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Viability of an elementary syntactic structure in a population playing naming games

Edgardo Brigatti*

Instituto de Fı́sica, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Cidade Universitária,
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We explore how the social dynamics of communication and learning can bring about the rise of a syntactic
communication in a population of speakers. Our study is developed starting from a version of the Naming Game
model in which an elementary syntactic structure is introduced. This analysis shows how the transition from
nonsyntactic to syntactic communication is socially favored in communities which need to exchange a large
number of concepts.
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I. INTRODUCTION

The study of the evolution of languages and their structures
has generated a very rich debate spanning different disciplines
and approaches. The ideas developed in the linguistic commu-
nity, which introduced the thesis of considering some linguistic
structures as innate with some specific properties genetically
encoded in a language module or organ [1], have been very
prolific. They bootstrapped the development of many works
where pure evolutionary perspectives are introduced to explain
the generation of languages. Here, the dominant paradigm is
the Darwinian evolution of biological systems. The description
of language evolution is based on a biological dynamics
constructed above the concepts of natural selection, mutation,
and fitness, elaborated in terms of communication success [2].
This approach is particularly well suited to describe evolution
from a functionalist perspective, where the category of utility is
the one that drives the dynamics. In any event, many linguistic
properties appear to be so highly abstract as to even hinder
communication [3]. This means that they are quite difficult
from those being introduced on a purely functional basis, and
they cannot be explained merely in terms of communicative
effectiveness or cognitive constraints. Moreover, it is hard
to explain how shifts from learned linguistic conventions
can be fixed into genetically encoded principles necessary
to evolve a language module. Cultural conventions change
much more rapidly than genes, and the Baldwin effect, a
possible Darwinian solution to this challenge, cannot be the
solution to this puzzle [4]. Biological models can be seen
more as a powerful metaphor for studying the effects of
random copying and selection, but more specific mecha-
nisms, typically related to cultural transmission, should be
considered.

Recently, attention was paid to defining specific cultural
dynamics, directly related to linguistic ability. The mecha-
nisms which define the dynamics of the evolution of language
are different from those underlying biological evolution.
Language is transmitted among people through learning and
not DNA. It is shaped by processes of cultural transmission
across generations of language learners. In this view, linguistic
constructions are not innate, but rather they are acquired
through some form of probabilistic learning. This learning
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process, articulated on the use of cognition-general principles,
has become the central issue governing language evolution.
In fact, learning defines the dynamics of linguistic variants,
and the differences among language learnability control these
dynamics. Learnability is quantified measuring the learner’s
capacity to recover a complete description of a linguistic
construction to which she/he has been exposed sufficiently [5].
Several works have studied the differential learnability of
competing linguistic variants [6,7] and also their dynamics
in the absence of selection [8].

Biological dynamics and cultural dynamics of learning are
two central issues which determine the creation of linguistic
structures, but they are not the only ones. Language is
constructed for communication. It is not only the basis for
social relationships, but it is also based on social relationships.
Individual learning is just one aspect of a more general and
collective process. The fixation of the linguistic conventions
among a population of speakers is another dynamics related to
the linguistic definition and the structures which appear to be
learnable at an individual level must be socially fixable. These
social dynamics cause a pressure on language which shapes
a shared communication system. This is a form of collective
learning. It is important to perceive how on a social level
even completely arbitrary linguistic properties can succeed. In
fact, if the same convention is adopted by all members of a
community, this convention can work and finally it becomes
fixed. The only important fact is that everyone adopts the
same set of culturally mediated conventions. Even different
conventions, if equally effective, may serve equally well if
there are no costs or no conflicting functional pressures. The
fixation of structures is not driven by a fitness or a learnability
advantage, but rather by the mechanisms which generate
consensus about the linguistic elements used by speakers. This
process is not necessarily a functional process and is not only
driven by utility. A lot of works related to this social aspect
of language appeared recently, following a seminal paper by
Steels [9]. These ideas were first used to describe the birth
of neologisms, and they have been tested by an artificial
experiment in which embodied software agents bootstrap
a shared lexicon without any external intervention [10].
Robots concretize a language game developing a vocabulary
throughout a self-organized process called the Naming Game.
Recently, these studies have also attracted the interest of
the statistical physics community. An initial study in this
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direction [11] was inspired by experiments conducted with the
use of robots [9]. In that work, each player is characterized
by an inventory of words which can all be used to name
the same object. At each time step, two players, randomly
chosen, interact following some simple rules. These dynamics
force the system to undergo a disorder/order transition toward
an absorbing state characterized by a common word used by
all the players. These ideas have been developed to describe
other phenomena, such as the emergence of universality in
color naming patterns [12] and the self-organization of a
hierarchical category structure in a population of individuals
[13].

