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The local density of states (LDOS) is a distribution that characterizes the effects of perturbations on quantum
systems. Recently, a semiclassical theory was proposed for the LDOS of chaotic billiards and maps. This theory
predicts that the LDOS is a Breit-Wigner distribution independent of the perturbation strength and also gives a
semiclassical expression for the LDOS width. Here, we test the validity of such an approximation in quantum

maps by varying the degree of chaoticity, the region in phase space where the perturbation is applied, and the
intensity of the perturbation. We show that for highly chaotic maps or strong perturbations the semiclassical
theory of the LDOS is accurate to describe the quantum distribution. Moreover, the width of the LDOS is also
well represented for its semiclassical expression in the case of mixed classical dynamics.
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I. INTRODUCTION

The response of quantum systems to external perturbations
is a problem of paramount importance in many areas of
physics. Many of the properties of complex quantum systems
change dramatically when the system is perturbed, generating
fundamental phenomena such as quantum phase transitions,
irreversibility, or dissipation. The present development of
experimental technics in complex quantum systems makes
the understanding and characterization of the effects of
perturbations highly desirable.

The most likely suitable means to characterize the effects of
perturbations on quantum systems is the local density of states
(LDOS). The LDOS, also called the strength function, was
introduced by Wigner [1] to understand the statistical proper-
ties of the wave functions of complex quantum systems. The
LDOS is the profile of an eigenstate of an unperturbed quantum
system over the eigenbasis of its perturbed version. To be
more specific, let us consider a system with a one-parameter-
dependent Hamiltonian H (k) with eigenfrequencies w; (k) and
eigenstates |v/;(k)). The LDOS of an eigenstate |v; (ko)) (that
we call unperturbed) is given by

pi(@.8k) = Y [0 (01 ko)) 8 — i kko)). (1)
J

with w;;(k,kg) = w;(ko) — w;(k) and 6k = k — ko the pertur-
bation strength. Equation (1) shows that the LDOS is a density
of states in which the § functions are weighed by the overlaps
between perturbed and unperturbed states. In addition, the
LDOS width gives an estimation of how many perturbed states
contribute to an unperturbed one. Furthermore, it is the Fourier
transform of the fidelity amplitude (FA) of the state |v;(ko)),

pi(@,8k) = FL(W; (k)| H O HEM Ry (k)] (2)

Both the FA and its absolute square value, called the Loschmidt
echo, are important measures of sensitivity to perturbations and
irreversibility of quantum evolutions [2-6].

The LDOS has been considered in many contexts. In a
seminal paper, Wigner studied the LDOS in a simple model of
banded random matrices [1]. Subsequently, many authors have
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used the LDOS to characterize the structure of the eigenstates
of different random matrix models [7-9]. The LDOS has also
been studied in several microscopic systems, for example,
in a Ce atom [10], in chaotic billiards [11], or in a system
of a particle that evolves in a smooth Hamiltonian [12]. In
addition, the LDOS has been studied to characterize the effects
of perturbations in the operation of quantum computers in the
presence of static imperfections [13,14]. It was shown that,
depending on the characteristics of the system, the LDOS has
many regimes as a function of the perturbation strength 8k.
However, all the mentioned studies have revealed a region of
perturbation strength in which the LDOS has a Lorentzian
shape, which is usually called the Breit-Wigner distribution.

A step forward was recently made in the understanding
of the LDOS for chaotic systems [15]. Its relation to the FA
has been exploited to develop a semiclassical theory of the
LDOS for locally perturbed billiards or maps, that is, when
the perturbation is concentrated in a small region of the phase
space accessible for the system. It was shown that the LDOS
has a Lorentzian shape under very general perturbations of
arbitrarily high intensity, and a semiclassical expression for
its width was derived. This expression only depends on the
perturbation, while the properties of the system are taken into
account through a uniform measure in phase space. The same
results were obtained in a subsequent publication for maps
that are globally perturbed but the dynamics was assumed to
be completely random [16].

