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Estimating network topology by the mean first-passage time
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In this work, we employed the concept of the first-passage time in stochastic processes to estimate node degrees
and the degree distribution of a network. A statistical exploration of the coupling reveals the relation between
the node degree and the coupling term. In practical terms, an effective way to reveal the statistical property is
to investigate the differences between coupled oscillators in a network and uncoupled ones with the same initial
states. We discovered a monotonically decreasing relation between the node degree and the mean first-passage
time (MFPT) for the evolution of the coupled node deviating from the uncoupled one. Moreover, this relation
can be understood as the competition of different relaxational time scales. The MFPT method is independent of
both the dynamics of the nodes and the topological properties of the network. This might be advantageous in our
efforts to build a bridge between the topological property and the dynamics of a network.
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I. INTRODUCTION

The studies of complex networks began with the explo-
rations of small-world [1] and scale-free [2] networks at the
end of the 1990s, and they have continued for more than a
decade since then. Many systems can be considered as net-
works, including the World Wide Web, transportation systems,
telephone networks, and so on. These types of networks can be
designed manually and manipulated. The dominant studies on
these networks have been focused on the statistical properties
of the given networks or the effects of topologies on the
network dynamics, especially synchronization. On the other
hand, many natural networks are generated in a self-organized
manner, including gene networks, climate networks, neural
networks, ecological networks, etc. [3–5]. The exploration of
the topological properties of these networks is a significant
aspect of understanding the complexity and organization
processes of networks. Revealing the topology of networks
may help us to learn the relationship between these topologies
and their functioning.

As an important inverse problem, estimating the topologies
of networks through time series has become a hot topic in
recent years. Many methods have been proposed for estimating
network topologies [6–11]. Most of these methods have
focused on identifying the existence and distributions of links
in a network, or evaluating the strength of some of these links.
These methods usually require a very long computational time,
which is proportional to N2, where N is the number of nodes
in a network. When the size of a network N is very large,
all of these previously proposed methods are inappropriate in
practice. In fact, for a very large network, it is not necessary
to estimate the complete information of the topology in many
circumstances. Several studies have been performed based on
this consideration. Bu et al. [12] employed the return map to
estimate the degree distributions in networks. The return map
approach requires no explicit knowledge of dynamics, which is
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adaptive to many chaotic systems; the only requirement is that
the network should be sparse. However, theoretical support is
still lacking for this approach. Shen et al. [13] also developed
a method to estimate the degree distributions of a network
of coupled neurons. The amplitude of the action potential
was employed. The amplitude method is explained in a local
mean-field way. However, this method is only applicable to
some neuron models in burst synchronization states. Liang
et al. [14] proposed a method that can predict many statistical
characteristics of a network with specific dynamics just by
adding a weak signal on one node in the network. The
basic idea behind these methods is to find an appropriate
quantity that has a monotonic relation with one aspect (i.e.,
the degree) of the network, and to use this parameter to
uncover the value or the distribution of the character in the
network.

In fact, looking for an appropriate dynamical index that is
universally connected to topological properties of networks is
still a challenging and open issue. This challenge is at the heart
of the dynamical identification of network topology. In this
paper, we propose a method for finding a parameter to estimate
the relative values of degrees in a network. This approach
borrows an important concept in stochastic process [15], i.e.,
the mean first-passage time (MFPT), which is defined here
as the time that the dynamical state of the network evolution
deviates from the isolated auxiliary system to a threshold. It
is found that a good relation can be established between the
node degree and the MFPT. Our statistical analysis establishes
a universal correspondence between the coupling term and
the degree, which is independent of the specific form of node
dynamics and the form of the output function. The MFPT
gives the time scale describing the deviation of the coupled
state from the isolated state. Further theoretical investigations
indicate that the MFPT is closely related to the maximum
Lyapunov exponent that labels the node degree. Therefore, the
theoretical relation we obtain implies a competition between
different time scales. Our theoretical results agree well with
numerical simulations.
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II. THEORETICAL ANALYSIS

A. Statistical analysis: The coupling term

The dynamics of a network composed of N identical
oscillators can be written as follows:

ẋi = F(xi) − s

N∑
j=1

Lij H(xj ), i = 1,2, . . . ,N, (1)

where xi = (xi1,xi2, . . . ,xim)T ∈ Rm is the m-dimensional
state vector of the ith oscillator. The function F, which
governs the dynamics of isolated oscillators, is a vector field
Rm → Rm, and H is an output function of every oscillator.
s is the global coupling strength. The Laplacian matrix
L = (Lij )N×N describes the network topology. Lij = −1 if
node j is connected to node i; otherwise, Lij = 0, and the
diagonal element Lii = −∑N

j=1,j �=i Lij . The value of Lii ,
which corresponds to the input degree ki of the ith node, is
exactly what is to be estimated in this paper.