The ideas and considerations we have exposed can be
applied across different linguistic levels: lexicon, phonology,
morphology, and syntax. In this work, we will focus our atten-
tion on syntax. Syntax is a process to combine progressively
symbolic units in an ordered output which falls within the
quite narrow bounds that delimit human language. This is
obtained by merging words into larger units and superimposing
algorithms that determine the reference of items that might
otherwise be ambiguous or misleading [14]. As proposed in
the minimalist program [15], the basic syntax-creating process
is Merge, a process that takes two units (words, phrases,
clauses) and forms them into a single one satisfying some
constraints. This means that Merge has many restrictions on
the items to be merged, and there is a consistent way of
merging them. As we are interested in the transition from
nonsyntactic to syntactic communication, it is reasonable to
look for the simplest advance from the pre-syntactic (one-
word) stage, even if it does not specifically correspond to the
syntax of some present-day language. This first step can be
identified with the most basic (proto)syntactic combination,
namely a flat concatenation of two symbols, where all the
possible combinations are functional [16]. This correspond
to a purely linear bead-stringing process, a practice which
underlies protolanguages, such as the one used by speakers of
a pidgin language [17].

In our work, we are interested in exploring the transition
from nonsyntactic to syntactic communication from a social
dynamics point of view. Directly following the ideas of Nowak
et al. [18], the example that we are going to explore can be
stated in this way. Let us consider the situation in which
a speaker is interested in communicating some concepts. If
she/he uses a nonsyntactic language, a symbol (word) is used
for each concept. In the case of a syntactic language, a combi-
nation of two symbols, for example one for the object i and one
for the action j , can be used to communicate the concept Cij

[18]. In the following, we will consider the simplified situation
in which the number of objects and actions exchanged in the
communication are the same (S). Moreover, all the possible
combinations of these symbols can occur and correspond to a
meaningful concept. It follows that, in this model, the possible
combinations can be represented by a matrix Cij = S × S (see
Table I). For example, as a particular situation we can think
that the line elements represent nouns and the column elements
represent verbs. A population of individuals coevolves this sys-
tem of symbols, with or without syntax, by playing elementary
language games (the Naming Game) analogous to the ones
introduced in [11]. In this way, we can analyze the differences
between syntactic and nonsyntactic communication, and we

TABLE I. In a Naming Game with syntax for the communication
of nine concepts, we represent these concepts using the matrix C =
3X3. Each concept is specified by the couple formed by two different
possible words contained in two different inventories among the six
inventories a,b,c,d,e,f . For example, in a concrete situation, a,b,c

can stand for an object (noun) and d,e,f for an action (verb).

a b c

d a + d b + d c + d

e a + e b + e c + e

f a + f b + f c + f

can distinguish when the transition from nonsyntactic to
syntactic communication is socially favored.

The paper is organized as follows. Section II A introduces a
version of the basic Naming Game model for the communica-
tion of one concept, and Sec. II B illustrates the model with one
concept and syntax. Section II C describes the generalization
of the model for many different concepts in the case of
syntactic or nonsyntactic communications. In Sec. III A, we
show the numerical results obtained for a one-concept model
using syntax, or not, along the communications. Section III B
is devoted to illustrating what happens with the introduction of
syntax in a many-concept game. Conclusions are reported in
Sec. IV.