The aim of our study is to test the validity of the
semiclassical theory of Refs. [15,16] in quantum maps when
the perturbation is applied in all the phase space and the
dynamics of the classical map is not completely random. We
also consider perturbations that act in any region of the phase
space. We study the behavior of the LDOS for maps with
different degrees of chaoticity and intensity of the perturbation.
For this purpose we consider two of the most paradigmatic
systems of quantum chaos studies: the perturbed cat map and
the Harper map. We show that the semiclassical approximation
of the width of the LDOS works very well even for systems
with mixed dynamics in which chaos coexists with regular
islands. The prediction of the Lorentzian shape of the LDOS
is fulfilled for highly chaotic maps or when the intensity of the
perturbation is big enough.
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The paper is organized as follows. In Sec. II we introduce
the dynamical systems that we have used for the numerical
study, the cat and the Harper maps, and we describe the main
characteristics of the classical and quantum dynamics of the
maps. Section III is devoted to presenting the semiclassical
theory of the LDOS [15,16]. The starting point of this theory
is a semiclassical approximation of the fidelity amplitude
called dephasing representation [17]. In Sec. IV we study the
behavior of the LDOS for systems in several situations and test
the validity of the semiclassical theory. We consider various
degrees of chaoticity and intensities of the perturbation. We
also compare the cases of local and global perturbations.
Finally, we conclude with a summary of our results and some
final remarks in Sec. V.

II. SYSTEMS: MAPS ON A TORUS

A usual procedure to understand a complex behavior is to
consider very simple systems in which such a phenomenon
is observed. The most simple dynamical systems that develop
all types of complexity are abstract maps. Owing to their sim-
plicity, classical and quantum maps have been very important
in the development of classical and quantum chaos [18-20].
Furthermore, many quantum maps have been implemented
experimentally in previous studies [21-23].

In this paper we have used maps acting on a torus phase
space of area 4 = 1. In particular we have considered the well-
known cat and Harper maps. These maps possess all the
essential ingredients of chaotic and mixed dynamics and are
extremely simple from a numerical point of view.

The cat maps are linear automorphisms of the torus that
exhibit hard chaos. Anosov’s theorem [24] establishes that the
cat maps are structurally stable; that is, the orbits of a slightly
perturbed map are conjugated to those of the unperturbed map
by a homeomorphism. A perturbation of a cat map can be
represented by matrices acting on the coordinates

9| _ ~la 0
|:p/:|—G|:pi|+|:lj|e(q,k) (mod 1), (3)

where G is a 2 x 2 matrix with integer elements chosen such
that Tr (G) > 2 and det(G) = 1 since the maps are hyperbolic
and conservative. We consider a perturbation

€(q,k) = (k/2m)[cos(2mq) — cos(4mq)], 4)

with the perturbation strength k < 0.11 to satisfy the Anosov
theorem [24,25]. To take into account different degrees of
chaoticity, in this paper we have considered the following
matrices G:

2 1 80 6399
Gl:(l 1)’ G2:<1 80)'

The corresponding Lyapunov exponents, which determine the
rate of exponential divergence of classical trajectories, are
A1~ 0.96 and A, =~ 5.07. We note that A is approximately
uniform over the whole phase space and nearly independent
of k [26].

Perturbed cat maps do not capture all the possible motions
of Hamiltonian systems. The most common situation is a
mixture of regular islands interspersed with chaotic regions. To
consider this general situation the model that we have chosen
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FIG. 1. Classical phase space of the Harper map for k = 0.3 (left)
and k = 200 (right). See text for details.

to study is the Harper map in the unit square [27],
g =g —ksin2rp (mod 1),
(mod 1),

, , ) (5)
p =p+ksin2nqg

where k is a parameter that controls the behavior of the system.
This map can be understood as the stroboscopic version of the
flow corresponding to the (kicked) Hamiltonian

1 k
H(p,g.1) = 5~ cos(p) + -~ cos(2q) Z 8(t — nk).

