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Reactant-product quantum coherence in electron transfer reactions
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We investigate the physical meaning of quantum superposition states between reactants and products in
electron transfer reactions. We show that such superpositions are strongly suppressed and, to leading orders of
perturbation theory, do not pertain in electron transfer reactions. This is because of the intermediate manifold of
states separating the reactants from the products. We provide an intuitive description of these considerations with
Feynman diagrams. We also discuss the relation of such quantum coherences to understanding the fundamental
quantum dynamics of spin-selective radical-ion-pair reactions.
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I. INTRODUCTION

The role of quantum superpositions in irreversible chemical
reactions, in particular electron transfer reactions [1], has
received little attention. The specific question we address here
is this: To first-order reaction kinetics, can there be quantum
superpositions between reactants and reaction products of an
electron transfer reaction?

Most if not all electron transfer reactions are known to
occur in two steps, as shown in Fig. 1, which depicts the
potential curves of the reactants and the products: (1) The
electron tunnels from the initial state |R〉 into an intermediate
state |P ∗〉, which is a vibrational excited state of the product,
the ground state of which is |P 〉. (2) The excited state |P ∗〉
decays to the ground state |P 〉, with the emission of a photon or
a phonon. This decay usually takes place at a rate much faster
than the first step, so it is the latter that mostly determines the
total reaction rate. Most works on electron transfer deal with
calculating the rate of this first step [2–7]. Moreover, relevant
considerations [8] of quantum coherence have considered,
again, this first step and of course have appeared in the
much broader context of chemical reactions [9]. However,
the specific question we define is whether the reactant state
can be coherently coupled to the final product state in electron
transfer reactions.

This question can be rephrased: Can states of the form
|ψ〉 = c1|R〉 + c2|P 〉 be physically realized to first-order
reaction kinetics? The intuitive answer is negative, because
of the existence of the intermediate states |P ∗〉: a substantial
amplitude for the product state |P 〉 would translate to an
equally suppressed amplitude of the intermediate |P ∗〉 and
thus a negligible amplitude of the reactant state |R〉. Here we
are going to prove that the intuitive answer is indeed correct.
In retrospect, this might seem to be an obvious statement.

However, it cannot be that obvious after all, for the follow-
ing reasons. The seemingly innocuous question we address
here is directly related to understanding the fundamental
quantum dynamics of spin-dependent recombination reactions
of radical-ion pairs [10], which have recently received a lot of
attention from the quantum information science perspective
[11–19]. In particular, the traditional theoretical description
of spin-selective radical-ion-pair (RP) reactions has been
questioned, and new approaches have been put forward by the
authors in [11,12,14], who introduced quantum measurements
as conceptually important for understanding the quantum

dynamics of these reactions. These papers have led to an
ongoing debate [14,17,20–23], which at the least illuminates
the richness of the topic in terms of the quantum mechanical
concepts involved. Currently there exist at least three different
theories, all purported to be derived from first principles,
attempting to describe RP reactions. The traditional theory,
sometimes called the Haberkorn master equation [24], was
explicitly derived by Ivanov et al. [22] and supported by
Purtov along similar lines of thought [23]. Both of these
papers, however, start out from this seemingly innocent
assumption: the existence of quantum superpositions between
the reactants (the radical-ion-pair state) and the reaction
products (the neutral product state) of an electron transfer
reaction. Furthermore, the considerations in [16] also start
out from the assumption that the radical-ion-pair state can
be coherently coupled to the neutral product state. Thus, it
is fair to say that what we are going to prove here is not
an obvious but a rather subtle physical statement regarding
electron transfer reactions in general, and radical-ion-pair
reactions in particular.

In Sec. II we rigorously prove our main assertion, namely
that, to first-order reaction kinetics, the product state of an
electron transfer reaction cannot be coherently coupled to the
reactant state, exactly due to the existence of intermediate
states. In Sec. III we elaborate on the physical consequences
of neglecting these states or, stated equivalently, treating RP
reactions by the Haberkorn master equation. We show that,
according to the latter, the evolution of the entropy of the
RP spin state exhibits an unphysical behavior, not evidenced
by the other two theories based on quantum measurement
considerations.