II. THE MODEL

A. The basic model for one concept

The Naming Game is played by P agents who try to reach
consensus in naming a single concept. An inventory, which
contains an arbitrary number of words, represents each agent.
Population starts with empty inventories. At each time step,
two agents are randomly selected; the first one assumes the
role of speaker, the second one of hearer. Then, the following
microscopic rules [11] control their actions:

(i) The speaker retrieves a word from its inventory or, if its
inventory is empty, invents a new word.

(ii) The speaker transmits the selected word to the hearer.
(iiia) If the hearer’s inventory contains such a word, the

communication is a success. The two agents update their
inventories so as to keep only the word involved in the
interaction.

(iiib) Otherwise the communication is a failure. The hearer
learns the word communicated by the speaker.

The players invent new words choosing from among 32
possible words with equal probability. In contrast with the
classical implementation of the model [11], we work with
a fixed maximum number of possible different words. This
is the only difference between our implementation and the
classical one. We introduce this simplification with the goal of
implementing a light model that can be easily generalized
for the description of the naming process for more than
one concept. For this reason, we need a fast algorithm.
This is obtained by using boolean programming techniques,
which causes a veritable improvement in the computational
times. An example of these dynamics is represented in
Fig. 1.
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FIG. 1. (Color online) Example of the dynamics of the inventories
for a one-concept model without syntax. On the left we present
a successful game, on the right a failed one. We represent the 32
possible symbols with only five slots for the sake of clarity. When
a symbol is not present in the inventory, the corresponding bit is set
to 0; otherwise, when the symbol is present, the bit is set to 1. The
shadowed elements are the ones transmitted by the speaker.

B. The syntax model for one concept

Now we consider a context in which one single concept
is exchanged with the use of compositionality, a rudimental
form of syntax. In this situation, the concept is represented by
a couple of symbols αx + βy , each one sorted from a different
inventory Kx and Ky . It follows that each agent is characterized
by two different inventories Kx and Ky . At each time step, the
following microscopic rules control the communication:

(ia) The speaker retrieves a word (αx) from its inventory
Kx ; if its inventory is empty, the speaker invents a new word.

(ib) The speaker retrieves a word (βy) from its inventory
Ky ; if its inventory is empty, the speaker invents a new word.

(ii) The speaker transmits the selected pair of words to the
hearer.

(iiia) If the hearer’s inventories Kx and Ky contain the pair
of words (αx,βy), the communication is a success. The two
agents update their inventories so as to keep, in each one, only
the correspondent words involved in the interaction (αx in Kx

and βy in Ky).
(iiib) Otherwise the communication is a failure. The hearer

adds the words he does not know (one or two) to the corre-
sponding inventory (inventories); the speaker does nothing.

Here we hypothesize that the learning of segmented
elements of the utterance is possible even if the communication
is a failure. This idea is supported by the fact that it is not neces-
sary to have any positive feedback to identify the components
of a speech. In fact, some popular experiments shown how
very young infants can achieve the task of word segmentation
of an utterance with only minimal exposure, just by exploiting
the transitional probabilities between syllables [19]. Even so,
the ability to use exclusively statistical information coming
from a passive exposure to process a given language stream
seems to be confined to the individuation of the segments of a
stream, but not to acquiring the generalization correspondent
to a syntax structure [20]. For this reason, we hypothesize
that the fixation of the structured element αx + βy is possible
only if there is a communication success, i.e., on the basis of
exposure to a positive feedback.

C. Many-concepts games

In this situation, agents develop communications which
can exchange C different concepts. If no syntax structures are

FIG. 2. (Color online) An example of the structure and evolution
of the inventories for the model with syntax when four concepts
(S = 2) are exchanged. In this particular example, the number of
inventories (2S) is equal to the number of concepts. We can think that
the first two inventories represent nouns and the third and fourth stand
for verbs. The starred inventories are the ones corresponding to the
concept sorted out in a specific communication event. The shadowed
elements are the ones transmitted by the speaker.

present, each concept is represented by one symbol. If syntax is
introduced, a combination of two symbols, αx + βy , each one
picked up from a different inventory, represents each concept.
As in the basic model, each symbol is represented by 1 of 32
different possible words.

