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Clustering of random scale-free networks
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We derive the finite-size dependence of the clustering coefficient of scale-free random graphs generated by the
configuration model with degree distribution exponent 2 < y < 3. Degree heterogeneity increases the presence
of triangles in the network up to levels that compare to those found in many real networks even for extremely
large nets. We also find that for values of y & 2, clustering is virtually size independent and, at the same time,
becomes a de facto non-self-averaging topological property. This implies that a single-instance network is not
representative of the ensemble even for very large network sizes.
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I. INTRODUCTION

Null models are critical to gauge the effect that randomness
may have on the properties of systems in the presence of noise.
Itis therefore important to have the maximum understanding of
the null model at hand, something not always easy to achieve.
This is the case of the most used null model of random graphs,
the configuration model (CM) [1-5].

Given a real network, the configuration model preserves
the degree distribution of the real network, P(k), whereas
connections among nodes are realized in the most random way,
always preserving the degree sequence—either the real one or
one drawn from the distribution P (k)—and avoiding multiple
and self-connections. In principle, the CM generates graphs
without any type of correlation among nodes. For this reason,
it is widely used in network theory to determine whether the
observed topological properties of the real network might be
considered as the product of some nontrivial principle shaping
the evolution of the system.

This program is severely hindered when the network
contains nodes with degrees above the structural cutoff k; =
(k)N [6], where (k) is the average degree and N the size
of the network. This is the case of scale-free networks with
P(k) ~ k7, y < 3, and a natural cutoff k. ~ N'/@~D most
often found in real complex networks [7]. This apparently
simple null model develops all sort of anomalous behaviors
in this case, e.g., the appearance of strong nontrivial degree
correlations among nodes [6,8—10], difficulties in the sampling
of the configuration space [11], or the presence of phase
transitions between graphical and nongraphical phases [12],
to name just a few.

Clustering—or the presence of triangles in the network—
is yet another example of anomalous behavior associated
with the CM. The importance of clustering as a topological
property is related to the fact that nearly all known real
complex networks have a very large number of triangles,
whereas the CM has a vanishingly small number in the
thermodynamic limit. Of course, the absence of triangles is
convenient from a theoretical point of view as it allows us to
use generating function techniques to solve many interesting
problems [7]. However, given the empirical observations, it
seems to be a quite unrealistic assumption. This has led to
the common understanding that clustering observed in real
networks cannot be explained by the CM and, thus, is the
product of some underlying principle. While we fully agree
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with this statement, in this paper, we show that it must be taken
with care. Indeed, depending on the heterogeneity of P(k), the
CM can generate, on average, nearly size-independent levels
of clustering. In addition, in such cases, sample-to-sample
fluctuations do not vanish when N — oo, meaning that the
same degree sequence may generate either very high or
very low levels of clustering, independently of the network
size.

Clustering can be quantified using different metrics [13].
Here, we use the average clustering coefficient C, defined as
the average (over nodes of degree k > 2) of the local clustering
coefficient of single nodes ¢; = 27;/k;(k; — 1), with T; the
number of triangles attached to node i. In the absence of high-
degree nodes, the clustering coefficient of a random graph
generated by the CM is given by [14,15]

(k(k — 1))?
N TCE W

and, therefore, vanishes very fast at large system size. This is
the reason why the treelike character of networks generated by
the CM has always been taken for granted. However, Eq. (1)
is clearly incorrect when the degree distribution is scale-free
with a natural cutoff k. ~ NYV¥=D_ as it predicts a behavior
C ~ NT=3/=D that diverges for y < 7/3. Equation (1)
fails in this case because its derivation does not account
for the structural correlations among degrees of connected
nodes. However, the same formula gives the correct scaling if,
instead, a structural cutoff k, ~ N'/2 is imposed on the degree
sequence. In this case, Eq. (1) predicts the correct scaling
C ~ N%77 [10]. It is then clear that the finite-size scaling of
the clustering coefficient in random scale-free graphs must
depend on both the size of the network N and the particular
scaling of the cutoff k. as a function of N. In this paper, we
derive the correct scaling behavior of the clustering coefficient
for scale-free random graphs with 2 < y < 3 and any cutoff
value k..