II. REACTANT-PRODUCT QUANTUM COHERENCE
IN ELECTRON TRANSFER REACTIONS

We consider a simplified version of the problem, keeping
all the ingredients that are essential for the basic physics.
Reducing the problem to an electronic one, i.e., neglecting
the nuclear degrees of freedom, we depict in Fig. 2 the energy
levels of the system comprising the single reactant state |R〉,
a manifold of intermediate states |P ∗

i 〉 to which the electron
can tunnel from |R〉, and the single product state |P 〉 to which
|P ∗

i 〉 can decay by the emission of a photon or a phonon.
Letting |P 〉 define the zero of the energy scale, the unperturbed
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FIG. 1. Level structure of reactants and reaction products in the
electron transfer taking place in charge recombination of radical-ion
pairs (reactants) and the formation of neutral products.

Hamiltonian of the system is

H0 = ωRa
†
RaR +

∑

i

ωP ∗
i
a
†
P ∗

i
aP ∗

i
+

∑

k

ωka
†
kak. (1)

The sum over k denotes all modes of the photons (phonons)
with frequency ωk = ωR due to energy conservation. We use
fermionic operators to denote the creation (a†) or annihilation
(a) of a single occupation of the relevant states. The eigenstates
of H0 are denoted by |R; P ∗

i ; P ; Nk〉, where R,P ∗
i ,P = 0,1

are occupations of the reactant, the intermediate, and the
product states, respectively, and similarly Nk = 0,1 denotes
the occupation of the photon state with wave vector k. For
example, the initial state is |1; 0; 0; 0〉, whereas the final state is
one among the states |0; 0; 1; 1k〉, where k runs over all photon
wave vectors satisfying energy conservation. These states are
collectively denoted by |P 〉, i.e., without reference to the index
k. The tunneling Hamiltonian coupling |R〉 to |P ∗

i 〉 is simply
HT = ∑

i λiaRa
†
P ∗

i
+ c.c. Finally, the decay Hamiltonian cou-

pling |P ∗
i 〉 to the radiation (or phonon) reservoir and leading

to the ground state |P 〉 is Hd = ∑
i,k ci,kaP ∗

i
a
†
P a

†
k + c.c. The

coupling constants ci,k readily result from the quantum theory
of light-matter interaction and are ci,k = √

1/2VMi , where V

is the volume in which the radiation field modes are defined,
andMi the relevant matrix element for the transition P ∗

i → P .
The total interaction Hamiltonian is V = HT + Hd . It is worth
considering two simple cases before proceeding:

(i) Neglecting the presence of |P 〉 and considering only
the tunneling transition |R〉 → |P ∗

i 〉, moreover assuming that

R Pi
*

P

hωR

hωk

FIG. 2. Simplified level structure of an electron transfer process.
The tunneling Hamiltonian HT couples the “reactants” state |R〉 with
the manifold of excited states |P ∗〉, which then radiatively decay to
the ground state |P 〉, the “product” state.

λi = λ for all i, and using Fermi’s golden rule, it is found
within first-order perturbation theory that this transition’s
rate is k = (2π/h̄2)|λ|2ρ∗(ωR), where ρ∗(ω) is the density
of states of the {P ∗} manifold calculated at the energy of the
reactants ωR .

(ii) Neglecting the presence of |R〉 and considering only
the radiative transition |P ∗

i 〉 → |P 〉, moreover assuming that
Mi = M for all i, and again using Fermi’s golden rule,
it is found within first-order perturbation theory that this
transition’s rate is � = (2π/h̄2)|M|2ρ(ωP ∗ ), where ρ(ω) is
the density of states of the radiation field calculated at the
energy of the excited intermediates ωP ∗ . It is noted that in
realistic systems it usually is � � k.