It follows that for a C concepts game, if there is no syntax,
each agent is represented by Kz,z = 1,2, . . . ,C inventories,
each one containing no more than 32 words. These words are
exchanged in the same way as in a single-concept Naming
Game without syntax.

In the case of a syntactic communication, as explained
in the Introduction, the concepts Cij are represented by the
elements, generated by the combination of two symbols, of a
matrix Cij = S × S. It follows that a C concepts game with
syntax is obtained by introducing agents represented by Kz,
z = 2, . . . ,2S inventories, each one containing no more than
32 words. In Table I, we give an example of a game with nine
concepts. At each time step, a concept is chosen determining
the two inventories that represent it (for example, Ka and Ke,
from which we represent the concept with the couple αa + βe).
The dynamics of each single communication is the same as the
one-concept game with syntax (an example of a four-concept
game is represented in Fig. 2).

III. RESULTS AND DISCUSSION

A. One-concept model

We describe the time evolution of our system on the basis
of some of the usual global quantities [11,21,22], namely the
total number of words (Ntot) present in the population and
the success rate (RS), which measures the average rate of
success of communications. This is obtained by evaluating
the frequency of successful communications in a given time
interval.

The basic model is a simplified version of the original Nam-
ing Game, where the number of different words introduced in
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FIG. 3. (Color online) One-concept model. Top: model without
syntax. We present the temporal evolution for the total number of
words divided by the total population. The inset shows the success
rate RS(t). Bottom: the same data for the syntactic model. All data
are averaged over 1000 simulations.

the system is limited and sorted among a cache of 32. As
a result, a homologous behavior occurs with some limited
differences (see also [21] for similar results). In our version
of the model, the maximum number of words for each agent
is constant and it does not scale with the square root of the
population. This important fact is responsible for remodeling
the temporal scaling behavior. It is important to point out that,
as the mean number of words for each player is always well
below 32, the model maintains all the basic features of the
original one, and the possibility of the invention of new words
is not affected.

All agents start with an empty inventory, and an initial
transient exists which corresponds to the rise of Ntot(t). This
stage finishes when this quantity attains a maximum value
(max[Ntot] ≈ 3.8P ), which is maintained along a plateau.
When the redundancy of words reaches a sufficiently high
level, the number of successful plays increases. The curve
Ntot(t) begins a decay toward the consensus state, correspond-
ing to one common word for all the players, reached at time
T . In Fig. 3, we report the temporal evolution for Ntot(t)
and RS(t).

As shown in [11], it is possible to estimate the maximum
number of total words using some simple analytical consider-
ations. If we represent the mean total number of words for an
agent, at time step t , with n(t), and the mean total number of
different words with D(t), we obtain

n(t + 1) − n(t) = 1

n(t)

(
1 − n(t)

D(t)

)
1

2
− 1

n(t)

n(t)

D(t)
[n(t) − 1].

(1)

We are considering that the probability for the speaker to
communicate a specific word is 1

n(t) and the probability for

the hearer to own that word is n(t)
D(t) . It follows that the first term

represents the gain term for a failed communication [which
increases n(t) by 1/2], and the second term represents the
loss term [which decreases n(t) by n(t) − 1]. We can use this
equation for describing the P dependence. If we assume that at
the plateau, where we can consider n(t + 1) − n(t) = 0, n(t)
scales as αP β , and that D ≈ 32, we can write

1

2αP β

(
1 − αP β

32

)
= 1

32
(αP β − 1). (2)

This equation reduces to 1
P β ∝ P β , which forces β = 0.

This fact implies that the number of total words for each player
is not dependent on P . It follows that max[Ntot] ∝ P , as can
be seen in Fig. 3. Equation (2) can also be used to evaluate the
exact numerical value of the plateau. It is sufficient to consider
αP β as a constant, and the corresponding value is 4.25. If
we take into consideration that our equations are a mean
field approximation that does not account for the correlations
built up between the individuals’ inventories, the value is
comparable with the result 3.8 obtained by the simulations.

