,
respectively, to the blue, thick-red, and dashed-black curves.
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easily to a system of many more coupled ordinary differential
equations (ODEs) with only one fast variable. This shows that
such large jumps are also possible in nonperiodic dynamics,
because the dynamics on the slow manifold may be chaotic
in between the jumps if this slow manifold has a sufficiently
large number of dimensions.

The explicit solution of Eq. (8) is given in Appendix A.
The solution relevant with the given condition at t → −∞
is drawn on Fig. 6(a). It diverges at time tc, the first zero
of the Airy function Ai(−t), a pure number which is about
tc ≈ 2.338 [20].

Actually the solution (A5) loses its physical meaning
sometime before the singularity since the “universal” dynam-
ical equation (8) was derived under the assumption that x

remains close to zero. This local theory cannot deal with finite
variations away from the critical values, and therefore we shall
need to add finite-amplitude effects to limit the growth of the
instability after the transition (see Sec. III B).

Now we shall focus on the slowing down near the dynamical
saddle-node bifurcation described by Eq. (8). We first study
the response of this dynamical system to a small external noise
and then look for qualitative changes in this response which
could be a signal that occurs before the transition.

Let us consider Eq. (8) with a small noise added, so that
Eq. (8) is replaced by

ẋ = x2 + t + εξ (t), (9)

where ξ (t) is a random function of time and ε is a small
coefficient. The numerical solutions of the stochastic equation
(9) (and other stochastic equations studied below) were
obtained by using Stratanovitch calculus. An example is given
in Fig. 6(a), where a large-amplitude noise was chosen for
clarity (to make visible the difference between the solutions
with and without noise).

In the small-ε limit, one can solve Eq. (9) by expansion in
powers of ε, x(t) = x0(t) + εx1(t) + · · · . The leading order
term x0(t) is the noiseless solution

x0(t) = − U̇ (t)

U (t)
,

with U (t) the Airy function.
The term εx1(t) is the linear response to the noise with

x1(t) = 1

U 2(t)

∫ t

t0

dt̃ ξ (t̃) U 2(t̃). (10)

Because U 2(t̃) tends rapidly to zero as (t̃) tends to minus
infinity, one can take t0 = −∞ to get rid of the effect of the
initial conditions.

We show in Appendix A that the amplitude of the
fluctuations increases some time before the transition itself.
As the transition approaches, the variance of the fluctuations,
σ (t)2 = 〈

[x(t) − x0(t)]2
〉
, increases close to the critical time

tc, because U (tc) = 0.

B. Quartic potential

As the zeroth-order solution diverges at t = tc, it does
not make sense to describe the dynamical behavior of the
fluctuations due to the external noise very close to tc, as shown
above.

As said before, this unbounded growth of the fluctuations is
a consequence of the local cubic form of V (x) when expanded
near x = 0, in obvious contradiction with the fact that x(t)
tends to infinity. To suppress the divergence of x(t) after the
saddle-node bifurcation we add a stabilizing (positive) term to
the potential V (x), which becomes quartic,

Vq(x) = −x3

3
− bx + x4

4
, (11)

as drawn in Fig. 5(b). Because of the growth of Vq (x) at infinity,
like x4, the solution of the differential equation

ẋ = b + x2 − x3 (12)

does not diverge at finite time, and it can be written in the given
scaled form for any quartic potential provided the coefficient
of x4 is positive. For such a potential only one parameter
remains. For b = 0 the dynamical system (12) is exactly at
the saddle-node bifurcation, because at b = x = 0 both the
first and second derivatives of Vq(x) vanish, but not the third
derivative. In contrast to the case of the pure cubic potential,
this system always has, that is, for any value of b, a stable fixed
point beyond the pair of fixed points collapsing at the saddle-
node bifurcation. This makes it a fair candidate for describing
the dynamical saddle-node bifurcation without blow-up.

As in the previous case, we shall take a time dependent
b, which will be taken as b = at with a a positive constant.
Because of the rescaling of the cubic and quartic term, the
parameter a cannot be eliminated (but another possibility
would be to put a parameter in front of the cubic term). For
the potential

Vq(x) = −x3

3
− a t x + x4

4
, (13)

we shall analyze the solution of the dynamical equation

ẋ = at + x2 − x3, (14)

tending at large negative and positive times to the equilibrium
point x = (at)1/3, t being considered as a parameter [see
Fig. 6(b)]. Moreover, we consider the small-a limit, with a

being related to the ratio of small to large time scales, which
can be estimated from experimental data. We prove that, in this
limit, there are three characteristic time intervals, depending
on how close x is to zero.

The long time scale is the time lapse between successive
major slips, typically of order 150–300 s in our experiments
on creeping. In our model it is the time needed for the potential
Vq(x,t) to change significantly, to move from a pair of fixed
points to a saddle-node bifurcation. Because time enters in
Vq(x,t) through the combination (at), the a-dimensional time
needed for a change of shape of Vq is of order

tcreep ∼ a−1. (15)

The short time tslip is the duration of the abrupt change
of slope of the function of time x(t), the rising of x(t) at
the catastrophe time. We show in Appendix A that tslip is
of order unity [in units of our model equation (14)] because
the local form of Eq. (14) has no explicit dependance with
respect to the small parameter a. This result is confirmed by
the numerics [see Figs. 6(b) and 6(c) and red curves in Fig. 7].
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FIG. 6. (Color online) (a) solutions of Eq. (9), without noise ε = 0 (smooth red curve) and with large-amplitude noise (ε = 1 blue noisy
curve). (b) Solution of Eq. (14) for a = 10−3. The dashed rectangle around the origin defines the region −t0 < t < t0 and −1/t0 < x < 1/t0,
with t0 ∼ a−1/3. The critical time is tc(a) ∼ 2.34 t0. The two small vertical segments delimitate the large slope time duration, of order unity. (c)
Solution of Eq. (18) without noise (smooth red curve) and with large-amplitude noise ε = 0.1 or ε̃(a) = 1 (blue noisy curve). The two noisy
curves in (a) and (c) correspond to a single run, with a unique realization of the Langevin equation.