The dynamics described by Eq. (1) has been investigated
extensively in recent years [8,16–18]. In this system, the
interactions among nodes are identical, and the couplings
among nodes are negative feedback. Due to these properties,
if there exists global synchronization among nodes, i.e., {xj =
x1 | j = 2,3, . . . ,N}, the coupling term

∑N
j=1 Lij H(xj ) = 0,

implying that the information about the topology of the
network is lost. Therefore, synchronization is an obstacle in
detecting network topology [19]. The value of the coupling
strength s is chosen from the weak region where synchroniza-
tion is unstable.

It is important to investigate the statistical properties of the
coupling terms in Eq. (1), since this may give us clues that will
help us to understand the topological features of the network.
Before the statistical analysis of the coupling term, let us first
introduce some results in probability theory. Assume that two
independent stochastic time series x(t) and y(t) possess the
same statistical distribution P (E,σ ), where E and σ are the
expectation and the standard deviation of the distribution,
respectively. Then the linear statistical distribution of the
combination of x(t) and y(t) obeys

ax(t) + by(t) ∼ P [(a + b)E,
√

a2 + b2σ ], (2)

where a,b ∈ �. Specifically, when b = 0, we obtain

ax(t) ∼ P (aE,|a|σ ). (3)

The coupling term provides a significant measure integrat-
ing the information of connectivity. Our work starts with an
analysis of the coupling term by separating the diagonal term
from the coupling part of the equations of motion, i.e.,

N∑
j=1

Lij H(xj ) = LiiH(xi) +
N∑

j=1,j �=i

Lij H(xj ). (4)

The ith diagonal element of the adjacent matrix is associated
with the degree (in-degree) of the ith node, i.e., Lii = ki .
Equation (4) indicates that one could consider the linking
information in the coupling term by separately estimating the
contributions of the diagonal and off-diagonal parts given by
the two terms on the right-hand side in Eq. (4). Assume that

the output time series have the same probability distribution,

H(xi) ∼ Pc(E,σ ), i = 1,2, . . . ,N. (5)

The m-dimensional vectors E and σ are the long-time or en-
semble average and the standard deviation of the distribution,
respectively. For the first term, according to the relation (3)
and noticing that Lii = ki , we obtain

LiiH(xi) ∼ Pc(kiE,kiσ ). (6)

For the off-diagonal term on the right-hand side of Eq. (4),
we wish to apply the relation (2) to discuss its statistical
property. Suppose that the terms H(xj ) for different j in the
summation of the second term are independent of each other.
According to the relation (2), we obtain the distribution of the
second term of Eq. (4) as

N∑
j=1,j �=i

Lij H(xj ) ∼ Pc(−kiE,
√

kiσ ). (7)

According to relations (2), (6), and (7), we obtain the
distribution of the coupling term,

N∑
j=1

Lij H(xj ) ∼ Pc

(
0,

√
k2
i + kiσ

)
. (8)

The above results are obtained on the basis of the statistical
independence of output time series H(xj ). However, H(xj )
for different j are not strictly independent of each other as
long as the coupling strength s �= 0. Let us take the one-
dimensional situation as an example. Denote the correlation
σij = 〈[H (xi) − 〈H (xi)〉][H (xj ) − 〈H (xj )〉]〉. According to
the relation (5) in one dimension, we have

N∑
j=1,j �=i

LijH (xj ) ∼ Pc

(
− kiE,σ

√
ki +

∑̂
LijLil

σjl

σ 2

)
,

(9)

where
∑̂

means
∑N

j,l=1;j,l �=i;j �=l .
1 There are ki(ki − 1) nonzero

terms in the
∑̂

. We find that the correlation coefficients
{σjl/σ

2|j,l = 1,2, . . . ,N} obey Gaussian distribution, with
zero expectation and small standard deviation (<0.1) in the
weak-coupling condition. This has been proven in numerical
simulations for different cases, such as different kinds of
oscillators, output functions, and topologies of networks. This
symmetry property of the distribution guarantees that the
term

∑̂
is small for large degree, and the small standard

deviation guarantees that the term
∑̂

is small for small degree.
Therefore, the contribution of the correlations to the deviation
in (9) can be neglected, and the relations (7) and (8) still hold
approximately in the weak-coupling condition.