(6)

This is an approximated Hamiltonian for the motion of an
electron in a crystal under the action of an external field.

The Harper map presents a mixed dynamics that depends
on the parameter k. Figure 1 shows some phase-space
drawings for this model as an example of the underlying
classical dynamics. As can be seen in Fig. 1 (left), the system
presents a mixed dynamics with regions of regularity around
the origin and the corners coexisting with chaos, in agreement
with the Kolmogorov-Arnold-Moser theorem [24]. When the
parameter k = 200 the sizes of the islands are so small that it
is not possible to observe them without a finer resolution [see
Fig. 1 (right)].

The quantization on the torus implies that the wave function
should be periodic in both position and momentum represen-
tations. If in the coordinate and momentum representations the
wave function has a period 1 with spacing 1/N, it follows that
1 =2nhN. Then, we have a Hilbert space of N dimensions
for a fixed value of . As N takes increasing values, we
reach the semiclassical limit. The position basis {g;} fV: jl (with
g; = i/N) and momentum basis {p,-}lNz_l1 (with p; =i/N) are
related by the discrete Fourier transform. In this setting a quan-
tum map is simply a unitary U acting on an N-dimensional
Hilbert space, and evolution after n steps is given by U".

There is no general method for map quantization. For the
perturbed cat map we have considered the quantization based
on the classical propagator of Refs. [18,25]. In this case, the
matrix elements of the propagator in the position basis are

N inN /
Uf(q'.q) = | — exp (8119° —24'q + 829")
1812 812

ikN| . 1.
X exp {g[sm(hq) —3 s1n(47rq)] } @)
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where g; ; are the elements of the matrix G and we have used
g =1

For the Harper map [27], the matrix elements of the
evolution operator in the mixed basis of position and momenta
are

UI!-I (C],P) — efiNk cos(27rq)efiNk cos(2np). (8)

III. SEMICLASSICAL THEORY OF THE LDOS OF
CHAOTIC MAPS

The LDOS as defined in Eq. (1) depends on the charac-
teristics of the state |v;(ko)). To avoid any dependence on
some particular characteristics of this state, an average over
unperturbed states is performed. Owing to the finite number
of states in quantum maps, we average over the entire Hilbert
space. Thus, the averaged LDOS p(w,dk) is

1 N
P(0,88) = =3 pi(w,8K). ©)
i=1

The inverse Fourier transform of Eq. (9), the so-called
average fidelity amplitude (AFA), is the starting point of the
semiclassical approximation of the LDOS,

0(1,5k) = %Z<wf(ko>|e"H<k>f/he—fH°<k°”/h|w,-<ko>>. (10)

1

To evaluate Eq. (10) we have used the so-called dephasing
representation, a semiclassical formulation for fidelity ampli-
tude which avoids the usual trajectory-search problem of the
standard semiclassics [17]. One of the forms of the FA obtained
using the dephasing representation is

0,(t,6k) = / Wy(q,ple ' 25@r®hagdp,  (11)

where AS,(q,p,8k) is the action difference evaluated along
the unperturbed orbit starting at (g, p) that evolves at a time
t, and Wy (g, p) is the Wigner function of the initial state |¢).
Then,

0(1,8k) = / W(q,ple ' 25@r0Mhggdp, (12)

where W(g,p) = (1/N)>_ W;(g, p), with W;(g, p) being the
Wigner function of |y;(ko)). For chaotic systems, the mean
value of the Wigner function for a base of eigenstates
is approximately a uniform distribution so W(g,p) =1/V,
where V is the volume of the phase space. Therefore,

0(1‘,5/{) — V / e*lAS[(‘I*P,(Sk)/hdqdp- (13)

Time is discrete in maps, so from now on we use the integer
n to count time steps and V is the area of the phase space that
in our case is equal to unity.

In order to solve Eq. (13) for maps we need to assume
that trajectories become uncorrelated between two successive
hits in the perturbed region. This approximation is valid when
the perturbation acts on an infinitesimal portion of the phase
space [15,28,29] or if the unperturbed dynamics of the system
is completely random [16].