More precisely, defining the rising time of x(t) by 1/5 of the
peak width of ẋ, we have numerically

tslip ∼ 1, (16)

independently of the value of a, for a small. In the creep
experiment reported above, we had t

exp
slip ∼ 1 s, which gives a

ratio of these two time scales, tslip/tcreep, as small as 10−2–10−3.
There is another time scale, t0, the time interval standing

before the transition, and close to it, during which the potential
is very flat, while the solution has not yet jumped. During this
time, x and at are much smaller than unity, and the cubic term
on the right-hand side of Eq. (14) is negligible. In this range one
recovers the universal equation of the dynamical saddle-node
bifurcation (8) by taking X = xa−1/3 and T = ta1/3, with the
boundary condition X(t) ≈ −√−T at T tending to minus
infinity. This property concerns the rectangular domain drawn
on Fig. 6(b), where x is small, x ∼ a1/3, and t extends from
t ∼ −a−1/3 to t ∼ a−1/3, located before the abrupt increase.
Therefore the time extension of this domain introduces the
intermediate time scale

t0 ∼ a−1/3, (17)

which is long compared to the short time tslip (of order unity)
and small compared to the average time between slips, tcreep =
a−1. In the experiment, the value of the intermediate time scale
is about 10 s by using t

exp
0 ∼ a−1/3t

exp
slip and a = 10−3.

In summary, by matching the two solutions in the range
1 � (−δt) � a−1/3, we show that the catastrophe takes place
during this time tslip which is of order one, because the
displacement is then of order one, compared to the small
displacement of order a1/3 taking place during time t0 = a−1/3

typical of the “universal” transition process.
From this understanding of the various scales in the

deterministic part of the dynamical equations, we can now
look at the response to noise of this system, particularly at
the range of time where something like a “critical slowing
down” could be observed, and which actually happens in our
experiments.

With a noise source added, the dynamical equation (6)
becomes

ẋ = x2 − x3 + at + εξ (t). (18)

Actually, the effective noise amplitude is not equal to ε close
to the saddle node, as it depends on the value of the parameter
a. Indeed, for |t | � t0, the cubic term in Eq. (19) is negligible,
and the equation reduces to

ẋ = x2 + at + εξ (t), (19)

which may be written as dX
dT

= X2 + T + ε̃(a)ξ (t), by setting
X = xa−1/3, T = ta1/3, and ε̃(a) = εa−2/3. Therefore the
effective noise is larger than ε, by a factor of a−2/3 in the
rectangular domain of Fig. 6(b).

Let us consider now the fluctuations of the solution x(t)
of Eq. (19). For a small noise source, the solution may be
expanded in power of ε as above. At first order this gives

ẋ1 = [
2x0(t) − 3x2

0 (t)
]
x1(t) + ξ (t), (20)

whose solution is formally

x1(t) =
∫ t

t0

dt̃ ξ (t̃) exp[g(t) − g(t̃)]. (21)

In general g(t) is the time integral of the second derivative of

the potential, − d2Vq (x)
dx2 , which yields with our choice of V

g(t) =
∫ t

t0

[
2x0(u) − 3x2

0 (u)
]
.

The standard deviation σx1 (t) has to be calculated numerically.
We expect it to display the same behavior as for the cubic
case in the whole domain where x(t) � 1, i.e., a little before
the transition and close to it, because the potential is cubic in
this range. After the transition, we expect that the fluctuation
decreases, because the solution without noise becomes quasis-
teady. This is confirmed by the numerics: the amplitude of the
fluctuations strongly increases close to the critical time tc(a)
defined in Appendix A, with its maximum occurring at time
tc(a), then it decreases. More precisely, the standard deviation
behaves exactly as ẋ0(t), the red curve in Fig. 7(a), for small
noise. Therefore the strong increase of the variance of the
signal fluctuations cannot be used as a precursor for predicting
the transition because it occurs simultaneously with the signal
itself close to the transition. Note that this observation seems
to contradict the currently found statement that fluctuation
enhancement precedes the transition and can be used as a
precursor. In the case of the saddle-node bifurcation model, we
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FIG. 7. (Color online) (a) and (b) Correlation time τx of the fluctuation x(t) − x0(t) for the saddle-node model (18) with a = 10−3. The
correlation functions are defined by Eqs. (22) and (23) for curves (a) and (b), respectively. (c) Spectral width (in a.u.) calculated with wg = t0,
for a = 10−3; the red curves display the time derivative ˙x(t) in order to indicate the catastrophe time. (d) g(t/t0) for a = 10−3 (solid, blue
curve) and a = 10−6 (dashed, red curve).

have indeed observed a “precursor” growth of the fluctuations,
but only in the case of “large” -amplitude noise [see Fig. 6(c)].
Let us focus on the case of small amplitude noise. In this case
we show below that the correlation time of the fluctuations
changes much earlier than the onset of amplitude growth.
This slowing down can be used to foretell the event itself,
in considerable advance of its occurrence. It is seen to
consistently occur in the creeping experiment described below.