1[In the one-dimensional condition, the contribution of the correla-
tion between output time series to the coupling terms can be worked
out: 〈[

∑N

j=1,j �=i LijH (xj ) − 〈∑N

j=1,j �=i LijH (xj )〉]2〉 = ∑N

j=1,j �=i

〈[LijH (xj )]2〉 − ∑N

j=1,j �=i L
2
ij 〈H (xj )〉2 + ∑̂

LijLil〈H (xj )H (xl)〉 −∑̂
LijLil〈H (xj )〉〈H (xl)〉=

∑N

j=1,j �=i L
2
ij σ

2 + ∑̂
LijLilσjl = σ 2(ki +∑̂

LijLil
σjl

σ 2 ).]
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(a)
(b)

FIG. 1. (Color online) (a) The topology of a 10-node network.
The largest degree of nodes is 8 (i = 1). Five nodes labeled by
i = 3, 4, 5, 6, and 7 have the same degree ki = 2, and four of
these five, i = 3, 4, 5 and 6, are topologically symmetric. (b) E

(open square) and σ (filled circle) are the first components of the
expectation and the standard deviation of normalized coupling terms
(k2

i + ki)−1/2
∑N

j=1 Lij H(xj ). The error bars come from the samples
with different initial conditions. The deviations σ are almost the same,
independent of the degrees of nodes. The expectations E are close
to 0 (the solid line). All these results agree well with our analytical
prediction (8). s = 0.01.

The relation (8) indicates that the statistical distribution
of the coupling fluctuation is a zero-mean distribution with
a variance related to the node degree. For different nodes,
the fluctuation due to the coupling obeys the same statistical
distribution. The nodes with the same degree possess the same
distribution, and nodes with different degrees have different
widths of the distribution. Therefore, we have established a
correspondence between the coupling term and the degrees
of the nodes. The standard deviation for different nodes
corresponds to the diffusion coefficient. This relation is
universal. It is independent of the specific form of the node
dynamics F and the form of the output function H.

Now let us perform numerical simulations to test the
validity of the relation (8). Consider a network with the
topology given in Fig. 1(a) and node dynamics described
by chaotic Lorenz oscillators:

F1(x) = 10(x2 − x1),

F2(x) = 28x1 − x1x3 − x2, (10)

F3(x) = x1x2 − 8
3x3.

The output function H(x) is assumed to be linear:

H(x) = (x1; 0; 0). (11)

In numerical simulations, the fourth-order Runge-Kutta al-
gorithm is employed with the time step size δt = 0.01. In
Fig. 1(b), it can be found that E ≈ 0, and the standard
deviation σ ’s are the same for all nodes, verifying the validity
of our analytical prediction (8). In this system, when s >

0.16, partial synchronization becomes stable according to the
master-stability function [20]. And when s < 0.1, the standard
deviation of correlation coefficients σij /σ

2 is less than 0.1.

B. Statistical analysis: The first-passage time approach

A pertinent problem in building the bridge between the
coupling effect and the degree of nodes is how to extract this
information in practice. The above discussions focus on the
analysis of coupling terms. However, it is much easier to get

the time series xi(t) than the coupling term
∑N

j=1 cij H(xj )
in practice. A natural idea in utilizing the information of the
time series is to set isolated reference nodes, whose dynamics
are the same as those in the network, and make a comparison
of the dynamics between the coupled and isolated cases. Let
us set N auxiliary isolated oscillators yi(t),i = 1,2, . . . ,N ,
governed by

