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Information storage, loop motifs, and clustered structure in complex networks
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We use a standard discrete-time linear Gaussian model to analyze the information storage capability of
individual nodes in complex networks, given the network structure and link weights. In particular, we investigate
the role of two- and three-node motifs in contributing to local information storage. We show analytically that
directed feedback and feedforward loop motifs are the dominant contributors to information storage capability,
with their weighted motif counts locally positively correlated to storage capability. We also reveal the direct
local relationship between clustering coefficient(s) and information storage. These results explain the dynamical
importance of clustered structure and offer an explanation for the prevalence of these motifs in biological and
artificial networks.
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I. INTRODUCTION

Recognizing that network structure gives rise to dynamics,
but dynamics represents the specific action of a network,
much recent work has focused on studying the complexity
of dynamics on various network structures; see, e.g., [1–3].
Such investigations can reveal the dynamic capabilities of
well-known structures, e.g. small-world networks [2,4,5].
We take an information-theoretic approach to this issue,
exploring computational properties (e.g., information storage
and transfer [6–8]) as a function of network structure. Such an
approach is highly appropriate [5], since these terms are well
defined and can be measured on any type of network time-
series data, and are also meaningful and well understood (e.g.,
information transfer as directed coupling between two nodes),
especially in comparison to general notions of complexity, and
also because computation is the language in which dynamics
on networks is often described (e.g., claims that small-world
structures have “maximum capability to store, process, and
transfer information” [9]).

Here we focus on information storage, which is a key
operation in intrinsic distributed computation, underpinning
periodic behavior, stability, and the concept of memory [6].
It is considered an important aspect of the dynamics of many
natural and man-made processes on complex networks, e.g.,
in human brain networks [10,11] and artificial neural networks
[12,13]. Yet a general understanding of the relationship
between network structure and information storage remains
absent.

We seek to provide such an understanding, focusing on
the role of motif structures (small subnetwork configurations)
[14,15] in facilitating information storage. Intuitively, one
would expect directed cycles (or feedback loop motifs) to play
a pivotal role, since isolated directed cycles clearly provide
paths for nodes to store information in neighbors and retrieve
it at a later time. There is much circumstantial evidence for
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such intuition to extend to the role of such loops embedded
in networks, e.g., in supporting long cyclic patterns in cellular
automata [6]; underpinning better performance of artificial
recurrent neural networks than feedforward networks on tasks
requiring memory (e.g., by echo state networks [12,13] and
Elman networks [16]); and in the strong correlation between
clustering in underlying topology and information storage
capability in a study of small-world Boolean networks [5].
Interestingly, Song et al. [17] find a greater than expected
likelihood for reciprocal connectivity and connected three-
neuron motifs in a mammalian cortex; Sporns [11] states that
this may be due to an inherent preference for local connectivity,
but also points out that different motifs could support “different
modes of information processing” and that clustered nodes
(qualitatively) seem to share information and are likely to
promote “a functionality coherent brain system.”

Despite such intuition, there is no direct analytic evidence
for the role of loop motifs in information storage when
embedded in networks, nor for which if any other motifs
are involved. Here, we will follow Barnett et al. [1,2] in
making analytic inference of information-theoretical measures
of dynamics on networks. This involves linear stationary
Gaussian processes, which are a simplification as compared
to real-world processes, but can be viewed as approximating
the weakly coupled near-linear regime, and are commonly
used in neuroscience for large-scale modeling [1].

We measure information storage by individual nodes within
a network, and analytically reveal the roles of network motifs
up to size 3. We prove that information storage is dominated by
directed cycles (as per intuition) and feedforward loop motifs
involving the given node, being directly proportional to these
local weighted motif counts. We also show the direct local
relationship between the clustering coefficient and storage.
These results help explain the prevalence of these motifs in the
biological and artificial networks described above.

