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Nonlinear effects on Turing patterns: Time oscillations and chaos
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We show that a model reaction-diffusion system with two species in a monostable regime and over a large
region of parameter space produces Turing patterns coexisting with a limit cycle which cannot be discerned from
the linear analysis. As a consequence, the patterns oscillate in time. When varying a single parameter, a series of
bifurcations leads to period doubling, quasiperiodic, and chaotic oscillations without modifying the underlying
Turing pattern. A Ruelle-Takens-Newhouse route to chaos is identified. We also examine the Turing conditions
for obtaining a diffusion-driven instability and show that the patterns obtained are not necessarily stationary for
certain values of the diffusion coefficients. These results demonstrate the limitations of the linear analysis for

reaction-diffusion systems.
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I. INTRODUCTION

Reaction-diffusion systems can produce spatially periodic
stationary patterns, usually known as Turing patterns. In his
seminal work [1], Turing suggested the possibility of obtaining
periodic patterns, oscillating both in time and space, and that
they only occur with three or more morphogens. More recently,
it has been shown that Turing patterns oscillating in time
can be generated in a two-species system when Turing and
Hopf instabilities interact [2], by coupling stationary Turing
structures with oscillating layers [3], or in some bistable
systems [4] in which neither Hopf nor wave instabilities are
required.

Diffusion-induced chaos has been investigated due to its
connection with chemical chaos [5] and to the existence
of some biological phenomena displaying this behavior [6].
Spatiotemporal chaos in reaction-diffusion systems can arise
in different ways, for instance from the interaction between
Turing and Hopf bifurcations [7], by homoclinic explosions
[8], by interaction with propagating fronts [9], or behind
transition fronts simulated by moving boundaries [10].

In this paper we study a simple reaction-diffusion system
with two species in a monostable regime and with a fixed
domain size, which produces temporal oscillations and chaos
in a region where linear analysis predicts only Turing patterns
with no temporal oscillations. As a single parameter varies, the
oscillating patterns undergo successive bifurcations, produc-
ing period doubling, tori, and chaos. Furthermore, when the
ratio of diffusion coefficients fulfills the conditions for a Turing
instability, we find the unexpected result that in a large region
of parameter space, only Turing patterns oscillating in time
emerge from the homogeneous steady state. The importance of
these results is that they not only show the stringent limitations
of linear analysis but also open up new perspectives on the
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application of reaction-diffusion systems to real biological and
chemical systems.

II. THE MODEL

The reaction-diffusion model that we study in this work
is the so-called Barrio-Varea-Aragon-Maini (BVAM) model
[11]:

du 2 2
— = DV u + n(u + av — Cuv — uv-),

at

90 (H
5 = V20 + n(bv + Hu + Cuv + uv?),

with zero flux boundary conditions. This model presents a
richness of behavior, making it suitable as a good “laboratory”
to gain insight into the mechanisms of pattern formation [12].
We will keep parameters D, C, and H free while the remaining
parameter values will be n =1, a = —1, and b = —3/2.
According to linear analysis, this choice ensures that the
equilibrium point (0,0), in the absence of diffusion, is a stable
spiral for the values of H considered in this paper and also
that the trace of the Jacobian is negative as we shall see below.

A. Linear analysis
The diffusionless system has the following equilibrium
points:
(uo,v0) = (0,0),
—5C F/5VA —5C FV/5VA
(ug,v3) = )

4H +4 ~ 10
where A = 5C? — 8H + 12. We observe that if A > 0, then
three real equilibrium points are present, but if A < 0, then
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FIG. 1. (Color online) The bold line is the saddle-node bifurcation
curve (2) of system (1) without diffusion. (Only the region C < 0 is
shown.) In the shaded region, (0,0) is the only equilibrium point,
which is linearly stable. The dashed curve is the locus of a Hopf bi-
furcation calculated numerically from Eq. (1) as described in Sec. III.

(0,0) is the only real equilibrium point, hereafter denoted as O.
The particular case A = 0 defines a saddle-node bifurcation
curve given by the equation (see Fig. 1)

HN = 1(5C* + 12). )

Along this curve, two equilibrium points are present, and to
the left of H5N, the three equilibrium points are recovered. In
the following we consider parameter values C and H inside
the shaded region in Fig. 1. The Jacobian evaluated at O is

1 —1
JIO:( 3>.
H—3

From this we obtain the eigenvalues Ay = i(—l F
/25 — 16H) from which it is concluded that O is linearly
stable provided H > 3/2. The value H = 3/2 corresponds to
the minimum of HSN. Thus, the shaded region bounded by
HSN in Fig. 1 corresponds to a monostable regime.

Since tr(J°) = —1/2 is always negative, a Hopf bifurca-
tion, which requires tr (J 0y = 0, is not feasible.