ẏi = F(yi), (12)

which are identical to the ones in the network when the global
coupling strength s = 0. Let these uncoupled oscillators evolve
from the same initial states as those in the network. Obviously
the evolution of the isolated node yi(t) will deviate from the
orbit given by the coupled node xi(t). One can thus introduce
the difference between these two states,

ei(t) = ‖yi(t) − xi(t)‖, (13)

to measure the deviation of the time series yi(t) from xi(t). Due
to the chaotic motion and asynchronous property of the system,
the evolution of the coupling term exhibits a stochastic-like
behavior. Moreover, the bigger the standard deviation of the
coupling term (corresponding to the diffusion rate), the faster
e(t) grows. Statistically, an important quantity, i.e., the first-
passage time (FPT), can be introduced to measure the growth
rate of e(t). It is interesting to reveal the relationship between
the FPT and the degree indirectly. According to the definition
of the FPT in [15], we can define it here as the time at which
the time series e(t) passes a given threshold θ for the first
time. Obviously the FPT is also a stochastic quantity, and
then the MFPT T1 can be computed by averaging the FPTs
obtained from an ensemble of different initial states {x(t i0) |
i = 1,2, . . . }. Assume the MFPT is related to the degree by
satisfying the following function:

T1 = G(s ′k), (14)

where s ′ is a scaling coefficient. Is the function G monotonic?
What is the form of the function G? These questions are
important issues in this paper. If G is monotonic, the relative
value of the degrees can be established. Furthermore, if the
form of G can be determined, we can make a transformation
T ′

1 = G−1(T1) = s ′k ∝ k. The distributions of T ′
1 and k are the

same [12,13], therefore the parameter s ′ is irrelevant.
In the following, we first choose a small network with 10

nodes [the topology is shown in Fig. 1(a)] and concentrate
on building a correspondence between the MFPT (dynamical
properties) and the degree (topological feature). The results
obtained in a small network can be naturally generalized to
large networks with large numbers of nodes (e.g., N = 1000).

III. NUMERICAL RESULTS

A. Topology identification of a small network

The topology of the network given by Fig. 1(a) is interesting
because there are various kinds of nodes in the network, such
as nodes with different degrees, and topologically symmetric
and asymmetric nodes with the same degree. Therefore, the
dependence of T1 on the degree of nodes that are topologically
symmetric can be well examined. Denote the probability
distribution of FPT by Pt . In Fig. 2(a), the FPT distribution Pt
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FIG. 2. (Color online) The probability distribution of the first-
passage time for different nodes in the 10-node network. (a) The
distribution Pt for four nodes with different k1 = 8, k2 = 5, k3 = 2,
and k8 = 1. The solid lines label the average values of FPT, T1. (b)
The distribution Pt for five nodes with the same degree k = 2. It can
be observed that these five curves coincide with each other.

for different nodes is plotted. It can be found that the MFPT
T1 (labeled as the position of the average value) for nodes with
different degrees is obviously different. Moreover, for nodes
with larger degrees, the position of the distribution peak shifts
to the left, implying that the MFPT decreases monotonically
upon increasing the degree.

In Fig. 2(b), the FPT distribution Pt for nodes i = 3, 4, 5,
6, and 7 is given. These five nodes possess the same degree
k = 2 but different topological symmetries. It can be clearly
found that all Pt ’s coincide with each other, indicating that the
FPT distribution for nodes with the same degree is the same.
Therefore, the MFPT T1 only depends on the degrees of the
nodes, and it is independent of the topological symmetry in a
network.

Another critical problem is the effect of the threshold θ on
the MFPT T1. Surely MFPT T1 will be shorter for a smaller
threshold θ . It is important in practical analysis to choose
an appropriate value of the threshold. In Fig. 3, we plot the
dependence of the MFPT T1 on the values of the threshold
θ for nodes with different degrees. It can be observed that
the curve T1 ∼ θ is smooth. It can also be found that T1 is

FIG. 3. (Color online) The MFPT against the threshold θ . An
approximately logarithmic relation can be found, i.e., T1 ∝ ln(θ ).
k = 1 (square), 2 (ball), 5 (up-triangle), and 8 (down-triangle). The
relation between T1 and k is not affected for different values of θ in
a large range.

approximately proportional to ln θ , and the T1 intervals among
curves at different θ ’s are almost the same. This implies that
one can choose the value of the threshold in a wide range. For
the network we are discussing here, we can choose the value
of θ ∈ (0.5,10). In our discussions below, we take θ = 1.5 for
Lorenz node dynamics.