We now move to consider the action of V on the en-
tire system using time-dependent perturbation theory. The
initial state |R〉 = |1; 0; 0; 0〉 evolves to |ψt 〉 = cR(t)|R〉 +∑

i cP ∗
i
(t)|P ∗

i 〉 + cP (t)|P 〉. To zeroth-order perturbation the-

ory it is c
(0)
R (t) = 1 and c

(0)
P ∗

i
(t) = c

(0)
P (t) = 0. It is clear that

within first-order perturbation theory, V can couple |R〉 to
|P ∗

i 〉 through HT , but not to |P 〉, hence c
(1)
P = 0. Let us now

move to second-order perturbation theory, where a possible
coupling between |R〉 and |P 〉 appears through the product
HdHT . Assuming that the reactant and intermediate states are
nondegenerate, i.e., ωR �= ωP ∗

i
, it follows from second-order

time-dependent perturbation theory (setting δk = ωk − ωR)
that

c
(2)
P = it

h̄2

∑

k

eiδkt/2sinc[δkt/2]
∑

i

VP iViR

ωP ∗
i

− ωR

= it

h̄2

∑

k

eiδkt/2sinc[δkt/2]
∑

i

λici,k

ωP ∗
i

− ωR

, (2)

whereVP i = 〈P |V|P ∗
i 〉 andViR = 〈P ∗

i |V|R〉. As the manifold
of intermediate states is a dense quasicontinuum, and as
mentioned before, λi = λ and ci,k = ck for all i can be taken
out of the sum, moreover since 1/(ωP ∗

i
− ωR) is an odd

function of ωP ∗
i

− ωR , it follows that c
(2)
P = 0. Even in the

case of resonant tunneling, i.e., supposing the existence of one
intermediate state |P ∗〉 resonant with |R〉, it follows that

c
(2)
P = − 1

h̄2 λ
∑

k

ck
eiδkt (1 − iδkt) − 1

δ2
k

= − t2

h̄2 λ
∑

k

cke
iδkt ,

(3)

where the second equality follows in the limit δk → 0 imposed
by energy conservation. The phase eiδkt averages c

(2)
P to

zero. Even if δk = 0 identically, this contribution is not
first order in the reaction kinetics but third, so it can be
neglected.

Now it is also clear that coherently coupling |P 〉 to |R〉 is
possible only within even-order perturbation theory; hence, the
first nonzero term in the sought-after quantum superposition
appears at fourth-order perturbation theory, easily found to be
negligible. There is a very transparent way to summarize the
above results with Feynman diagrams, shown in Fig. 3. Not
taking into account the intermediate states |P ∗〉, i.e., supposing
a physically absent direct coherent coupling between |R〉 and
|P 〉, is depicted by the diagram shown in Fig. 3(a). Taking
the full level dynamics into account, we have shown that the
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FIG. 3. (a) “Effective” description of electron transfer reactions
neglecting the intermediate states and assuming a direct coupling
between reactants and products. (b) Taking into account the interme-
diate states, this is the lowest-order (second-order) coherent coupling
between reactants and products, the amplitude of which is zero. (c)
The first nonzero amplitude comes from this fourth-order diagram.
(d) Within first-order reaction kinetics, the reaction proceeds by a real
transition from |R〉 to |P ∗〉 (indicated by the dashed line), followed
by another real transition from |P ∗〉 to |P 〉.

second-order perturbation theory diagram depicted in Fig. 3(b)
has a zero amplitude due to the energy-odd denominator. The
first nonzero amplitude for coherently coupling |R〉 to |P 〉
results from the fourth-order diagram of Fig. 3(c). In this
diagram, the intermediate state |P ∗〉 emits a virtual photon that
is reabsorbed by the virtual product state, leading again to the
intermediate manifold before the actual product is generated.
Finally, the electron transfer reaction actually proceeds within
first-order reaction kinetics through two consecutive real
transitions; i.e., there is a real transition from |R〉 to |P ∗〉,
followed by another real transition from |P ∗〉 to |P 〉. We
symbolize this with the diagram shown in Fig. 3(d), where
the dashed line crossing the |P ∗〉 states is supposed to mean
that the |P ∗〉 states are really, as opposed to virtually, populated
by the real transitions from |R〉.