II. CLUSTERING IN MAXIMALLY RANDOM GRAPHS
WITH EXPECTED DEGREE SEQUENCE

The CM, as originally defined, defines a microcanonical
ensemble, in the sense that the degree of every single node
is given a priori and, once the degree sequence is fully
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known, the network is assembled in the most random way
while preserving the degree sequence. (We refer the reader to
Ref. [16] for a method to generate such graphs without any
sampling bias.) However, in the case of scale-free networks,
this approach resists any analytic treatment. Instead, here
we adopt a different strategy and work with the canonical
ensemble of the CM. In this ensemble, each node is given
not its actual degree but its expected degree. This relaxes the
topological conditions to close the network and opens the door
to an analytic treatment. Specifically, the model is defined as
follows:

(1) Each node is assigned a hidden variable « drawn from
the probability density p(k) ox k=7 with 1 < k < k.. The
cutoff value «, is, in principle, arbitrary. However, often «. is
the so-called natural cutoff, defined as the expected maximum
value out of a sample of N random deviates given from the
probability density p(x). In the case of interest of a scale-free
distribution, the natural cutoff scales as k. ~ N/¥ =D,

(2) Each pair of nodes is visited once and connected with

probability
KK _KK’ 1 '\ 7! 5
)= llta) @

where « and «’ are the hidden variables associated with each
(r=DN(—k2 ")

(¥ =2)kmin
degree of the network. The particular form chosen for the
connection probability ensures that the entropy of the ensemble
is maximal [17-19] (see also Appendix B).

It can be shown that the average degree of a node with
hidden variable « is k(x) o « [9,20,21]. Thus, we can think of
k and p(x) as the degree and degree distribution, respectively
[22].

Parameter «; is a structural cutoff defining the onset of
structural correlations, that is, nodes with expected degrees

~ KK

below «; are connected with probability r("" ) &~ K_Z and,

therefore, are uncorrelated at the level of degrees As a
consequence, the global level of correlations present in the
system is controlled by the cutoff k.. Whenever k. < «; the
resulting network is fully uncorrelated, whereas for «, > k;
correlations are necessary to close it. In this paper, we are
interested in the range k, < k. < NY&=D,

Using the formalism developed in [20] (see also [24]), the
local clustering coefficient of a node with hidden variable «
can be written as

node, k, = , and ki, is the expected minimum

f fﬁ (x;)V (i )r(xy)r("’ )dxdy
C(K) — ks K — . (3)
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The average clustering coefficient is computed from c(k) as

f p(k)c(k)dr [25]. However, c(k) is a bounded mono-
tomcally decreasing function and so its major contribution
to C comes from nodes with small degree, i.e., low « [10].
Therefore, to find the correct scaling behavior it suffices to
evaluate c(x) in the domain ¥ < k. In this case, the maximum
value within the domain of integration [1/xy,k./kg] of the
arguments «x/k; and ky/k; in Eq. (3) is of order O(k./k?2),
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which goes to zero in the thermodynamic limit. We can, thus,
approximate c(x) as

(v —2)2 @ (xy)?~ >
TPkl / / T

which becomes independent of k. After some manipulation,
this expression becomes
(y =27

N oy {w(y)ln(K

clk) ~

> +0(y)

N

2y—2) 2
() e (2) 22
Ke Ke
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+KS6—2},®(—K—X2,2,3_V>}, (5)

v(y)=o(-L13-y)+P(-1,1y —2),
0(y) = —n’cotmy cscmy,

where

and ®(z,a,b) is the transcendent Lerch function [26]. This
expression, although involved at first glance, is convenient
because in the range «; < k. K KSZ the arguments of the three
transcendent Lerch functions in it go to 0~ in the limit k; —
00, in which case we know that ®(—z%,a,b) ~ b~ for z — 0.
We then find the asymptotic behavior

( ) ()/ — 2)2 9(1/) + q>(_1127y - 2)9 Ke = K > 17
k)~ L =
K277 29 () In (), Ke >k, > 1.
(6)

The first line in this equation recovers the result found in
[10] for scale-free networks without structural correlations—
c(k) ~ N> v when k. =k, ~ N'/2—whereas the second
line predicts c(k) ~ NZVInN when . ~ NY/@~D_ which
corrects the incorrect scaling behavior predicted by Eq. (1)
in this case. Interestingly, this scaling is different from that
found for a model of growing random scale-free graphs [27],
again making evident the difference between equilibrium and
nonequilibrium models of random graphs [28].