B. Topology identification of large networks

It is significant to apply the above MFPT method to large
networks. Let us consider a BA network [2] composed of 1000
nodes with degrees ranging from kmin = 3 to kmax = 115, and
the average degree 〈k〉 = 6. We use the label BA1000 in the
following discussions. We still adopt the node dynamics as
the Lorenz oscillators governed by Eqs. (10) and (11). The
dependence of the MFPT T1 on the degree k is shown in
Fig. 4(a) for two different coupling strengths, s = 0.001 and
0.002. It can be found that a linear relation is established
between T1 and ln k. Moreover, these two lines are parallel
to each other. Therefore, one can replace ln k by ln sk to
normalize two lines. As shown in Fig. 4(b), the two lines are
overlapped with the same slope. This supports our analysis in
Eq. (8). Figure 4 reveals that T1 = a ln(sk) + b = a ln(s ′k) =
G(s ′k). Let T ′

1 = G−1(T1) = eT1/a = s ′k ∝ k. In Fig. 4(c),
we plot the distribution of T ′

1. To make a comparison, the
degree distribution P (k) is also given. It can be found that the
distribution of T ′

1 coincides well with the degree distribution
for the BA1000 network. Therefore, the MFPT approach is
efficient in estimating the degree distribution.

It is very significant to confirm the universality of the form
of the function G. We have tested various forms (both linear
and nonlinear) of the output function H. It can be found
that for different coupling schemes, the G functions are the
same, G(s ′k) = a ln(s ′k), where a ≈ −1.02 ± 0.09. Just two
examples are shown in Fig. 5(a).

It is also interesting to study the influence of node dynamics
on the G function. We have tested the MFPT method for other
kinds of chaotic oscillators. For the case of Chua’s circuit
oscillators, the result is similar to the Lorenz node dynamics
with a logarithmic relation and a ≈ −2.25. But for the case
of Rössler oscillators, Fig. 5(b) shows that ln T1 = γ ln(sk) +
b = γ ln(s ′k), T1 = G(s ′k) = (s ′k)γ , which is much different
from the case of Lorenz dynamics. An explanation for this
difference will be given in the following discussions.

Moreover, we have tested the effects of different kinds of
networks (e.g., WS networks [1] and directional ER networks
[21]). Our extensive studies reveal that the form of G is not
affected by the topology of the networks.

C. MFPT-based network identification for unknown dynamics

The above discussions of the MFPT approach requires
explicit knowledge of the node dynamics and the coupling
function. However, in many cases one can only get the time
series {xi(t)}. Therefore, it is important to study whether the
present MFPT approach can be applicable in cases in which
there is no knowledge of the node dynamics and the coupling
functions. Here we show that the MFPT approach can be
naturally generalized to this case.
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FIG. 4. (Color online) (a) The relationship between the MFPT T1 and the degree k for a BA network with 1000 Lorenz nodes for different
coupling strengths s = 0.001 and 0.002. Two curves are parallel. (b) Two parallel lines coincide after a renormalization of ln(k). This implies
that T1 only depends on sk. The slope a ≈ −1.1. (c) A comparison of the degree distribution (black + ) and the distribution of T ′

1 = exp(−T1)
(red ×). It can be found clearly that both distributions coincide, indicating the validity of our approach.

To do this, the key point in performing the MFPT approach
is to find time series that can replace the auxiliary dynamics
{y(t)}, which is produced by the isolated oscillator dynamics
ẏ = F(y). A simple idea is to find a node with a small degree
(for example, a leaf node with the degree k = 1) in the network
to generate the auxiliary time series. There may be several
methods for discovering such types of nodes. For example,
one can perform the following procedure: (i) choose several
pairs of nodes; (ii) for each pair, take one node as an auxiliary
node, and get the MFPT T1 of the other node; (iii) take this
value as the MFPT T1 for this node pair. The degrees of the
nodes in the pair with larger T1 are both smaller [as shown in
Fig. 6(a)].

Without losing generality, let us assume that the degree of
the first node is small. Then the time series {x1(t)} can be
considered as {yj (t)}. Then the time series of the j th node
(j �= 1) beginning from x1(t1

0 ), xj (t j0 ) = x1(t1
0 ) is required.

This can be easily achieved by many methods in chaos control
[22]. When xj (t j0 ) = x1(t1

0 ), the control should be released.
Then one can get the required time series, and the FPT would
be fixed. By repeating the above procedure, the MFPT T

j

1
can be figured out. It should be emphasized that the system
should be in an asynchronous state so that the MFPT approach

works, because synchronization is an obstacle in identifying
the topology of a network in this approach.