Consider the case of small effective noise, where the
correlation function and the spectrum of the fluctuations
[x(t) − x0(t)] are well described by the correlation function
and spectrum of x1(t), respectively. As noted in the previous
section, the calculation of these functions requires some care
because the system is not in a statistically steady state.
Therefore the spectral density of the fluctuations depends on
time and the correlation function 
x1 (t,τ ) = 〈x1(t − τ )x1(t)〉
depends on both t and on the time difference τ . More precisely,
the correct definition of the correlation function is actually
given by


x1 (t,τ ) = 〈x1(t − τ )x1(t)〉 − 〈x1(t − τ )〉 〈x1(t)〉
σx1(t−τ )σx1(t)

. (22)

The latter definition of correlation is not readily accessible in
experimental situations, because it requires knowledge of the
time-dependent variance, which is difficult to estimate from a
single sample. A more accessible tool is often used; it is given
by the expression


′
x1

(t,τ )′ = 〈x1(t − τ )x1(t)〉 − 〈x1(t − τ )〉 〈x1(t)〉
σx1(t)2

, (23)

which coincides with the correct expression if the variance
is the same at time t and t − τ only. If the variance changes
noticeably during the time interval of duration τ , the latter
expression is biased, since 
 = 
′ σ (t)

σ (t−τ ) . We expect such a
discrepancy to manifest itself close to the catastrophe, since
the variance increases there by a large amount. To illustrate
this point we compare in Figs. 7(a) and 7(b) the correlation
times τx and half-height width of the correlation functions
as defined by Eqs. (22) and (23), respectively. The strong
increase of the correlation time before the catastrophe is
noticeably truncated when using the biased expression (23).
Using the correct definition of the correlation function (22), the
correlation time increases by a factor of 10 over a time interval
of order t0 before the catastrophe, while the enhancement is
only about a factor of 3 when using the biased expression (23).
Moreover, the enhancement is followed by a drop in the latter
case. This discrepancy between the results supplied by the
two definitions comes from the fact that the variance increases
close to the catastrophe, as is well known [21]. Nevertheless,
because both curves in Figs. 7(a) and 7(b) display well the
critical slowing-down effect, which manifests as a growth of
the correlation time close to the transition, we conclude that the
manifestation of the slowing-down effect occurs well before
the catastrophe for the spectrum than for the variance, the delay
being about a few t0 for the former, against less than t0 for the
variance.

The increase of the correlation time before the catastrophe
is understood by looking at the formal expression (21). The
second derivative of the potential vanishes at t = t0, and that
leads to the flatness of g(t) in the time domain 0 < t < tc(a),
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as shown in Fig. 7(d). This time domain could therefore be
identified as a “precursor time,” of order a few t0.

Now let us consider the spectrum of the fluctuations in order
to compare with the experimental results. A time-dependent
spectrum can be defined formally by the (real) Wigner
transform

Sx1 (t,f ) =
∫ −∞

−∞
dτ 〈x1(t − τ )x1(t)〉 e−2iπf τ , (24)

which has to be modified for numerical applications, either by
using a filtering procedure like the one used in the previous
section or by introducing a slipping window. In this section
we use the latter process. By choosing a Gaussian window
function of width wg , the numerical spectrum is given by

Sx1 (t,ν) =
〈∣∣∣∣∣

∫ tb

ta

dτe
−( t−τ

wg
)2

x1(τ )e−2iπντ

∣∣∣∣∣
2〉

, (25)

where ta,b are the numerical integration time boundaries.
This expression does not take into account the variability
of the variance; therefore we expect the observed change in
the spectral properties to be biased, as was the case for the
correlation function 
′.

The evolution of the spectral width �f (half-height width)
is reported in Fig. 7(c) in a range of a few times t0 around
the transition. The solution ẋ0(t) is drawn as a solid red
line. Figure 7(c) illustrates the same effect as the correlation
function 
′, but in Fourier space. The spectral width decreases
noticeably from negative time of order a few t0, until the
time t ∼ 1.5t0, where it grows, because of the bias due to
the variance increase close to the burst. The decrease of �f

corresponds to a shift of the spectrum toward low frequencies.
The important result is that this shift occurs well before the
transition. It occurs over a time interval of order a few t0. This
result agrees with our experiment where t0 was estimated to be
about 10 s and the decrease of the spectral width keeps on for
about 30 s (see Fig. 3 where 10 s corresponds to 1300 counts
on the abscissa scale). The growth of the fluctuations and their
shift to lower frequencies can be understood as follows. As
the transition approaches, the potential V (x,t) becomes flatter
and flatter, making weaker and weaker the restoring force
toward equilibrium. Therefore, with a constant noise source,
the amplitude of the fluctuations driven by this noise source
will grow because the damping becomes less and less efficient.
Moreover, the typical time scale for this damping will get
increasingly larger because of the decreasing stiffness of the
potential, thus favoring noise at lower and lower frequencies.