Here we have considered the second case, the A — o0
limit, by assuming that the dynamics is purely random. This
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evolution is completely stochastic in the sense that there is
no correlation for the different times of the evolution. Then,
to compute O(n,8k), we have divided the phase space into
N, cells. The probability to jump from one cell to any other
in phase space is uniform. Therefore, it is straightforward to
show that the mean FA results in

W = Z A Z e[—i(ASjl+.-.+Asjn)/h]
Ji Jn
n

=D eTasm (14)
J

where AS;, is the action difference evaluated in cell j at
time p. The continuous limit is approached when N, — oo,
resulting in

O(n,ak) — </ e—iAS(q~P,5k)/hdqdp> , (15)
where AS(q,p,8k) is the action difference after one step of
the map.

The exponential decay of Eq. (15) can be rewritten as
m — eanJriwn’ (16)
with
r= —ln< / e"AS@LP*‘k)/hdqdpD. (17)
and
¢ = arg ( / eiAS(qu)/hdqdp) . (18)

We note that I and ¢ depend on the perturbation strength k.
Now, we obtain the semiclassical expression for the average
LDOS by the inverse Fourier transform of Eq. (16),

r
ml(@— @) + T2
The phase ¢ determines the location of the center of the
Lorentzian function and I" its width.
Finally, we have to take into account the fact that the
spectrum of a map is periodic because of a compact phase

space. This periodicity changes the form of the LDOS into a
periodized Lorentzian function:

pse(@,8k) = L'P(w,T,¢)

pse(@,8k) = F L (0,T,¢) =

(01 (19)

= r
= - . (20)
j;oo ml(@— ¢ —2mj)* + ']

The same semiclassical expressions for the LDOS were
obtained in Refs. [15,28] when the perturbation acts in a region
of the phase space of area « — 0.

A magnitude that has physical interest is the width o of the
LDOS, which is a measure of the number of perturbed states
that are needed to describe an unperturbed one. Therefore,
this quantity offers clear information about the effect of
perturbations on a quantum system. Moreover, the width of
the LDOS determines, for some regime of the perturbation,
the rate of fidelity decay under imperfect motion reversal (the
Loschmidt echo). There are different ways of determining
this width of a distribution. In our case we take the distance
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FIG. 2. (Color online) Width o vs. I for a periodized Lorentzian
function [Eq. (20)]. The limit of o for ' — oo which corresponds to
a constant LDOS is plotted with a red dotted line.

about the average value of the LDOS that contains 70% of the
probability. That is,

(w)+0o
f p(w,8k)dw = 0.7, 1)
(w)—0o
where
(@) = / wp(w,8k)dw. (22)

We show in Fig. 2 the relation between its width o and T’
for the periodized Lorentzian function of Eq. (20).

IV. RESULTS

The main interest of a semiclassical theory is to describe
quantum-mechanical quantities using classical information. In
this section we show the behavior of the LDOS for the quantum
maps presented before and test the validity of the semiclassical
approximation of the LDOS described in the previous section.
The aim in this section is to compare the approximated pg. and
o with the corresponding exact quantum values. The latter
are numerically computed by diagonalization of the evolution
operators of Egs. (7) and (8).

The semiclassical approximation of the LDOS is com-
pletely determined by I' and ¢ that are obtained with
the calculation of the integral of Eq. (15). To avoid
the dependence of the results with the dimension of
the Hilbert space N, we have considered all the stud-
ied quantities as a function of the scaled strength of the
perturbation,

x = (k — ko)/(2rwh) = 8kN. (23)
In all the calculations included in this section the number of

states of the Hilbert space is set as N = 2000.

A. Perturbed cat map

The action difference for one iteration of the perturbed cat
map described in Sec. II is given by

AS(q,p,6k) = (487kz> |:sin(2nq) — % sin(4nq)i|. 24)
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FIG. 3. (Color online) I and the phase ¢ as a function of the
scaled perturbation y for the perturbed cat map.