Figure 1 shows a comparison between numerical simula-
tions, the numerical solution of Eq. (3) and the approximate
solution given by Eq. (5), showing a very nice agreement.
Interestingly, for y = 2.1, clustering remains nearly constant
in the range of sizes 10°~10° and even increases slightly for
small sizes. This is a consequence of the slow decay of the term
lcs2 @) combined with the diverging logarithmic term in the
numerator and functions v (y) and 6(y ), which diverges in the
limit y — 2. In the inset of Fig. 1, we show the extrapolation
of the clustering coefficient for sizes up to 10® evaluated with
Eq. (5). In the case of y = 2.1, this figure makes evident the
extremely slow decay—nearly absent—with the system size.
This implies that, in practice, clustering cannot be removed
from the network even in very large networks when y ~ 2.1tis,
thus, not clear whether the treelike approximation, customarily
used to solve problems on random graphs, can be applied in this
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FIG. 1. (Color online) Clustering coefficient as measured in
numerical simulations for different values of y and size N with
kmin =2 and k., = NY~D, Each point is an average over 10*
different network realizations. Dashed lines are the numerical solution
of Eq. (3) and solid lines are the approximate solution given by
Eq. (5). The inset shows an extrapolation up to size N = 108
using Eq. (5).

case. In this situation, one should use alternative approaches,
like the one developed in [21]. These results are particularly
relevant due to the abundance of real networks with values of
y =~ 2. Itis also interesting to study the behavior of clustering
as a function of y for a fixed network size. Figure 2 shows this
behavior for different values of N, confirming the results found
in Fig. 1. Clustering increases as y decreases and converges to
a constant and size independent value at y = 2.

Up to this point, we have been concerned only with the
ensemble average of the clustering coefficient. However, the
CM ensemble shows strong sample-to-sample fluctuations.
Figure 3 shows the probability density function of the
clustering coefficient obtained out of a sample of 10* different
networks generated by the canonical version of the CM. As
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FIG. 2. (Color online) Clustering coefficient as a function of y
for different network sizes. Curves are evaluated from Eq. (5) with
kmin =2 and k. = NV,
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FIG. 3. (Color online) Sample-to-sample fluctuations. (a) shows
the probability density function (PDF) of the clustering coefficient as
obtained from 10* network realizations for kyy, = 2, k. = N/¥=D,
y =2.1,and N = 10*. (b) shows the standard deviation of this PDF
for different values of y as a function of the network size. Solid lines
are power law fits of the form o ~ N . The exponent z is shown in
the inset. Symbols in this figure means the same as in Fig. 1.

it can be observed, clustering may take values in the range
[0.05,0.25] quite easily. Figure 3 also shows the standard
deviation oc as a function of network size and for different
values of y. In all cases, fluctuations decay as a power
law of the system size, oc ~ N %, with an exponent z < 1.
Interestingly, for y = 2.1, the exponent z takes a very small
value (z ~ 0.1) that, when combined with the behavior of C
as a function of N, results in a nearly constant coefficient
of variation. This implies that, in this range of values of
y, clustering is de facto a size-independent but non-self-
averaging property. That is, a single network instance is not
a good representative of the ensemble even for very large
network sizes.