IV. ANANTHAKRISHNA MODEL

This section is devoted to an analysis of solutions of a
set of equations devised for describing unstable creeping in
solids. More precisely, our purpose is to show that in a range
of parameters this equation exhibits a dynamical saddle-node
bifurcation. As in the “abstract” model of the previous section,
this bifurcation is also preceded by a slowing down of the
fluctuations triggered by an external source of noise. Creeping
phenomena in real materials are complex and difficult to
predict quantitatively, despite decades of efforts on theoretical
models. We have chosen to consider a model introduced by

Ananthakrishna and Sahoo [3] for unstable creeping in strained
solids. To make things simpler, we have only used its version
without space dependence in the quantities involved. Note that
the introduction of space variables would lead to an aperiodic
creep signal more realistic than the periodic signals of the
present model; however, we conjecture that it should not affect
the main result of our study (the emphasis of a precursor
signal over a given time interval). The AK model considered
here is a set of three coupled nonlinear ordinary equations
with three dimensionless parameters (a, b, and c, where the
letters a and b have no connection with the same symbols
used previously). The unknown time-dependent quantities are
three scaled variables corresponding to three density types of
dislocations, x(t), y(t), and z(t), representing, respectively,
mobile, immobile, and those with clouds of solute atoms that
mimic Cottrell’s idea. The model equations are

bẋ(t) = G(x,y) = (1 − a)x(t) − bx(t)2 − x(t)y(t) + y(t),

(26)

ẏ(t) = F (x,y,z) = bx(t)2 − x(t)y(t) − y(t) + az(t), (27)

bż(t) = H (z,x) = c[x(t) − z(t)], (28)

where the variable x(t) stands for the elongation rate. As one
can check, if the three variables are positive at time zero, they
remain so at later times if a, b, and c are positive, as assumed.
The relative elongation (or strain, or creep) �(t) of the solder
wire is the time integral of x(t),

�(t) =
∫ t

0
x(t ′)dt ′.

Solutions of Eqs. (26)–(28) have been extensively studied [1],
and their shape and duration versus the parameter values are
given in [4]. Recall that relaxation oscillations are depicted for
small values of the parameter b only. For c larger than a certain
critical value ccr , depending on a and b and not written here,
the solution is stable. The fixed-point coordinates are given by
the expressions

xs = 1 − 2a

2b
for a < 1

2 ,

xs = (1 − a)(1 +
√

2) for a > 1
2 ,

ys = 1

2
,

(29)

at lowest order for the small parameter b. This fixed point
becomes unstable by a Poincaré-Andronov bifurcation for
small values of b, only under the condition that c becomes
smaller than ccr . In a large range of parameter values the
limit cycle associated with the variable x(t) displays relaxation
oscillations characterized by slow steps and fast bursts.

In this range of b and c small, we focus on the case c � b

for two reasons. First, it allows the set of equations to be
reduced to the generic saddle-node equation introduced in the
previous section. Second, it leads to x(t) solutions looking
approximately like our experimental data [in which the strain
rate x(t) has to be compared with the data files labeled y(n) in
Sec. II]. An example of the numerical solution of Eqs. (26)–
(28) is given in Fig. 8. In this case the burst amplitude drawn in
Fig. 8(b) is noticeably larger than the experimental one shown
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FIG. 8. (Color online) (a) Densities of mobile, immobile, and Cottrell’s dislocations as a function of time, using the solution of the
three-dimensional flow (20)–(28) for a = 0.65, b = 4 × 10−3, and c = b/100. The three curves are 0.08x(t) (solid), y(t) (dotted),and z(t)/5
(dashed). (b) Creep signal �(t).

in Fig. 2(a); nevertheless, we have chosen the parameter values
for pedagogical reasons, in order to give a clear representation
of the full cycle of the relaxation oscillations. Consider the
evolution of the elongation rate x(t) drawn as a solid line in
Fig. 8(a). The limit cycle of duration T = 180 displays four
stages. In the first step (0 < t < 130), the flow evolves slowly
and x(t) takes values of order unity. This stage is followed
by a fast jump of x(t) at t ∼ 130, then by a short slow stage
(130 < t < 144) with high values of x(t), of order 1/b, and
finally followed by a fast decrease of x(t) at t ∼ 144.

The linear stability of the three-dimensional (3D) flow is
derived in Appendix B. The stability along the stage preceding
the fast jump is particularly informative. We show that the
trajectory becomes linearly unstable shortly before the burst.
Note that the time delay between the cross to zero of the
linear exponents and the burst is found to be of the order
of the intermediate scale t0 for the model, which we derive
analytically in the next section.

A. Normal form close to the burst

We now consider the behavior of the 3D flow in the vicinity
of the burst, and we derive the normal form of the AK model
close to B in order to get an estimate of the precursor time
t0. We focus on the first part of the limit cycle, preceding
the burst of x(t), and try to understand how the trajectory
leaves the slow manifold (SM) that we define now. Because
c � b � 1, the slow stages are described by canceling the
right-hand side of Eqs. (26) and (27), which reduces the 3D
flow to one-dimensional (1D) flow:

G(x,y) = 0,

F (x,y,z) = 0, (30)

ż(t) = c

b
[x(t) − z(t)].

From the first equation the variable x(t) is an explicit function
of y(t),

x(y) = −(y − 1 + a) +
√

(y − 1 + a)2 + 4by

2b
. (31)

Inserting this expression into the second of Eqs. (30) allows
us to also express the variable z(t) in terms of y(t):

z(y) = −bx(y)2 + y[x(y) + 1]

a
. (32)

In phase space (z,y) expression (32) defines the slow manifold,
which is illustrated in Fig. 9 (red curve). On the positive slope
parts of the slow manifold the 1D flow obeys the differential
equation

ẏ(t) = c

bz,y

{x[y(t)] − z[y(t)]},

which becomes singular at critical points defined (on the SM)
by the relation

z,y = 0. (33)

The 3D flow (closed blue curve) follows the path A →
B → C → D. At the critical point B, the trajectory leaves
the slow manifold, jumps to point C (fast stage B → C), then
follows the portion (C → D), and finally returns to the SM in
A.

Close to the critical point B, we focus on the exit of the
SM. The details of our derivation is postponed to Appendix B,
where we derive the normal form of the AK equations in the
vicinity of B.