II. INFORMATION-THEORETIC MEASURES ON LINEAR
GAUSSIAN NETWORKS

The (differential) entropy for a multivariate normal distribu-
tion X (of N variables) is, e.g., [18]: H (X) = 1

2 ln [(2πe)N |�|],
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where |�| is the determinant of the N × N covariance matrix
� = X(n)T X(n), and the overbar “represents an average
over the statistical ensemble” [1] at times n. Any standard
information-theoretic measure of the variables (at the same
time step) can then be obtained from sums and differences
of these joint entropies. Furthermore, information-theoretic
measures relating variables over a time difference s can be
formed from the lagged covariance matrix �(s).

Extending original attempts by Tononi et al. [3], Barnett
et al. [1] have shown how to obtain these covariance matrices
given a network topology and connection strengths on each
link, and assuming linear relationships between nodes driven
by Gaussian noise (which approximates “the statistical struc-
ture of signals sampled from the environment” [1]). In this
paper we will consider discrete-time processes, in particular
the multivariate Gaussian autoregressive process on a network
of N nodes [1]:

X(n + 1) = X(n) × C + R(n), (1)

at time steps n. Here, C = [Cji] is the N × N connectivity
matrix (or weighted adjacency matrix), where Cji is the weight
of the directed connection from node j to i, and I is the
N × N identity matrix. The current node value X(n) is a
row vector here. R(n) is uncorrelated mean-zero unit-variance
Gaussian noise. Barnett et al. [1] show that the covariance
matrix � satisfies � = CT �C + I , with the solution then in
general obtained from the power series expansion (insofar as
it converges)

� = I + CT C + (C2)T C2 + · · · =
∞∑

u=0

(Cu)T Cu. (2)

It is important that the system is stationary only when we
have |λ| < 1 for all eigenvalues λ of C [i.e., a spectral radius
ρ(C) < 1]. This is also sufficient condition for the convergence
of Eq. (2), following the similar argument of Barnett et al.
for the counterpart of Eq. (2) in continuous-time systems in
[1] (i.e., using Gelfand’s theorem with any consistent matrix
norm).

We contribute that for a lag s (an integer in the discrete-time
system) the lagged covariance matrix is

�(s) = X(n)T X(n + s) = �Cs, (3)

noting that covariances with the noise terms disappear under
averaging, and that �(0) = �.

III. COMPUTING INFORMATION STORAGE

We will measure the active information storage A(Xi) [6,8]
at each node i in the network. A(X) is defined for variable X

as the average mutual information 〈i(x(k)
n ; xn+1)〉 between its

joint past k states x(k)
n = {xn−k+1, . . . ,xn−1,xn} and its next

state xn+1 at time step n + 1 (as k → ∞) [6,8]:

A(X) = lim
k→∞

∑

x
(k)
n ,xn+1

p
(
x(k)

n ,xn+1
)

log2

p
(
x(k)

n ,xn+1
)

p
(
x

(k)
n

)
p(xn+1)

.

In comparison to the use of eigenvalue-based decay rates
(e.g., see [19]) to infer memory, A(Xi) measures storage at
each node rather than providing a network-wide measure,

is a direct measure of information rather than an inference,
is model-free and may be applied to any (nonlinear) time
series, and (as we shall see) can be analytically related to
local network motifs. We will reconsider this comparison in
the Discussion. Further, A(X) is a subcomponent of the excess
entropy E [20], a known complexity measure. While E(X)
captures the total information from the past that is used in the
future, A(X) captures the stored information in use in the next
state, and so is directly comparable to other dynamic quantities
of computation (e.g., information transfer) [6–8].

We will compute A(X) using its formulation [6,8] in terms
of the entropy H (X) = 〈− log2(xn+1)〉 and entropy rate [18,
20] Hμ(X) = limk→∞ 〈− log2(xn+1|x(k)

n )〉:

A(X) = H (X) − Hμ(X), (4)

Hμ(X) = limk→∞ H (X(k+1)) − H (X(k)), (5)

where H (X(k)) represents block entropies of the k consecutive
states X(k). For the multivariate normal form here, these
terms are computed for each node i from the (lagged)
autocovariance terms �(s)ii . First, we simply have H (Xi) =
1
2 ln (2πe|�(0)ii |). The block entropies are then computed via
autocovariance matrices Mi(k) (which due to stationarity are
symmetric Toeplitz matrices):

Mi(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�(0)ii �(1)ii �(2)ii · · · �(k − 1)ii
�(1)ii �(0)ii �(1)ii �(k − 2)ii

�(2)ii �(1)ii �(0)ii
...