Using Eqgs. (24), (17), and (18) we compute I" and ¢. In Fig. 3
we plot I and ¢ for the perturbed cat map as a function of the
scaled perturbation strength x . We can see that for perturbation
of Eq. (4), ¢ has only two possible values either O or 7.

We first compare the semiclassical approximation of the
width of the LDOS with the corresponding quantum value. For
this reason the width of the LDOS has been computed for the
cat map using ko = 0.01 to avoid all the arithmetic peculiarities
of the cat map (k = 0), which account for the nongeneric
spectral statistics [30]. In Fig. 4 the width of the LDOS is
shown for the cat maps with G| and G,. The semiclassical
approximation oy, plotted as a solid line, works extremely
well for both cat maps in the whole range of considered
perturbations.

The width of the LDOS o for the cat maps has two clearly
different regimes (Fig. 4). For small perturbation strength
when x < 10 it presents a quadratic behavior that is usually
called the Fermi golden rule (FGR) regime. Conversely for
greater strength the width is an oscillating function. In order to
understand the behavior of oy when y — o0 we have used the

2.5

2

30 60 90 120 150

FIG. 4. (Color online) Width o of the LDOS as a function of the
scaled perturbation strength x = (k — ko) N for the cat map with G,
(o) and G, (x). The red solid line is the semiclassical approximation
of o. The number of states of the Hilbert space is N = 2000 and
ko = 0.01. We indicate with arrows the perturbation strength of the
LDOS displayed in Fig. 5.
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FIG. 5. (Color online) LDOS p (points) and its semiclassical
approximation (solid line). (a) Cat map of Eq. (3) with G = G,
for a scaled perturbation strength x = 159.6 (main plot), x = 14.4
(left inset), and x = 18.0 (right inset). (b) Cat map of Eq. (3) with
G = G, for x = 159.6, x = 14.4 (left inset), and x = 18.0 (right
inset).

stationary phase approximation method to solve the integral
Eq. (13), obtaining

I - —In[1/x]

therefore, the width oy, — 0.77, which corresponds to a
uniform distribution.

Atthis point we would like to see how well the semiclassical
approximation of the LDOS can describe the complete
distribution. We have therefore computed the quantum LDOS
for several values of perturbation strength for the cat maps
G, and G,. In Fig. 5 we compare the LDOS with its
semiclassical approximation for perturbations indicated in
Fig. 4 with arrows. Figure 5(a) corresponds to the most
chaotic case, G,. In the main plot, x = 159.6; in the left
inset, x = 14.4; and in the right inset, y = 18. We can see
that the semiclassical approximation works very well for all
the perturbations; that is, the LDOS is a periodized Lorentzian
function independent of the perturbation strength. Left and
right insets correspond to approximately the same width of
the distribution but in the left figure ¢ = 0 and ¢ = 7 for the
right, so in this case the periodized Lorentzian is centered in
o = m. As can be seen in Fig. 3, near y = 15, the phase ¢
has a discontinuity and jumps from O to 7; for this reason
the center of the LDOS changes from w =0 to w = .
Similar behavior occurs in the other discontinuities of ¢ near
Xx ~ 50 and 70.

In Fig. 5(b) the results for the cat map with the matrix
G, are shown. In the main figure panel, we show that for
big perturbation strength after the quadratic regime (x =
159.6) the LDOS is well described by the semiclassical
Lorentzian distribution. Conversely for smaller perturbation
strength the LDOS does not show Lorentzian behavior [see
inset of Fig. 5(b)]. To understand this behavior we show

for x — oo;
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FIG. 6. (Color online) Mean value of the amplitude fidelity O(n)
for the cat map with G (o) and G, (x) with perturbation strength
x = 14.4. The exponential decay given by exp(—I"n) is plotted with
a solid blue line. We also plot with a dotted red line the exponential
decay given by exp(—An/2), with A the Lyapunov exponent for the
cat map with G.