After rescaling the normal form (B16), we show that it takes
the generic parameterless form (8), proposed as a possible
description of a signal before a catastrophe [2], and displays
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FIG. 9. (Color online) The SM trajectory z(y)/5 given by
Eq. (32) for a = 0.65 and b = 4 × 10−3 (S-shape red curve) and
the parametric plot of the 3D flow (blue curve), i.e., the numerical
solution z{x[y(t)],y(t)}/5 of Eqs. (26)–(28) for c = b/100 and the
same parameter values for a and b.
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FIG. 10. (Color online) Multiplicative noise: (a) Standard deviation of the response (red solid curve) as a function of time along the path
A → B before the burst, compared to ẋ0 shifted for clarity (dashed blue curve), both on a log10 scale. (b) Correlation functions 
(t,τ ) vs τ

for time values t = 50 (dashed), t = 100 (blue), and t = 129 (red). (c) Half-height width τx of the correlation function 
x1 (t,τ ) vs time t . The
input data are those of Fig. 8; noise amplitudes are εi = 10−5 for the three independent noise sources fi(t) (i = x,y,z).

the characteristic time

t0 =
(

2

γ F̃,y2 (x,y)2

)1/3

, (34)

where γ , F̃,y2 , and x,y (taken at B) are derived in Appendix B.
As shown in Sec. III this characteristic time scale is the

intermediate time scale. Expression (34) could be used to
predict the burst, because the critical slowing-down effect
occurs during this time interval. Finally, in terms of the AK
parameters, the intermediate time scale, or precursor time, is
given by the relation

t0 ∼ 1 − a

2(
√

2γ )1/3
, (35)

where the parameter γ is given by (B11). For the parameter
values of the above figures, we have t0 ∼ 10, which will be
shown to agree with the precursor time deduced from the
spectral analysis presented in the next section.

In summary, we have proven that the AK model, although
formally different from the van der Pol model, has a normal
form close to the critical point that is consistent with
the dynamical saddle-mode model equation studied in [2],
with an intermediate time scale given by expression (35).
Consequently, as for the saddle-node model, the AK model
should display a response to noise with a strong increase of
the correlation time before the burst, this stage defining a
precursor time of order t0.

B. Response to noise before B

The response to noise of the system (26)–(28) is studied by
setting [x = x0(t) + x1(t), y(t) = y0 + y1(t), z(t) = z0(t) +
z1(t)], where x0(t),y0(t),z0(t) is the solution of the noiseless

AK equations, and the vector V (t) = x1(t),y1(t),z1(t) charac-
terizes the fluctuations of the response to a noise source. These
fluctuations result from the introduction of noise terms (either
multiplicative or additive) in the original system. In the case of
multiplicative noise sources, the response of the AK equations
is a solution of the system

ẋ(t) = (1/b)[(1 − a)x(t) − bx(t)2 − x(t)y(t)

+ y(t)][1 + εxfx(t)],
(36)

ẏ(t) = [bx(t)2 − x(t)y(t) − y(t) + az(t)][1 + εyfy(t)],

ż(t) = (c/b)[x(t) − z(t)][1 + εzfz(t)].

We report below the result of the numerical study of this
stochastic equation for small-amplitude noise. Defining the
fluctuation of the response to noise by the variable x1(t) =
x(t) − x0(t), as in the previous section, we have calculated
the variance, the correlation functions given by expressions
(22) and (23), and the spectrum evolution along the path
A → B before the burst. We found that the variance follows
the evolution of the variable ẋ0(t), as seen in Fig. 10(a). This
clearly shows that the variance growth is not a pertinent tool
for predicting purposes, as already noticed in the previous
section. Figure 10(b) illustrates how the correlation function
changes. The striking widening of the central peak is visible
on the red curve, which corresponds to time t close to the
burst. A quantitative study is given in Fig. 10(c), where the
half-height width of the correlation function 
 is drawn. This
curve clearly shows that the widening of 
, or increase of
the correlation time of the fluctuations, occurs well before the
burst, within a time interval of about t0 = 10, as predicted by
Eq. (35). For noise of additive type the width of the correlation
function 
(t,τ ) behaves similarly. Moreover, as pointed out
in the previous section, using the expression (23) to calculate
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FIG. 11. (Color online) Cumulative spectral width ω of the
response x1(t) to additive noise vs time before the burst. The data
are the same as in other figures.

the correlation function displays an attenuated slowing-down
effect, because the increase of the variance partially stifled the
increase of the correlation time close to the burst; more details
are given in [22]. In summary, the curve in Fig. 10(c) illustrates
the main result of our study, namely, the outward sign of the
critical slowing-down effect well before the catastrophe. The
predictor time is shown to be of order t0 = 10, in agreement
with Eq. (15), which should be valid for any slow-to-fast
transition of saddle-node type.

This result is also in agreement with the experimental result
given in Sec. II showing a shift of the spectrum toward low
frequencies before the burst. In order to compare the AK
model results with the experimental ones, we have calculated
the cumulative spectrum of x1(t), CS(t,ν) = ∫ ν

0 dν ′S(t,ν ′),
which gives the integral over the frequency ν of the spectrum
S(t,ν) = 〈| ∫ t

t−�t
dt ′x1(t ′) exp2iπνt ′ |2〉 of the fluctuations [for

the response signal sampled during the time interval (t −
�t,t)], in analogy with Eqs. (2) and (3). The characteristic
spectral width ω(t) defined by the relation (5) evolves in time
as illustrated in Fig. 11 for the AK model with additive noise.
The horizontal segments corresponding to abscissa (t − �t,t)
have ordinates ω(t), the numerical value of the spectral width
calculated during this time interval. The solid broken line
joins the endpoint of each segment, in order to simulate an
experimental observation of the spectrum in view of foretelling
a catastrophic event [an observer cannot know w(t) before
time t]. The decrease of ω(t) close to the burst shows well the
expected shift of the spectrum toward low frequencies, which
is observed also in the experiments.