In the above BA1000 network with Lorenz oscillators, we
take node 1 (with the degree k1 = 3) as a reference node.
Then we compute the MFPT {T j

1 | j = 2,3, . . . ,1000} and
rank them in ascending order [see Fig. 6(b)]. The ideal result
should be that the relation between rank and k is monotonically
decreasing. Although the node 1 that we choose here is not an
absolutely isolated oscillator, the errors shown in Fig. 6(b) are
small. If the difference of a pair of degrees �k > 2, the rank
of the pair of nodes by T1 is shown to be correct.

IV. DISCUSSIONS

To understand the relationship between the MFPT and the
degree, let us analyze the particular details of the node behavior
in one sample. The dynamics of yi(t) is described by Eq. (12).
One can simplify the dynamics of xi(t) given by Eq. (1) by
separating the coupling term into two parts based on Eq. (7),

N∑
j=1,j �=i

Lij H(xj ) = −kiE + ξ i ,

FIG. 5. (Color online) In the BA1000 network. (a) Different output functions are tested with the same Lorenz oscillators. The relationship
between the degree and MFPT is also a logarithm. (1) H(x) = (x1 ∗ x2; 0; 0) (black square) and the slope a ≈ −1.1; (2) H(x) = (0; 0; x2)
(red ball) and the slope a ≈ −0.94. Curves are logarithmic, with almost the same coefficients. (b) Rössler oscillators F(x) = [−x2 − x3; x1 +
0.2x2; 0.2 + (x1 − 10)x3],H(x) = (x1; 0; 0),θ = 1,s = 0.002. G(k) ∝ kγ ,γ = −0.97. This is a power law, in contrast with the case of Lorenz
oscillators.
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FIG. 6. (a) The maximum degree kmax in each pair of nodes
against the MFPT T1; the big T1 only maps to a pair of small degree
nodes. A total of 1000 pairs of nodes are chosen randomly. (b) The
MFPT T1 of all nodes by using a reference node (k = 3) in the same
network where the nodes are ranked by T1. The degree of the first one
is the largest.

where {ξ i ,i = 1,2, . . . ,N} are independent noise terms with
zero mean and the deviation

√
kiσ . E is independent of the

node and the sample because it denotes the long-time or
ensemble average of H[xi(t)]. Compared with the deviation
of the diagonal term kiσ in relation (6), the noise ξ i is small.
Hence we discard the noise term, and Eq. (1) can be simplified
as

ẋi = F(xi) − ski[H(xi) − E]. (15)

Equation (15) will be analyzed as the dynamics of xi(t) below.
For convenience, we discard the subscript i and redefine the

dynamics of the difference between coupled and uncoupled
oscillators e(t) as

e(t) = ‖y(t) − x(t)‖2 =
√

[y(t) − x(t)]2. (16)

Although we take a different form of Eq. (13) as the definition
of the difference e(t) in numerical simulations, there is no
essential difference in the following analysis given below. All
the analytical conclusions are still available in our numerical
results. Let us consider the auxiliary trajectory y′, which
starts from the initial state y′(t − �t) = x(t − �t) and ends
at y′(t) (Fig. 7). The dynamics y′(t) is governed by Eq. (12).
We further introduce two differences e′(t) = ‖y(t) − y′(t)‖2

and e′′(t) = ‖y′(t) − x(t)‖2. The difference given by Eq. (16)
can be approximately considered as the composition of two
differences, i.e., e ≈ e′ + e′′. According to chaotic theory,
e′(t) ≈ e′(t − �t) exp(λ�t), where λ is the largest Lyapunov
exponent of the isolated node dynamics, which is described
by the chaotic dynamics Eq. (12). From the definitions of e′

and y′, one gets e′(t − �t) =
√

[y(t − �t) − y′(t − �t)]2. For
y′(t − �t) = x(t − �t), e′(t − �t) = e(t − �t), which can
be seen clearly in Fig. 7. Then one gets

e′(t) ≈ e(t − �t) exp(λ�t). (17)

Now let us analyze the other part e′′. According to Eqs. (12)
and (15), one obtains

y′(t) ≈ y′(t − �t) + F[y′(t − �t)]�t, x(t) ≈ x(t − �t)

+{F[x(t − �t)] − skH[x(t − �t)] + skE}�t.