in Fig. 6 the mean value of the fidelity amplitude O(n)
for x = 14.4 of both cat maps with G; (o) and G, (x),
which corresponds to the inverse Fourier transform of the
LDOS plotted in the left inset of Figs. 5(a) and 5(b). We
see that in the case in which the LDOS is not a periodized
Lorentzian function the corresponding O(n) has a big revival
(at n = 4). This kind of behavior, known as survival collapse,
after which the largest revivals appear, was observed in a spin
chain [31] and can be the cause for non-Markovian quantum
evolutions [32].

We test now the validity of the semiclassical approximation
of the LDOS for local perturbation. For this reason the
perturbation is applied in a ¢ strip from g = 0.25to g; = 0.46
so the area of the perturbed regioniso¢ = AgAp = q; — g0 =
0.21. In Fig. 7 we show I and ¢ as a function of the scaled
perturbation strength & computed using Eqs. (17) and (18).
We can see that for this local perturbation ¢ is an oscillating

0 30 60 90 120 150

FIG. 7. (Color online) I' and the phase ¢ as a function of the
scaled perturbation x for the cat map when the perturbation is applied
in a g strip from gy = 0.25 to g; = 0.46. The mean value of the
quantum LDOS is also plotted ([J).
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FIG. 8. (Color online) LDOS p for local perturbations. The cat
map with G, is perturbed from gy = 0.25 to g; = 0.46. The scaled
perturbation strength is x = 8 (A)and x = 28 (1J). The semiclassical
approximation of the LDOS is plotted with a red solid line. Inset:
Width o of the LDOS as a function of the scaled perturbation
strength x (o) and, plotted with a red solid line, the semiclassical
approximation.

function so the semiclassical approximation of the LDOS is a
periodized Lorentzian function with an oscillating mean value.
In Fig. 7 (top) the mean value of the exact LDOS is also plotted
(O), showing that the semiclassical ¢ describe very well this
quantity.

The LDOS is also very well approximated by the semi-
classical LDOS for all the perturbation strengths that we have
studied. In Fig. 8 we show the LDOS for x = 8 when the
width grows quadratically (FGR regime) and for y = 28 when
the width shows an oscillating behavior. The semiclassical
approximation is plotted with a solid line. In the inset of Fig. 8
we show the width of the LDOS for this local perturbation and
its semiclassical approximation. We can clearly see that the o
works very well for local perturbations. It is noteworthy that
all the calculations for local perturbations were done using the
map G, showing that when the perturbation is applied in a
small region of the phase space, a lesser degree of chaoticity
is needed for the semiclassical LDOS to be accurate.

B. Harper map

We have studied the LDOS of the Harper map using the
evolution operator of Eq. (8) with k = ko + §k. The parameter
8k is the perturbation strength and, as we used for the cat map,
the scaled perturbation strength is x = 6kN. In this case the
action difference for one iteration of the Harper map is given
by

8
AS(q,p.8k) = (%) [cos(2mp) + cosRmg)].  (25)

where ¢’ is given by Eq. (5).

We have considered as an unperturbed system the cases
with ky = 0.30 [mixed dynamics, Fig. 1 (left)] and ko = 200
[chaotic dynamics, Fig. 1 (right)]. Using Eqgs. (17), (18), and
(20), we compute I', ¢, and the corresponding semiclassical
approximation of the LDOS. In Fig. 9 we show I' as a
function of the scaled perturbation strength x. For the action
difference of the Harper map [Eq. (25)] we have obtained
o =0.
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FIG. 9. (Color online) I' as a function of the scaled perturbation
strength x for the Harper map.