In conclusion, the AK model displays a range of parameter
values where one can see the critical slowing down observed
also in the experiments. We have studied the AK model for
the case of small b and c parameter values, with c � b. In this
case the burst occurs close to a critical point, as noticed in [4].
We have shown that close to this critical point, the 3D flow
(namely, a set of three coupled ODEs) can be reduced to the
two-dimensional system (B8) with “a sort of Langevin-like
source” term of the form (A1) and (A2) discussed in Sec. III.
The present system differs from the van der Pol equation;
however, close to the critical point both models take the form
of the dynamical saddle-mode model equation studied in [2].

A detailed quantitative comparison between the AK model
and the creep experiment will require a more complete study,

which is beyond the scope of the present work. In particular,
it should be noted that including spatial variables in the AK
model leads to chaotic solutions, which is in better agreement
with our experiment where the limit cycle period may indeed
vary by a factor of 3 from one recorded data set to another.

V. CONCLUSION

We have shown that the dynamical model of saddle-node
transitions recently proposed to foretell catastrophes is appli-
cable to describe the physics of collective dislocations. The
experimental signal of the plastic deformation of the eutectic
mixture of Sn-Pb subjected to a constant stress presented above
clearly displays the well-known critical slowing-down effect,
with a precursor time of order 1/10 of the relaxation oscillation
period. This observation is shown to agree with the response
to noise of a physical model proposed by Ananthakrishna and
co-workers for describing creeping in ductile materials. This
physical model has three parameters, and therefore it would be
quasi-impossible to make a quantitative comparison between
the experimental data and the theoretical model.

Here we show that the AK model has a range of parameter
values for which the slow-to-fast transition is described by
the dynamical saddle-node model mentioned above, which
contains a time-dependant parameter hidden in the original
AK equation. When adding a small noise to the AK model, we
show that it indeed displays the critical slowing-down scenario.
We derive the expression for the precursor time, i.e., the time
during which the most intense spectral components clearly
shift toward low frequencies, in terms of the three parameter
values. For a given range of the parameter values we found a
precursor time of order one tenth of the relaxation oscillation
period, as observed in the experiment. The important result
is the following: For such systems which display relaxation
oscillations with saddle-node transition, we show that there
exists an intermediate time scale between the slow and fast
regimes, which can be used to foretell catastrophes because this
time scale t0 = (tcreep/tslip)1/3 is much smaller than the slow
time scale tcreep but much larger than the fast one tslip. Unlike
the majority of precursor tools that have focused on single-
time variables, such as the probability distribution or variance,
we have looked at fluctuations of the signal in the frequency
domain, which means we have two-time information. These
spectral precursors are prone to fewer false alarms.

APPENDIX A: SADDLE NODE

1. Local form of van der Pol–like systems

Let us sketch the normal form of van der Pol–like systems
close to the jump in the spirit of Dorodnicyn’s derivation.
Actually we look at the formally more general situation of
relaxation oscillations, namely at solutions of a set of coupled
ODEs with a large parameter of the form

ẋ = ηF (x,y) (A1)

and

ẏ = G(x,y). (A2)

In this set of equations dots are for time derivatives and the
functions F and G are smooth with values of order 1 when
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their argument is also of order one. Moreover, η is a large
parameter. The slow manifold is defined by the condition that,
in the large-η limit, the function F (x,y) must be close to zero
over at least part of the trajectory. The Cartesian equation
F (x,y) = 0 defines a curve in the (x,y) plane which allows us
to find y as a function of x, at least locally. This defines the
equation of motion (along the slow manifold),

ẏ = G(x(y),y),

where x(y) is such that F (x(y),y) = 0. The slow trajectory so
defined stops at “folds” where the function x(y) ceases to be
well defined, namely, for values of (x,y) such that ∂F

∂y
= F,y =

0, F (x,y) = 0, and F,yy being not zero. This defines a discrete
set of points. Near those points, the equation of motion can be
solved by taking δx = x − x0 and δy = y − y0, where (x0,y0)
are the Cartesian coordinates of the point 0 such that

F = F,x = 0. (A3)

Let us look at the solution of the coupled equations (A1) and
(A2) near O = (x0,y0). Equation (A2) is not singular at this
point and so can be solved for small variation of y and for t

small, such as δy = tG0, with t = 0 being the (arbitrary) time
where the trajectory is in O and G(x0,y0) = G0. Consider
now Eq. (A1), and expand its right-hand side for δx and δy

small. Because F,x = 0 at (x0,y0), the first nontrivial term in
the Taylor expansion of F near (x0,y0) with respect to x is
1
2 (F,xx)0δx

2. On the other hand the first term coming from the
expansion with respect to δy is F,yδy = (F,y)0G0t . Therefore,
for t and δx small, the equation for δ̇x derived from (A1) reads

δẋ = η
(

1
2 (F,xx)0δx

2 + (F,y)0G0t
)
, (A4)

One can check that all terms not written explicitly there are
effectively negligible compared to the ones kept. Standard
rescalings allow one to transform Eq. (A4) into the “universal”
equation (8), provided various constraints of sign are satisfied
by the quantities F,xx , F,y , and G all computed at (x0,y0).