III. NEGLECTING INTERMEDIATE STATES

As mentioned in the introduction, the authors in [22]
and [23] derived the traditional master equation of spin
chemistry treating the recombination process according to
the diagram in Fig. 3(a), i.e., by neglecting the intermediate
states |P ∗〉. This is an example of what field theory calls

n
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FIG. 4. (a) Early understanding of neutron decay, leading to
several problems such as an infinite electron-neutrino scattering
cross section. (b) The infinity was remedied when the actual
vertex involving the intermediate W− boson was understood from
electroweak theory.

an “effective theory.” There are many examples in physics,
especially in nuclear physics [25], where effective theories
are indeed a good approximation, destined however, to fail in
some regime of the relevant parameter space. For example,
weak interactions were initially described by the effective
Fermi theory, according to which the neutron decays as
shown in Fig. 4(a). After the development of electroweak
theory, the relevant Feynman diagram was found to include
the intermediate W− boson [Fig. 4(b)]. The Fermi theory
was a good low energy approximation, plagued, however,
by several problems, such as an electron-neutrino scattering
cross section tending to infinity at high energies. This and
other problems were remedied by the full electroweak theory.
Similarly, the traditional master equation of spin chemistry
is a very good approximation, plagued, however, by several
conceptual problems. We now turn to those.

We consider a very simple example of a radical pair
consisting of just two unpaired electrons and no nuclear spins.
We furthermore set to zero all magnetic interactions and
consider a single recombination channel, e.g., the singlet, with
kS being the recombination rate. We take as an initial state
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FIG. 5. Comparison of the three master equations by Kominis
(solid line), Jones-Hore (dashed line), and the traditional (dotted line)
in predicting the von Neumann entropy S(ρ). The density matrix ρ

was normalized by Tr{ρ} in order to remove the artifact of diminishing
RP population due to recombination.
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the maximally coherent state |ψ0〉 = (|S〉 + |T0〉)/
√

2, where
|S〉 and |T0〉 are the two-electron singlet and zero-projection
triplet states, respectively. What is physically obvious is that
a fraction of the radical-ion pairs, initially in the state |ψ0〉,
will recombine through the singlet channel, while the rest will
remain locked in the nonreactive triplet state forever (we took
kT = 0). Indeed this is what the prediction of all three theories
is, albeit with a quantitative difference of what exactly this
fraction is [12]. This difference is immaterial for the current
consideration. What is also expected on physical grounds is
the fact that while at the beginning and the end the state of the
radical-ion pairs is pure, i.e., at t = 0 we have the pure state
|ψ0〉 and at t → ∞ we have a pure triplet, during intermediate
times we have a mixture of pure states. Hence, one would
expect that the von Neumann entropy S(ρ) = −Tr{ρ ln ρ},
where ρ is the density matrix describing the two-electron
spin state, would start from zero, acquire a nonzero value

at intermediate times, and return to zero. In Fig. 5 we compare
the predictions of the three master equations. It is clear that the
two theories based on the quantum measurement approach to
the recombination of RPs predict the above described behavior
expected on general physical grounds. In contrast, S(ρ) = 0
at all times according to the traditional theory.

The aforementioned problem of the Haberkorn master
equation can be traced to the absence of intermediate states
in the theoretical paradigm underlying the traditional the-
ory. The presence of such states leads to a fundamental
and unavoidable S-T dephasing within first-order reaction
kinetics through Feynman diagrams like the ones presented
in [12]. Concluding, we have explored the physical ex-
istence of quantum superpositions between reactants and
products in electron transfer reactions and connected the
result to the fundamental quantum dynamics of spin chemistry
reactions.
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