In Fig. 10 we show the width of the LDOS for the Harper
map and the corresponding semiclassical approximation.
When the dynamics of the Harper map is completely chaotic,
the semiclassical oy, works well as expected. Surprisingly,
the semiclassical approximation works reasonably well even
for mixed dynamics. This agreement is more noticeable for
bigger x. The explanation of this unexpected behavior is as
follows. Equation (15) is exact for one time step (n = 1),
and if the perturbation strength is big enough the fidelity
amplitude decays in this short time. Therefore, this short
time decay gives the width of the Fourier transform, which is
the LDOS.

In Fig. 11 we show the LDOS for the Harper map. Although
the semiclassical width of the LDOS o works well for mixed
dynamics, the complete distribution is not well reproduced by
aperiodized Lorentzian distribution. This is shown in the inset
of Fig. 11(b) for the Harper map withky = 0.3 and x = 1.7. If
the perturbation strength is bigger [Fig. 11 (a), main plot] the
semiclassical theory works reasonably well but the quantum
LDOS is a more fluctuating function than the chaotic case [see
Fig. 11(a)]. As expected, the semiclassical theory works well
for the case of ky = 200 in which the Harper map is fully
chaotic [Fig. 11(a)].

2.5

| ]

1.5 - 1

07‘ PR P - P
0 5 10 15 20

X

FIG. 10. (Color online) Width o of the LDOS as a function of
the scaled perturbation strength x for the Harper map with ko = 0.3
(o) and ko = 200 (x). The semiclassical approximation oy is plotted
with a red line. We indicate with arrows the perturbation strengths of
the LDOS displayed in Fig. 11.
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FIG. 11. (Color online) p (points) and its semiclassical approxi-
mation pg. (solid line) for the Harper map. (a) ky = 200. In the main
plot x = 17 and in the inset x = 1.8. In both plots it is seen that the
semiclassical LDOS describes the full quantum result. (b) ko = 0.3
(mixed dynamics). In the main plot x = 17 and in the inset y = 1.8.

V. CONCLUSIONS

The reaction of a system to perturbations is a fundamental
problem in quantum mechanics. In this paper we have made
a detailed analysis of the response to perturbations of the
simplest quantum systems, which can have complex classical
dynamics. For this reason, we have studied the LDOS in the
perturbed cat map, a completely chaotic system, and the Harper
map, which has mixed dynamics. Our fundamental goal was
to discuss the validity of a semiclassical theory of LDOS that
was recently developed [15,16]. This theory is based on the
relation of the LDOS with the fidelity amplitude, a measure
of irreversibility and sensitivity to perturbations of quantum
systems. Furthermore, it uses the dephasing representation
of the fidelity amplitude, a semiclassical formulation that
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avoids the usual problems of semiclassical theories. The main
assumption of the semiclassical theory of LDOS is that the
trajectories get uncorrelated after one step of the map. This
condition is fulfilled if the dynamics is completely random or
when the perturbation is applied in an infinitesimal region of
the phase space. Owing to the fact that these conditions are not
achieved in dynamical system, we tested the validity of such a
semiclassical theory of the LDOS.

We have analyzed various situations involving local and
global perturbations and also we have varied the degree of
chaoticity. We show that the LDOS is very well described by
its semiclassical expression when the map is highly chaotic,
either if the perturbation is localized in phase space or when
the perturbation strength is big enough. We remark that in
these cases the semiclassical LDOS completely reproduces
the quantum version without any fitting parameters. We have
studied the case of mixed dynamics and surprisingly enough
our results show that the semiclassical width of the LDOS
describes the full quantum version even in this case.

We would like to highlight that our results could be of
importance in the study of the LDOS of billiards. Indeed,
the behavior of a billiard system has many resemblances
to maps. For example, the classical dynamics of a billiard
can be described by a map on the boundary. Quantum
billiards are realistic systems that can be constructed in
several experimental setups. In fact, there are cavities of
microwaves, and acoustic or optical waves. The semiclassical
approximation of the width of the LDOS has been successfully
applied in a billiard that has been perturbed both locally [29,33]
and globally [15]. However, in these works the behavior of the
whole distribution was not properly discussed. Further insight
on the LDOS of this systems will be part of future studies.
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