By considering y′(t − �t) = x(t − �t), one gets

y′(t) − x(t) ≈ s{H[x(t − �t)] − E}k�t.

FIG. 7. A schematic plot of the trajectory analysis. Trajectories
are plotted to illustrate e. x(t) is governed by Eq. (15). The dynamics
of both y(t) and y′(t) are governed by Eq. (12), but y′(t) begins from
the initial value y′(t − �t) = x(t − �t), where �t is a short time
interval. e′(t) and e′′(t) are Euclidean distances in m dimension.

Note that ψ(t) = ‖s{H[x(t − �t)] − E}‖2; the function
ψ(t) � 0 is determined by the node and the sample. We have

e′′(t) ≈ ψ(t)k�t. (18)

By substituting Eqs. (17) and (18) into e(t), we get �e =
e(t) − e(t − �t) = e(t − �t)[exp(λ�t) − 1] + ψ(t)k�t . In
the short time limit �t → 0, one has exp(λ�t) − 1 ≈ λ�t ,
and then ė ≈ eλ + ψ(t)k. By integrating this equation and
considering the initial condition e(0) = 0,

e(t) ≈ ψ ′(ψ)k

λ
[exp(λt) − 1], (19)

where ψ ′(ψ) > 0 is a constant dependent on the node and
the sample. It can be easily found that e(t) grows as long
as the node dynamics is chaotic, i.e., λ > 0. The exponential
term on the right-hand side implies that the difference e(t)
increases exponentially with time. One can thus set e(t0) =
θ in each sampling, where θ > 0 is a constant independent
of the node and the sample. Under the assumption that the
time series of the output functions {H[xi(t)]} have the same
probability distribution Pc, we have s ′′ ≡ 〈ψ ′〉ensemble, which is
independent of node i. Taking the average over the ensemble
of Eq. (19), we have

θ ≈ s ′′k
λ

[〈exp(λt0)〉ensemble − 1].

Because of the first-order approximation 〈exp(λt0)〉ensemble ≈
exp(〈λt0〉ensemble) = exp(λT1), we have

θ ≈ s ′′k
λ

[exp(λT1) − 1]. (20)

Here only the degree k and the MFPT T1 are related to the node,
and other parameters are all related to the node dynamics.
The formula (20) indicates that the relation is closely related
to the maximum Lyapunov exponent of the node dynamics.
Moreover, the MFPT T1 is shown to be a function of the node
degree k. Therefore, Eq. (20) reveals the relationship between
the degree and the MFPT, and the Lyapunov exponent λ.

Since 1/λ and T1 imply the relaxation time of the orbit
divergence in a chaotic system and the relaxation time of the
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divergence of the evolution of the coupled network from the
uncoupled state, respectively, the exponential term in Eq. (20)
reflects the competition between these two time scales. It
is instructive to study the consequence of this interesting
time-scale competition. Let us focus on two limiting cases.
When T1 � 1/λ, exp(λT1) − 1 ≈ exp(λT1). Equation (20) is
simplified to

T1 ≈ 1

λ
[− ln(s ′′k) + ln(λθ )] = −1

λ
ln(s ′k), (21)

where s ′ = s ′′/λθ . This logarithmic dependence conforms to
the results of Lorenz and Chua’s circuit networks. When T1 �
1/λ, exp(λT1) − 1 ≈ λT1. Equation (20) is simplified to

T1 ≈ θ

s ′′k
.

This relation conforms to the results of Rössler networks given
in Fig. 5(b). Of course the MFPT T1 depends crucially on
the choice of the threshold θ , and this gives rise to different
time scales as compared to the time scale 1/λ. For the case
of two comparable time scales T1 and 1/λ, the relation (20)
gives a quantitative description. It should be noted that the
above formula is independent of the node dynamics and the
coupling function. The function T1(k,λ,θ ) precisely figures out
the relation between the node degree and the node dynamics.

The accuracy of the MFPT method can be analyzed as
follows. We take the case of T1 � 1/λ as an example. Based
on Eq. (21), T1 ∝ ln k, then

�T1 ∝ ln[s ′(k + 1)] − ln(s ′k) = ln[s ′(1 + 1/k)].