B. The Turing instability

By considering diffusion in the linearized system, following
the standard analysis for a Turing instability [13], we construct
the matrix I' = J° — k2D, where D = diag (D, 1), from which
we find tr(I') = —1/2 — (1 + D) k%. Since D > 0, it follows
that tr(I") < O; thus, neither oscillations with k % 0 (wave
bifurcation) are allowed, and consequently, linear analysis
predicts no oscillations at all. Since O is linearly stable,
there remains the possibility of having a Turing (diffusion-
driven) instability. Using D as the bifurcation parameter, the
conditions for a Turing instability [13] yield the critical values

3 3
K=H-= H(H-Z>), 3
S T

DL-=§[H—§— H(H—é):|. “)
9 4 2

Notice that both critical quantities are independent of C.
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III. RESULTS

The model in Eq. (1) was solved numerically in one
dimension with zero flux boundary conditions and random
initial conditions around the equilibrium point (0,0). The
second partial derivative terms in Eq. (1) are discretized using
finite differences, including zero flux boundary conditions in
the discretization. Using a mesh with N nodes yields a set of
2N ordinary differential equations which were solved using
the software library CVODE [14] with a numerically calculated
Jacobian matrix. Scalar absolute and relative tolerances of
1072 were used, and Ar = 0.01. We set N = 50 and Ax =
0.2; thus, the system size is L = 9.8.

Since the critical parameters depend only on H, we first
obtain a D, valid for the shaded region in Fig. 1, that
is, the range 1.5 < H < 3.8. In this interval D, decreases
monotonically; thus, we need to consider only the values of
D, when H is evaluated at the boundaries of the inequality.
From Eq. (4) we see that for H = 1.5, D, = 0.66 and that
for H = 3.8, D, ~ 0.083. Thus, if we set D = 0.08, Turing
patterns should be produced in the range 1.5 < H < 3.8. We
now consider C as a control parameter to explore its effect on
the generated patterns. In what follows and unless otherwise
indicated, we set D = 0.08 and H = 3. For this value of H,
Eq. (3) gives k. =~ 1.9029, and from the dispersion relation, it
is found that the admissible (taking into account boundary
conditions), most rapidly growing mode is k = 77 /9.8 =
2.244. Therefore, we expect a wavelength of 277 /2.244 ~ 2.8
or 9.8/2.8 & 3.5 stripes in the simulations.

In Fig. 2 numerical simulations for three different values of
C are displayed; in the left column, the space-time plots for
u up to 15000 time iterations only (¢ = 150) are shown for
clarity. In the right column, the corresponding time series of
the central point u (25) are shown. As expected, for C = —0.6,
as in Fig. 2(a), a stationary Turing pattern is obtained. When
C = —1 [Fig. 2(b)], a stationary pattern is generated initially,
but eventually regular oscillations emerge. If C is decreased
further, approaching the line HSN, the pattern oscillates in an
apparently chaotic fashion as shown in Fig. 2(c) for C = —1.5.
Since oscillations are not predicted by the linear analysis
and the conditions for a Turing instability are valid for these
parameter values (that is, there are admissible modes growing),
it seems plausible to assume that these oscillations are a
consequence of the nonlinear terms and, in particular, of the
relative strength of the quadratic and cubic nonlinearities,
given by the magnitude of C. Since an analytical treatment
of nonlinearities is often prohibitive, we used the bifurcation
software AUTO [15] to detect possible oscillatory instabilities.

In Fig. 3(a), we show the bifurcation diagram. As C
decreases from —0.1, the stable stationary (Turing) state
loses stability through a supercritical Hopf bifurcation at
C = —0.7546515 (successive bifurcations will be discussed
afterwards). Bifurcation diagrams can be generated for differ-
ent values of H so that a curve of Hopf bifurcations in a C vs
H plane can be calculated numerically. By using steps of 0.01
in H, the resulting curve is plotted in Fig. 1 as a dashed line.
This curve separates the monostability region where conditions
for a Turing instability are satisfied into two regions: on the
right-hand side of the Hopf curve, Turing patterns are realized,
and on the left, patterns oscillate in time.
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FIG. 2. (Color online) Numerical simulations of the system (1) in
one dimension for H = 3 and D = 0.08. The left column shows the
space-time plot of u for three values of C. (The plots for v are similar.)
On the right, the time series registered at the central point u (25)
of the corresponding space-time plots are shown. (a) C = —0.6,
(b)C =—1,and (c) C = —1.5.

It is worth mentioning that in the interval 2.1 < H < 2.5,
no Hopf bifurcation occurs, and in this region only oscillatory
Turing patterns emerge from the homogeneous steady state
instead of the expected stationary patterns. We observe from
Eq. (4) that D, increases as H diminishes such that when,
for instance, H = 1.8, the critical value D, = 0.2801 > 0.08.
According to linear analysis, the uniform steady state becomes
unstable to many modes, and one expects that the most rapidly
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FIG. 3. (a) Numerically calculated bifurcation diagram of system
(1) using AUTO. Supercritical Hopf (HB), period doubling (PD), and
torus (TR) bifurcations are detected at C = —0.7546515, —1.200656,
and —1.281831, respectively. (b) Numerically calculated maximal
Liapunov exponents.
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FIG. 4. Phase portraits of the central points for different values
of C after 50 000 time iterations (r = 500). (a) C = —1.15, (b) C =
—1.21,(c) C = —1.285,and (d) C = —1.5.

growing mode will eventually dominate. However, numerical
simulations show that this is not so. If D is just below 0.2801,
stationary Turing patterns are obtained as expected, but when
D « 0.2801, only Turing patterns oscillating in time emerge
from the homogeneous steady state.