...
. . . �(1)ii

�(k − 1)ii · · · �(0)ii

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

so H (X(k)
i ) = 1

2 ln (2πe)k|Mi(k)|, and [via Eqs. (4) and (5)]

A(Xi) = lim
k→∞

1
2 {ln [|�(0)ii ||Mi(k)|/|Mi(k + 1)|]}. (6)

Numerically calculating A(Xi) from C is straightforward
via Eqs. (2) and (3), Mi(k), and Eq. (6). Use of k → ∞ is
correct for this measure in general (unless one can establish
finite Markovian dependence of the destination on its past)
[6,7], although limited by computational time here.

IV. ANALYTIC CALCULATION

In the spirit of the analysis of Barnett et al. [1,2] on the
Tononi-Sporns-Edelman (TSE) complexity [3], we now make
analytic expansions of Eq. (6) to directly reveal the roles of
motif structures in A(Xi). For the purposes of this analysis we
assume the nodes do not have self-connections, i.e., Cii → 0
(partially following [1,2]). We treat the full general case in an
extended version of this work [21].

We start by writing the relevant autocovariance terms from
Mi(k + 1). We limit our considerations to be accurate to the
highest order of contributions to A(Xi) of motifs of size three
[which will be at O(ε6) in our result in Eq. (12), where ε ≡
‖C‖ for any consistent matrix norm [1]]. This expansion favors
shorter paths, since stored information is gradually “forgotten”
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FIG. 1. Motifs implicated in calculation of information storage at
node i, including directed cycles (a) and (b); feedforward loop motifs
(c) and (d); and directed effects (e).

along the path. Expanding Eq. (2) and Eq. (3) we have

�(s)ii = [(I + CT C + O(ε4))Cs]ii ,

�(0)ii = 1 +
∑
j �=i

C2
ji + O(ε4) := 1 + wsqr

i,1 + O(ε4),

�(1)ii =
∑

j �=i;l �=j,i

CliCljCji + O(ε5) := wfwd
i,3 + O(ε5),

�(2)ii =
∑
j �=i

CijCji +
∑

g;l �=i,g;j �=i,g

CliClgCgjCji + O(ε6)

:= wcyc
i,2 + wfwd

i,4 + O(ε6),

�(3)ii =
∑

j �=i;l �=j,i

CilCljCji + O(ε5) := wcyc
i,3 + O(ε5). (7)

�(s)ii for s � 4 will be O(ε4) or smaller and enter A(Xi) only
below O(ε6) [in our result at Eq. (12)]. We see already the
role of loop motifs in establishing the delayed autocovariance
terms, with only length s feedback and feedforward loops
involved in each �(s � 1)ii term. Weighted motif sums, e.g.,
wfwd

i,3 , are defined by the summations in the above equations
and shown in Fig. 1 (the network averages m2,2, m3,8, and
m3,3 in [2] are computed over these local motif sums wcyc

i,2 ,
wcyc

i,3 , and wfwd
i,3 ).

We turn now to the {− ln [|Mi(k + 1)|/|Mi(k)|]} term in
A(Xi) in Eq. (6). From [1] we have

ln |R| =
∞∑

m=1

(−1)m+1

m
trace(R̂m), (8)

with R̂ = R − I . We can then write

lim
k→∞

− ln
|Mi(k + 1)|

|Mi(k)| = lim
k→∞

∞∑
m=1

(−1)m

m
ri(k,m), (9)

ri(k,m) = trace[M̂i(k + 1)m] − trace[M̂i(k)m] (10)