We explored the behavior of the convergence time T 1
ns (the

index 1 stays for a one-concept play). As stated before, this
is the time at which the system reaches the consensus state,
corresponding to one shared word for all the players. We
studied the dependence of T 1

ns on P averaging over different
simulations, obtaining, throughout a regression, the following
dependence: T 1

ns(P ) ≈ −22.1P + 7.6P ln P (see Fig. 4). This
result corresponds to the average convergence time over
different simulations, which is obviously different from the
convergence time of the mean simulation (the one presented
in Fig. 3). These analyses, as well as the following ones, are
consistent for sufficiently large populations.

We can support these numerical results with some analytical
considerations analogous to the ones presented in [23]. During
the time evolution, we can distinguish two periods. (i) A first
interval, between t = 0 and the time when the system reaches
the maximum number of words (tmax), which clearly scales
linearly with the population size (see Fig. 3). (ii) A second
interval, between tmax and T 1

ns , which is governed by the
following dynamics. To reach convergence, the mean number
of words for each individual, which does not depend on P ,
has to decrease to 1. As at each play the loss term does
not depend on P , from the definition of the dynamics of our
model a necessary condition for convergence is that each agent
must win at least once. For this reason, near convergence, the
number of agents which did not have a successful interaction
(P ∗) should be finite. We can estimate this number. In fact,
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FIG. 4. (Color online) We present the convergence time as a function of the population size for the one-concept model. Top: the model
with no syntax is well fitted by the depicted relation T 1

ns ≈ −22.1P + 7.6P ln P . The model with syntax is well fitted by the relation:
T 1

s ≈ −213.2P + 52.7P ln P . Bottom: rescaled convergence times for the model without syntax (on the left) and with syntax (on the right).
The rescaled times are well fitted by the function a1 + a2 ln P (continuous lines). A power law fit of these data (b1P

b2 ), represented by the
dashed lines, turns out to be moderately less accurate than the previous one, which can be derived from some theoretical considerations.

P ∗(t) = P [1 − RS(t)/P ]t , where 1/P is the probability of
selecting an agent and RS(t) corresponds to the probability
of a success. As can be seen in the inset of Fig. 3, RS(t)
does not depend on P and it is practically constant for a
long time after tmax. It follows that (1 − 1/P )tdiff ∝ 1/P , where
tdiff = T 1

ns − tmax. For large P , we obtain tdiff ∝ P log(P ). This
condition turns out to be sufficient when confronted with the
numerical data. In fact, T 1

ns turns out to be very well fitted by
a function of the type c1P + c2P lnP .

We can perform a similar analysis for the syntactic model
with one concept. In this case, we are implementing a game
where each agent is represented by two inventories, which
follows the rules presented in the previous section. From
the results of our simulations, we can observe that the
crucial features that determine the scaling properties of the
convergence times are also maintained in this scenario. In fact,
as can be seen in Fig. 3, max[Ntot] ∝ P , tmax scales linearly
with P and RS(t) continues independent of P . As the same
arguments produced for estimating T 1

ns continue to be valid, we
can expect the T 1

s dependence on P to have the same functional
form of T 1

ns . Fitting our numerical data with such a function
(see Fig. 4), we obtain the following scaling relation for the
convergence time for a syntactic model with one concept:
T 1

s (P ) ≈ −213.2P + 52.7P ln P .

B. Many-concepts model

First, it is useful to introduce a quantity, the total conver-
gence time T tot. This is the time when the system reaches the
consensus state, corresponding to one shared expression for
each concept and for all the players. Equivalently, it is the time
when every communication event, relative to any one of the
possible concepts, is a success.