A. Chaos

Once the Hopf bifurcation line is crossed, if C decreases
further, the oscillations become irregular, and near the H SN
line they appear to become chaotic. In Fig. 3(b), maximal
Lyapunov exponents (1) are plotted versus C. According to
our numerical results, A becomes zero at C = —1.285 and
positive after this value except for a small region of stability
(—1.33 < C < —1.35). Consequently, chaos is expected when
—1.285 < C < —1.33 and when C < —1.35.

In Fig. 4, phase portraits are displayed for different values
of C. After crossing the Hopf bifurcation line, a limit cycle
is formed, as shown in Fig. 4(a), for C = —1.15. When
C = —1.21, the cycle doubles its period as shown in Fig. 4(b).
At smaller values of C a torus is generated at C = —1.285
as in Fig. 4(c), and chaotic orbits, shown in Fig. 4(d),
appear for C = —1.5. All these results are consistent with the
successive bifurcations displayed in the bifurcation diagram
of Fig. 3(a): after the Hopf bifurcation (at C = —0.7546515),
the limit cycle loses stability through a period doubling for
C = —1.200656, and this cycle itself loses stability through a
torus at C = —1.281831.

The quasiperiodicity of the torus in Fig. 4(c) can be verified
by calculating its power spectrum. In Fig. 5(a), the power
spectrum for the torus (C = —1.285) is shown. The limit
cycle after the Hopf bifurcation has frequency w; = 0.3382,
the period doubling bifurcation introduces the frequency
/2, and the torus bifurcation introduces the new frequency
wy = 0.2732. The ratio of frequencies w;/w, = 1.2379 and,
as it is impossible to discern numerically in this way whether
or not a number is irrational, we cannot distinguish between
quasiperiodic orbits or orbits with very long periods; thus, we
verified that the Poincare plots are typical of quasiperiodic
orbits (ringlike). The power spectrum for C = —1.455, shown
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FIG. 5. (Color online) Power spectrum for C = —1.285 after
500000 iterations (r = 5000). The frequency w; = 0.3382 and its
integer multiples appear after the Hopf bifurcation. The period
doubling bifurcation introduces the frequency w;/2 and the torus
bifurcation w, = 0.2732. Inset: Power spectrum for C = —1.455
showing a continuous band of frequencies, typical of a chaotic
oscillation.

in the inset of Fig. 5, exhibits a continuous band of frequencies,
confirming the chaotic nature of the oscillation.

From all of these numerical results, we observe the follow-
ing sequence of bifurcations: stationary — Hopf — two-torus.
Numerically, when a third frequency is about to appear
(three-torus), small perturbations transform the quasiperiodic
orbit into a chaotic orbit, or a strange attractor. This result
is consistent with the well-known Ruelle-Takens-Newhouse
route to chaos [16].

B. Two-dimensional oscillating patterns

In two dimensions, the parameter C controls the type
of Turing pattern, spots or stripes [11], so by varying this
parameter, we can generate breathing spots or stripes in a
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TABLE 1. Parameter values used in supplementary movies.

Movie Name D H C

DO08H3C-1.mp4 0.08 3.0 1.0
DOO8H3C-15.mp4 0.08 3.0 1.5
D008H16C-02.mp4 0.08 1.6 0.2
DO08H35C-12.mp4 0.08 3.5 1.2

regular, quasiperiodic, or chaotic fashion. Some illustrative
movies of the numerical simulations in two dimensions
are included as supplementary material [17]. Equation (1)
was implemented in the commercial finite element package
COMSOL MULTIPHYSICS with zero flux boundary conditions
and random initial conditions. The parameter values for the
supplementary movies are shown in Table 1.

IV. CONCLUSIONS

In summary, we have studied a simple reaction-diffusion
system that exhibits oscillations and chaos in a novel way.
Turing patterns lose stability through a Hopf bifurcation which
cannot be discerned from present linear analysis techniques.
The bifurcation parameter C is absent in the linear analysis,
and as it varies, quasiperiodic and chaotic oscillations are
generated in a large region of parameter space. A Ruelle-
Takens-Newhouse route to chaos is identified. The main
conclusion of this work is that linear analysis may be a stringent
limitation for studying reaction-diffusion systems and that the
nonlinearities play an important role, not only on stabilizing a
pattern, but also in producing unsuspected bifurcations.
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