This implies that nodes with lower degrees can be distin-
guished more clearly than those with higher degrees. However,
because hubs in BA networks are always the minority, and
�k’s among hubs are big, the determination of the hubs can
still be done effectively by using the MFPT approach. An
advantage of the MFPT method is that its accuracy can be
improved practically by taking more samples according to the
large-number law in probability theory, since T1 is an averaged
quantity. When we take 30 000 samples (as shown in Fig. 4),
the distribution of T1 with the same degree is narrower than
that by taking 1000 samples, as given in Fig. 5(a).

It may be too strict to require oscillators to be identical
and to start evolution from the identical initial states. In fact,
these requirements can be effectively weakened in practice.
According to ergodic theory, for any initial state xi(0) in the
attractor, there always exists a small difference δ > 0, so that

FIG. 8. (Color online) The estimation results from e(0) < δ. The
simulation model is the same as that in Fig. 4 (s = 0.001).

one can get an isolated trajectory {yi(t)} starting from an initial
state yi(0) that satisfies the condition ‖yi(0) − xi(0)‖ < δ only
if the time series {yi(t)} is long enough. However, the small
difference δ may affect the MFPT. In the above analysis,
ė = λe + ψk. If δλ � ψk, λe is the main part in ė from
the beginning, and the function of k is weak. Therefore, the
estimation of small degrees will be affected by the difference
δ more easily than larger ones (see Fig. 8).

V. CONCLUSIONS

In summary, we studied the relationship between dynamics
and network topology with the goal of obtaining a dynamic
estimation of the topological properties of a network. The
bridge between these two different aspects of a system lies
in the couplings among different nodes. In the absence of
synchronies among nodes, one can uncover information on
the links by analyzing the dynamical evolutions or the output
time series. In terms of a probabilistic analysis of the coupling
terms in the equations of motion, we reveal that a universal
correspondence between the coupling term and the degrees
of the nodes can be well established. This correspondence is
independent of the specific forms of the node dynamics and
the form of the output function. Furthermore, we proposed
a method to estimate the degrees (in-degree) by using the
MFPT. The relationship between the degree and the MFPT is
investigated both numerically and theoretically. Our numerical
explorations reveal that the MFPT exhibits a logarithmic
dependence on the degree of the network for node dynamics
described by Lorenz and Chua’s oscillators, while an exponen-
tial dependence can be found for Rössler nodes. This can be
well understood by using theoretical analysis. It is revealed that
the MFPT is closely related to the largest Lyapunov exponent
describing the deviation of the network dynamics from the
isolated-node dynamics. We derived analytically the relation
between the MFPT and the degree, where the largest Lyapunov
exponent of an isolated-node oscillator λ plays an important
role. Because 1/λ and T1 imply the relaxation time of the
divergence in a chaotic oscillator and the relaxation time of
the divergence of coupled networks from the uncoupled state,
the relationship between the MFPT and the degree reflects
the competition between these two time scales. Our numerical
studies of different node dynamics is found to fall into different
limiting cases λT1 � 1 and λT1 � 1, respectively.

The MFPT method is efficient in judging the relative values
of the node degrees and the degree distribution in a network.
The computational cost of this approach is proportional to
N , the number of nodes in a network. This method is
applicable for chaotic node dynamics, and is independent of the
specific forms of the node dynamics and the output functions.
Moreover, we can naturally extend this approach to the cases
in which explicit knowledge of node dynamics and coupling
forms is absent. The proposed method greatly improves the
practical topology-identification efficiency because in most
circumstances it is difficult to obtain information on the node
dynamics and the linking forms. It should be noted that even
though the proposed method can be generalized to cases in
which there is no explicit knowledge of the dynamics, the
largest Lyapunov exponent of the system should be known for
estimating the degree distribution. While if we fix T1, the mean
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value of θ is just proportional to the node degree k according to
Eq. (20). In this case the degree distrabution can be estimated
by θ directly, so the value of the largest Lyapunov exponent is
not required.

Up to now, most of the existing methods for estimating
the degree of nodes in complex networks have been focused
on in-degree estimations [12,13], and they are all based on
the dynamical equations of motion proposed by Eq. (1). It is
a challenge to estimate the out-degrees and other important
statistical topology parameters on complex networks. Another
interesting issue is the estimation of modules and clusters in a
network by using our MFPT approach. The present approach
is based on the requirement of irregular network dynamics
because the concept of MFPT is proposed in a statistical

sense. Discovering how to identify the network topology with
periodic or excitable node dynamics remains an open and
challenging issue.
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