Given an experiment set up so that C concepts are
exchanged, if there is no syntax, the behavior described for
the basic game with no syntax is reproduced for each of the
concepts, and so it is easily generalized. In fact, the dynamics
of each concept is obviously independent of those of the
other concepts. This fact implies that if there is no syntax,
T tot

ns = CT 1
ns(P ) = S2T 1

ns(P ).
This is not the case if we introduce syntax. In this case,

as we stated before, we consider the situation in which the
matrix Cij = S × S represents all the exchanged concepts.
We explore numerically the behavior of the total convergence
time as a function of the number of concepts. We assume as
a null hypothesis that T tot

s depends linearly on the dimension
of the matrix Cij . As presented in Fig. 5, the analysis of the
data from simulations suggests that this scaling relation is
satisfied. Moreover, for S � 2, we can express the regression
coefficients for different population sizes with a simple ex-
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FIG. 5. (Color online) The convergence time as a function of
S for different populations. The linear regressions are very well
approximated by the general expression T tot

s ≈ 1.5ST 1
s (P ) (the

continuous lines). The inset shows the convergence time as a function
of P for different S values. The convergence times for S = 4,9 are
rescaled by the factor 1.5S. The continuous lines are the rescaled
curves c1P + c2P ln P obtained from the regressions. The rescaling
transformation produces a good collapse of data and curves. Data are
averaged over up to 1000 simulations.

pression that uses T 1
s (P ): T tot

s ≈ 1.5ST 1
s (P ). This expression

is derived from a numerical analysis of the data obtained from
simulations. Some results supporting this scaling are reported
in Fig. 5.

Starting from the scaling relation for the convergence
time in dependence on P and S, we can determine the
different behavior generated by the introduction of syntax.
Quantifying this convergence time allows us to determine
the strategy that enables a more effective communication. In
fact, reaching consensus at a collective level corresponds to
an efficient communication at an individual level. Depending
on the number of concepts exchanged and on the population
size, we can determine if the total convergence time for a
model with syntax is shorter than that for a model without
syntax. This situation is attained if 1.5ST 1

s (P ) < S2T 1
ns(P ).

Using this estimation, we are able to determine a critical
value of S for which the emergence of syntax is viable:
S > 1.5T 1

s (P )/T 1
ns(P ).

From this relation it follows that, if the number of
exchanged concepts is sufficiently large in relation to the
population size, the syntactic model is able to generate a
faster convergence toward consensus. The dependence on
the population size is very weak. For a population of 2000
individuals, S = 8 is sufficient for the conventionalization of
syntax, and for a population 100 times larger, it is sufficient
to select S = 10. So, from an empirical point of view, for
typical populations, the relevant factor is simply the number
of exchanged concepts, an interesting fact that enhances the
possibility of syntax to emerge as an auto-organized process.
The results obtained using our approximation were confirmed
by different numerical simulations. In Fig. 6, we present an
example for P = 25 000. In this case, the matrix dimension

FIG. 6. (Color online) Temporal evolution of the success rate for
a different number of exchanged concepts (C) for a model without
syntax or with syntax. For C � 81, T tot

s < CT 1
ns , which means a faster

convergence for population using syntax. P = 25 000

should be bigger than 8, and effectively, from our simulation, if
we exchange 81 concepts (S = 9), the syntactic model clearly
performs better than the nonsyntactic model. In others words,
the introduction of syntax generates a social communicative
advantage when language must cope with a lot of concepts and
when it is employed in smaller communities. In this context,
the transition from nonsyntactic to syntactic communication
is socially favored.

IV. CONCLUSIONS

We formulate a simple framework to explore the possibility
of the emergence of an elementary syntactic structure fixed
by the social dynamics defined by communication. We start
with a version of the Naming Game model generalized
for exchanging many different concepts. A simple syntactic
structure is introduced in the form of a binary combina-
tion process, and the algorithm for fixing this structure is
inspired by some known results relative to the individual
learnability of linguistic structures. In this way, we can
analyze the transition between syntactic and nonsyntactic
communication on the basis of the social communicative
potential of a linguistic structure, and not on the ba-
sis of the individual fitness or the velocity of individual
learning.

From the analysis of this model, we can show that,
under certain conditions, syntactic communication can reach
consensus more efficiently than nonsyntactic communica-
tion, even if the task of fixing syntactic structure is more
difficult. We are able to show some critical values for
the number of exchanged concepts in dependence on the
population size for which the emergence of syntax is
viable.
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