and begin to form estimates of A(Xi) by taking Eq. (9) up to
particular values of m. Now, since the differences ri(k,m) must
come from the contributions of the extra final row and column
of M̂i(k + 1)m, then

ri(k,m) =
∑

q1,q2, . . . ,qm

∃v | qv = k + 1

M̂i(k + 1)q1,q2 · · · M̂i(k + 1)qm,q1 ,

ri(k,1) = M̂i(k + 1)k+1,k+1 = �(0)ii − 1,

ri(k,2) = [�(0)ii − 1]2 + 2
k∑

q=1

�(q)2
ii ,

ri(k,3) = [�(0)ii − 1]3 + 6(�(0)ii − 1)
k∑

q=1

�(q)2
ii + O(ε7).

Using Cii → 0 limits the terms in ri(k,3) at O(ε6) and means
there are no extra terms at O(ε6) for ri(k,m > 3). Now, ri(k,m)
always has a term [�(0)ii − 1]m (from qv = k + 1, ∀ v), and
these cancel with the ln |�(0)ii | term in Eq. (6). Using the
ri(k,m) expansions above we can form estimates for A(Xi)
via Eq. (9), limiting k to capture terms up to O(ε4) and O(ε6),
respectively:

A∗(Xi) = 1
2

(
wcyc

i,2

)2
, (11)

A∗∗(Xi) = 1
2

[
wcyc

i,2

(
wcyc

i,2 + 2wfwd
i,4 − 2wsqr

i,1 wcyc
i,2

)

+ (
wfwd

i,3

)2 + (
wcyc

i,3

)2]
. (12)

Then, we notice that

wfwd
i,4 =

∑
l �=i;j �=i

C2
liCijCji +

∑
g �=i;l �=i,g;j �=i,g

CliClgCgjCji,

= wsqr
i,1wcyc

i,2 + wfwd
i,4

′
, (13)

with wfwd
i,4

′
representing wfwd

i,4 with the additional restriction
g �= i. Equation (13) can simplify Eq. (12) as such:

A∗∗(Xi) = 1
2

[
wcyc

i,2

(
wcyc

i,2 + 2wfwd
i,4

′) + (
wfwd

i,3

)2 + (
wcyc

i,3

)2]
.

A∗(Xi) captures A(Xi) up to the highest-order contribution
from two-node motifs, while A∗∗(Xi) is accurate to the highest-
order contribution from three-node motifs.

V. FURTHER ANALYSIS AND DISCUSSION

Our estimate A∗∗(Xi) shows that information storage
locally at node i is dominated by two types of functional [15]
network motif involving that node. The first are directed cycles
(or feedback loops) wcyc

i,2 and wcyc
i,3 , which were hypothesized

earlier to enable distributed information storage: node i can
send information out to its neighbors, then receive it back via
these loops at a later time. That is, loops allow information
to cycle. The second are feedforward loop motifs wfwd

i,3 and

wfwd
i,4

′
: each captures dual paths from node l to i of different

lengths. This facilitates the arrival of the same information
from l at i at two different time steps; i.e., information in i at
one time point is effectively being stored for it elsewhere in
the network before being available again at a later time. These
motifs provide a vital mechanism for short-term storage in
feedforward networks. Longer motifs of both types will start
to appear in higher-order approximations.

Crucially, we have a positive correlation between the
information storage capability of each node i and these
weighted motif counts for it. Further, if the network has
only positive edge weights, we have a positive correlation
to the number of such motifs; and, where the edge weights
are positive on average (as per the mammalian cortex, where
the majority of connections are thought to be excitatory [2])
the same conclusion applies on average. These insights have
interesting implications: providing analytic evidence why
some recurrent neural networks are known for good memory
performance [12,13,16], and a computational reason for the
relative abundance or retention of reciprocal links (wcyc

i,2 ) and
connected three-node structural motifs [22] in the mammalian
cortex [11,17] and of wfwd

i,3 in gene regulatory networks [14].
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FIG. 2. (Color online) Information storage and relation to clus-
tering coefficient through a small-world transition on an N = 100
ring network. Initially each node has K = 4 directed incoming
links from its closest neighbors; then the sources of each link are
randomized with probability p. Dynamics are generated using Eq. (1)
with equal link weights c = 0.5/K . Information storage A (with
k = 30) and estimates A∗ and A∗∗ are measured for each node i;
then network averages are taken, and all are normalized to A(p = 0).
(Vanishing) error bars indicate the standard error of the mean across
ten network realizations for each p. Also displayed are network means
of clustering coefficients C̃ in

i for wfwd
i,3 directed motifs, normalized to

C̃ in(p = 0).