III. CONCLUSIONS

The presence of triangles in real networks plays an impor-
tant role in many processes taking place on top of them, e.g.,
percolation phenomena, epidemic spreading, synchronization,
etc. It is, therefore, important to have full control over the
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most simple network ensembles that are used as null models
to assess the presence of underlying principles shaping the
topology of the system. In this paper, we have found the correct
scaling behavior of the clustering coefficient of the ensemble
of scale-free random graphs with 2 < y < 3. Interestingly,
for values of the exponent y & 2, clustering remains nearly
constant up to extremely large network sizes. However, in this
case, clustering is not self-averaging. This means that when
comparing real networks against the CM, it is not enough to
generate a single-instance network, as it may result in either a
very low or high level of clustering even for very large network
sizes. These results are particularly important as the exponent
y ~ 2 seems to be—for yet unknown reasons—the rule rather
than the exception in real systems.
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APPENDIX A: DERIVATION OF EQ. (5)

To derive Eq. (5) we first notice the following identity:

a b 2—y

/ dx/ dy S b d(—ab 23— ) (AD)
0 0 1 + Xy

for 2 < y < 3 and a,b > 0, which allows us to write Eq. (4)

as

S ~ (V_2)2 E 2(3*3/)(1)_ E 223_y
20—y e W)
3—y
Ke K
(%) o(-523-)
+ ! (O] 123
e )

The first argument of the second and third transcendent Lerch
functions in this equation goes to zero in the thermodynamic
limit because «, < KSZ ~ N.However, the argument of the first
Lerch function diverges unless «. ~ k. Unfortunately, there
is no known asymptotic behavior for the Lerch function for
diverging arguments. To overcome this problem, we use the
integral representation of function d(—z%,2,3 — ¥),

(A2)

xe G-y

<D(—z2,2,3—y)=/ - dx.
0

A3
1 + 22€7X ( )

The domain of integration in Eq. (A3) can be separated into
the subdomains [0,2 In z] and (2 In z,00) such that the function
(1 + z%¢)~! can be expanded as a converging Taylor series
in each subinterval. Once this trick is used, it is easy to derive
the following identity:

D(—22.2.3 —y) = 27252y (y) Inz + 6(p)]

1 1
+ Z—2d><—z—2,2,y -~ 2). (A4)
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Notice that this expression has a well-defined behavior when
z > 1. Plugging this expression into Eq. (A2) results in Eq. (5).

APPENDIX B: CANONICAL ENSEMBLES
OF MAXIMALLY RANDOM GRAPHS

The material of this appendix is original but rephrased from
several other sources [17-19]. In general terms, an ensemble
of random graphs is a collection of graphs generated with some
random mechanism such that each particular graph instance
A = {a;;} is generated with probability P(A), where A is the
adjacency matrix. The Shannon entropy of the ensemble can
then be defined as

S=-"P(A)log P(A). (B1)
A

Maximally random graph (canonical) ensembles are those
maximizing the ensemble entropy while fixing the average
of some network functions (F,(A)) =Y 4 P(A)F,(A). We
call them canonical because only the averages of functions F),
are fixed, as opposed to microcanonical ensembles, where the
actual value of F, is fixed. The solution of this problem is
given by

oLt Fa(A)
PA)= ——, B2
(A) Z (B2)
where «, are Lagrange multipliers associated with F,, and Z
is the partition function of the ensemble.
The case of interest in this paper corresponds to fixing the
expected degree of each node, that is, quantities k; = j dijs

i =1,...,N are fixed on average. In this case, the probability
of finding a particular graph A becomes
piA eZi a; Z/- ajj e(ot,'+otj)uij B3
(A)= V4 _i<j1+€(ai+a’). ®B3)

Notice that this expression can be rewritten as

P =]]pi = pip'—, (B4)
i<j
where
o@ita))
Pij = T gwrap (BS)

is the probability of the existence of a link between nodes i
and j. Notice that the factorization in Eq. (B4) implies that
a network belonging to this ensemble can be generated by
pairwise connection probabilities given by Eq. (B5). Finally,
by redefining the Lagrange multipliers as k; = k,e* we are
led to Eq. (2).

We note that this canonical ensemble is not exactly the
same as the configuration model, which fixes the actual
degree distribution of the network. However, the canonical
ensemble, while having the same statistical properties as
the microcanonical one (as also happens between different
ensembles in statistical mechanics when the thermodynamic
limit is attained), can be studied analytically. In our opinion,
this advantage makes this model even more interesting than
the original configuration model.
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