2. Explicit solution of the generic equation (8)

Note that the notation x(t) in Sec. III stands for any function
which is locally described by Eq. (8). In our paper x(t) stands
for the elongation rate of the creeping process. The addition
of the quartic term in the potential in Sec. III B is valid for the
case of gradient flow dynamics, and therefore it is formally not
applicable to the cases where the local equation (8) describes
a slow-to-fast transition in a limit cycle. However, since we
are interested in the behavior of the solution before and at
the instant of the jump, we use the gradient flow description
because it allows us to suppress the divergence of Eq. (8) at tc.
The reader should not be confused by the fact that the quartic
potential solution better behaves after tc as the elongation
[�(t) in the experiment and in the AK model], since both the
elongation and the elongation rate reduce to the same generic
equation (8) after appropriate rescaling.

We look at the solution of Eq. (8) transiting from the
“stable” fixed point at “large” negative times to the rolling
down toward positive value of x at positive times. This
solution behaves like x(t) ≈ −√−t at large negative times.
Equation (8) is of the Riccati type and can be integrated by

introducing the function u(t) such that x(t) = − u̇
u

, where u̇ =
du
dt

and u(t) is a solution of Airy’s equation [20] ü + tu = 0.

In terms of the variable u(t) the solution of Eq. (8) relevant
with the boundary conditions is the Airy function Ai(−t),
which can be written as

U (t) = Ai(−t) =
∫ +∞

0
cos

(
u3

3
− ut

)
du.

Yet we have only solved the transient problem near the
saddle-node bifurcation.

a. Close totc

The transition ends when t becomes equal to the first zero
of the Airy function Ai(−t), i.e., the smallest root of the
equation U (t) = 0, a pure number, at about tc ≈ 2.338. This
corresponds to a divergence of x(t) = − u̇

u
, which behaves as

x(t) ≈ 1

tc − t
− tc

3
(tc − t) + · · · (A5)

just before this transition, as derived by expanding U (t) close
to tc.

Therefore the “generic” equation (8) for the dynamical
saddle-node bifurcation displays a finite-time singularity. Let
us elaborate upon the following mathematical subtlety. This
property of the local flow, which results from the folding of
the slow manifold, differs qualitatively from the finite-time
singularity found in the Dieterich-Ruina equations [10], where
it was a property of the flow reduced to the slow manifold which
is everywhere convex, as discussed in Sec. I. In the case of the
dynamical saddle-node bifurcation the singularity requires one
to consider the dynamics both on and off the slow manifold,
and this happens because the geometry forbids the continuation
of an exact trajectory on this folded slow manifold.

b. Variance of x1(t)

To make the developments above more concrete, let us con-
sider delta-correlated (or white) noise, such that 〈ξ (ta)ξ (tb)〉 =
δ(ta − tb).

The pair correlation of x1(t) is given by

〈x1(t)x1(t ′)〉 = 1

U 2(t)U 2(t ′)

∫ inf(t,t ′)

−∞
dt̃U 4(t̃),

where inf(t,t ′) is the smallest of the two real numbers t and t ′.
The behavior of this pair correlation for large negative values
of both t and t ′ is derived from the asymptotic expression

of Airy’s function, Ai(−t) ≈ e
− 2

3 (−t)3/2

2
√

π(−t)1/4 . By setting τ = t̃
t

and F (τ ) = 1 − τ 3/2, the variance of the fluctuations can be
written as

〈
x1(t)2

〉 ≈ (−t)
∫ ∞

1
dτ
τ

e
8
3 (−t)3/2F (τ ).

In the limit (−t) → ∞ the integral is concentrated near
τ = 1 so that

〈x1(t)2〉 ≈ 1
4 (−t)−

1
2 , (A6)

which shows that the variance increases as time goes on.

3. Short time scale

We show that the short time tslip of our model equation
(14) is of order unity, by matching the solution X(T ) of the
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universal equation to the solution of Eq. (A7) below, in the
vicinity of the critical point

tc(a) = a−1/3tc,

where tc ∼ 2.338 is the first zero of the Airy function, as
defined in Appendix A 2. Because X(T ) behaves like 1

tc−T

before it diverges, it follows that the solution x(t) behaves as
≈ 1

a−1/3tc−t
for “large” values of δt = a−1/3tc − t before the

critical time. This becomes of order one when δt becomes also
of order one. When this happens, the term at in Eq. (14) is
negligible, and therefore the solution of this equation, which
can be matched with the solution near the bifurcation, is the
solution of the integrable equation

ẋ = x2 − x3, (A7)

with the asymptotic behavior for very large negative times
x(δt) ∼ − 1

δt
. This equation shows that, in our model, the fast

time scale is of order one, because it has no explicit dependence
with respect to the small parameter a.

APPENDIX B: AK MODEL CLOSE TO THE JUMP

1. Stability of the 3D flow

We consider the linear stability of 3D flow, with special
focus on the first stage described in Sec. IV, which precedes
the fast jump. In the slow regime, under the assumption
of a 3D flow of the form x(t) = x0(t) + δx exp λt [and
similar expressions for y(t) and z(t)] close to the trajectory
x0(t),y0(t),z0(t), the exponents λ are the eigenvalues of the
Jacobian matrix⎛

⎜⎝
(1 − a − 2bx0 − y0)/b (1 − x0)/b 0

2bx0 − y0 −(x0 + 1) a

c/b 0 −c/b

⎞
⎟⎠ , (B1)

or solutions of the equation

λ3 + a2λ
2 + a1λ + a0 = 0, (B2)

with a2 = [c − (1 − a − y0)]/b + 3x0 + 1, a1 = [2x0 + (y0 +
a − 1)/b](x0 + 1 + c/b) + (x0 + 1)c/b − (x0 − 1)(y0 − 2bx0)/
b, and a0 = −c(1 + x0)(2bx0 + y0 + a − 1) − (y0 −
2bx0)(x0 − 1) + a(x − 0 − 1)/b2.