To assist further analysis, we present a brief application
of A(Xi) and its estimates (computing � with [23]) to
Watts-Strogatz ring networks [4] in Fig. 2, where the directed
links are gradually randomized with probability p and undergo
a small-world transition. This is a useful example since
increasing p takes us from a regular lattice with many of
the motifs of interest to randomized networks where few
remain. Figure 2 emphasizes several important points. First,
with the positive link weights here, we see a very clear
monotonic decrease in 〈A(Xi)〉 as the motifs are decayed by
randomization, as predicted by our estimates. Further, Fig. 2
shows that our estimates provide reasonable approximations to
A(Xi) which improve from A∗(Xi) to A∗∗(Xi) as higher-order
terms are included. This highlights that the reciprocal links
wcyc

i,2 provide the largest storage component here; clearly
undirected networks will have significantly larger storage
capability than directed networks. Further, the contribution
of the three-node motifs can be directly expressed in terms of
weighted clustering coefficients for the corresponding motif
[24], e.g., we have wfwd

i,3 = C̃ in
i K(K − 1)c2 for this generic

case of equal edge weights c. Clearly, nodes with higher
clustering coefficients store more information. We explore
the relationship between clustered structure and information
storage further in [21].

Our estimates are improved of course by accounting for
higher-order terms, yet the returns in accuracy for doing so
are clearly diminishing. Similarly, our estimates improve as
coupling strengths Cji weaken; we explore this accuracy in a
forthcoming extension [21].

These analytic results are of course limited to linear
interactions only, although we emphasize that they should be
seen as “approximations in the weakly coupled near-linear
regime of nonlinear dynamics” [1]. Crucially though, the de-
caying information storage profile with increasing randomness
through a small-world transition is very similar to numerical
results obtained from random Boolean dynamics [5]. Certainly
such Boolean dynamics can hardly be labeled linear, nor as
having “positive” weights, and as such provide impetus for
the potential generality of our results. As argued in [5], these
results suggest an explanation for the dynamic importance of
clustered structure in small-world networks.

The decay of correlations within the network is known to
be bounded by the dominant eigenvalue λ of C, which plays an
important role in the dynamics [19]. Unlike A(Xi) however, λ

cannot differentiate the dynamics with p in Fig. 2, since with
fixed weighted in-degree cK for all nodes, λ is the same for
all networks. More generally, it is easy to produce examples
of isospectral networks (i.e., with the same eigenvalues)
with differing 〈A(Xi)〉, showing that 〈A(Xi)〉 is not directly
determined by the eigenvalues. While correlated, there is a
conceptual difference between the computational perspective
of information storage in the dynamics of individual nodes and
an eigenvalue inference of network-wide, persistent memory:
eigenvalues capture persistent memory in feedback loops, but
do not capture the transient storage in feedforward motifs (e.g.,
the network of motif wfwd

i,3 has only zero eigenvalues). We
explore this further in [21].

Interestingly, some of the same motifs underpinning infor-
mation storage here were identified as driving TSE complexity
[1,2], although their precise contributions are different. This
suggests that TSE complexity contains a significant flavor of
information storage capability (aligning with insights from an
information-geometric framework [25]), providing additional
insight into the decay of TSE complexity through small-world
transitions [2].

Our results revealing clustered structure, in particular
directed cycles and feedforward loop motifs, as the dominant
information storage contributors align with intuition and have
interesting implications. In a forthcoming presentation, we
extend this result to the more general case involving self-
connections [21].
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