As illustrated in Fig. 10 of our paper [22], one of the
eigenvalues is real and negative all along the trajectory,
while the other two become complex conjugates in the slow
regime, their real part crossing zero before the burst at time
tlyap ∼ tc − 3. The time interval tc − tlyap depends on the values
of the parameters a, b, and c. It is generally a small fraction of
the limit cycle period. Here we find that the numerical value
of tc − tlyap is nearly equal to the intermediate time scale t0 for
the model, derived in the next Appendix.

2. Local form close to B

The coordinates of the critical point B in phase space x,y,z

are solutions of Eqs. (31) and (33). From Eq. (31) we derive
the following expression for x,y = ∂x

∂y
:

x,y = − (x − 1)2

1 − a + bx2 − 2bx
, (B3)

which should be identical to the expression of x,y taken from
the relation (33),

(x,y)B = x2 − 1

3bx2 − (2b + 1 − a)x
. (B4)

These two expressions are identical if xB is a root of the cubic
polynomial equation

x(x − 1)(1 + 2b̃ − 3b̃x) = (x + 1)(1 − 2b̃x + b̃x2), (B5)

where b̃ = b/(1 − a). The positive solution xB and the
corresponding value of yB = [(1 − a)xB − bx2

B ]/(xB − 1) and
zB satisfying Eqs. (31) and (32), respectively, are given at
leading order with respect to the small parameter b̃ by

xB =
√

2 + 1 + 8 + 5
√

2

2

b

1 − a
,

yB = (1 − a)(1 +
√

2) − 8 + 11
√

2

2

b

1 − a
, (B6)

zB = (3 + 2
√

2)(1 − a)

a
− b

10 + 7
√

2

a
,

valid in the parameter range b � (1 − a).
We next derive the normal form describing the dynamical

behavior of the solution close to the critical point. By
assuming that the variable x follows adiabatically the variable
y according to Eq. (31), the original system reduces to

ẏ = F (y,z), ż = c

b
[x(y) − z], (B7)

defining the dynamics for the portion of the trajectory near B,
including the burst B → C. This is confirmed by the numerics:
starting from the point B, with numerical initial conditions
(B6), the behavior of the solutions of Eq. (B7) agree well with
the 3D flow (see Fig. 11 of [22]).

Since we are interested in the description of the solution
before and at the burst, in the intermediate regime where x

remains close to xB , we shall pursue our analysis by canceling
the terms bx2 in (31) and in F , because bxB � 1. This leads
to the system

x = y

y − 1 + a
,

ẏ = F̃ (y,z), (B8)

ż = c

b
[x(y) − z],

where F̃ = −xy − y + az. Close to B and during the burst,
the variable z is essentially constant, due to the small value
of the ratio c/b, whereas the variable y jumps toward smaller
values, as shown in Fig. 12 of Ref. [22]. Therefore at leading
order with respect to the small parameter c/b, the solution of
the second of Eqs. (B7) is given by

z(t) = zB + c

b
(xB − zB)t (B9)

in the vicinity of B. By inserting this local solution (B9) for z(t)
into the system (B8), the exit from the SM is then described
by a single equation for the local variation δy = y − yB of y

of the variable y, which is of the form

δẏ =
∑
n>2

1

n!
(F̃,yn )Bδyn + γ δt, (B10)
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where

γ = (ac/b)(xB − zB), (B11)

and F̃
(n)
B sets for the nth derivative of F̃ with respect to the

variable y, taken at point B [and note that (F,y)B = 0 at the
critical point B]. Using the reduced system (B8), for the first
two derivatives of F̃ with respect to y we write

F̃,y2 = −yx,y2 − 2x,y,
(B12)

F̃,y3 = −yx,y3 − 3x,y2 .

Expanding all expressions close to B at leading order with
respect to the small parameter b, one obtains

(x,y)B = − 2

1 − a
,

(x,y2 )B = − 4
√

2

(1 − a)2
,

(B13)

(F̃,y2 )B = − 4
√

2

1 − a
,

(F̃,y3 )B = 24

(1 − a)2
.

At this stage we can limit the series expansion in Eq. (B10).
A rough approximation for the series to converge is given by
(F̃,y3 )Bδy < 3(F̃,y2 )B . Using expressions (B13) and the first of
Eqs. (B8) gives the range of variation

|δy| <
3√
2

(1 − a), |δx| <
√

2. (B14)

In this range the local form of the AK equations close to B

becomes

δẏ = 1
2 (F̃,y2 )Bδy2 + γ δt, (B15)

or in terms of the variable x(t),

δẋ = (x,y)B
[

1
2 (F̃,y2 )Bδy2 + γ δt

]
, (B16)

which is identical to Eq. (A4). Finally, by setting

T =
[−γ (x,y)2

B(F̃,y2 )B
2

]1/3

δt, (B17)

and X = [
(x,y )B (F̃,y2 )B )2

4γ
]1/3δx, the relation (B16) takes the

generic form (8) without any parameter, recently proposed as
a possible description of a signal before a catastrophe. The
time scale deduced from Eq. (B17) is the intermediate time
scale (15).
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