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Epidemic spreading on interconnected networks
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Many real networks are not isolated from each other but form networks of networks, often interrelated in
nontrivial ways. Here, we analyze an epidemic spreading process taking place on top of two interconnected
complex networks. We develop a heterogeneous mean-field approach that allows us to calculate the conditions
for the emergence of an endemic state. Interestingly, a global endemic state may arise in the coupled system even
though the epidemics is not able to propagate on each network separately and even when the number of coupling
connections is small. Our analytic results are successfully confronted against large-scale numerical simulations.
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Epidemic spreading is one of the most successful appli-
cation areas of the new science of networks [1,2]. Indeed,
the general acceptance within the scientific community that
many diseases, like sexually transmitted diseases or the H1N1
virus, spread over networked systems represents a major step
toward their understanding and control [3–5]. From a physics
perspective, epidemic processes have been widely studied as a
paradigm of nonequilibrium phase transitions with absorbing
states [6]. When applied to complex networks, these processes
have become a source of new and striking phenomena that do
not have a counterpart in regular lattices. Germane examples
are the absence of epidemic and percolation thresholds in
scale-free networks with a power law degree distribution
P (k) ∼ k−γ , with γ ∈ (2,3], and an anomalous critical be-
havior when γ ∈ (3,4) [7–9].

We currently have a solid understanding of epidemic
processes when they take place on single isolated networks. In
contrast, our comprehension is very limited when epidemics
happen on coupled interconnected networks. For example,
sexually transmitted diseases can propagate both in hetero-
sexual and homosexual networks of sexual contacts [4]. These
two networks are not completely isolated due to the existence
of bisexual individuals, which act as an effective coupling
between the two networks and potentially affect their epidemic
properties [10]. Apart from a few previous works [11,12], a
theory describing these types of systems has not yet been fully
developed.

In this paper, we present a rigorous heterogeneous mean-
field study of the susceptible-infected-susceptible (SIS) model
taking place on two interconnected complex networks. Our
analysis reveals a highly nontrivial behavior of the epidemic
process depending on the strength and nature of the coupling
between the networks. We calculate the global epidemic
threshold of the process, which turns out to be smaller than
the epidemic thresholds of the two networks separately under
certain conditions. This implies that an endemic state may
arise even if the epidemics is not endemic in any of the
two networks separately, as we prove analytically and with
large-scale computer simulations. Analogous results apply
also to the susceptible-infected-recovered (SIR) model.

To begin our analysis, we have to specify the topological
properties of our networks. Let A and B be two interconnected
random networks with given local properties and given two-
point correlations. Each node in network A (respectively B) is

characterized by a vector degree ka ≡ (kaa,kab) representing
the number of its internal connections kaa to other nodes in
A and the number of external connections kab with nodes of
network B. The analogy to the degree distribution in single
networks is then the probability that a randomly chosen node
of network A has a vector degree ka , PA(ka) = PA(kaa,kab),
where, in general, kaa and kab may be correlated. A similar defi-
nition applies to PB(kb) for network B. These two distributions
are arbitrary except for the consistency condition NA/NB =
〈kba〉/〈kab〉, where NA/NB is the ratio between the sizes of
the two networks and the right-hand side is the ratio between
their external average degrees. This condition states that the
total number of edges leaving network A towards network
B must be the same going from network B to network A.
Two-point correlations, on the other hand, are encoded by the
transition probabilities PAA(k′

a|ka), PAB(k′
b|ka), PBA(k′

a|kb),
and PBB(k′

b|kb). For instance, PAB(k′
b|ka) is the probability

that being in a node of network A with vector degree ka a
randomly chosen neighbor in network B has vector degree
k′

b. Similar definitions apply to the rest of the transition
probabilities.

As the epidemic spreading model, we consider the SIS
model that, together with the SIR model, is one of the
best-studied models in epidemiology [13]. The model has a
nonequilibrium phase transition between an endemic state
with sustained epidemic activity and a healthy phase where
the epidemics dies out. Individuals can be in two different
states, either susceptible (S) or infected (I ). Infected indi-
viduals decay spontaneously to the susceptible state at rate δ

(which, without loss of generality, we set to δ = 1), whereas
susceptible ones get infected at a rate proportional to the
number of infected neighbors they have at a given time. For two
interconnected networks, we have to specify these processes
separately. Let λaa (λbb) be the infectious rate between nodes
in network A (B) and λab (λba) the infectious rate from a node
in A (B) to a node in B (A).

The quantity of interest in the SIS dynamics is the
prevalence, ρ(t), defined as the fraction of infected nodes at a
given time. To describe its evolution, we use the heterogeneous
mean-field approximation. In this approximation, nodes are
classified within classes of equivalence such that all nodes
within a given class are considered as statistically equivalent.
In our case, classes of equivalence are defined by the network
itself (A or B) and by specific values of the vector degree.
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Following these assumptions, we define the partial prevalences
ρA

ka
(t) and ρB

kb
as the fraction of infected nodes with a given

vector degree. The total prevalences for each network is
then computed as ρA(t) = ∑

ka
PA(ka)ρA

ka
(t) and ρB(t) =∑

kb
PB(kb)ρB

kb
. Following Refs. [7,14], the time evolution of

the dynamics can be written as

dρA
ka

dt
= −ρA

ka
+ λaa

(
1 − ρA

ka

)
kaa

∑
k′

a

ρA
k′

a
PAA(k′

a|ka)

+ λba
(
1 − ρA

ka

)
kab

∑
k′

b

ρB
k′

b
PAB(k′

b|ka). (1)

The first line in Eq. (1) describes the standard SIS model for
a single network [14], whereas the second line appears due
to the coupling of network A with network B. An analogous
equation can be written for network B by swapping the indices
A → B and a → b in Eq. (1).

As in a single network, this process undergoes a phase
transition between a healthy phase with ρA

ka
= ρB

kb
= 0 and an

endemic phase with ρA
ka

	= 0 and ρB
kb

	= 0. However, a mixed
phase with endemic activity in one network whereas the other
is in a heathy state is not possible in the system formed by the
two coupled networks, where the epidemics propagates to the
whole system if it is able to propagate in one of the networks.
This is due to the fact that the state ρA

ka
= 0 and ρB

kb
	= 0 is

not a fixed point of the dynamics in Eq. (1). The critical point
separating the healthy and endemic phases can be obtained by
studying the stability of the absorbing solution. This can be
done by linearizing the system of Eq. (1) around ρA

ka
= ρB

kb
= 0

and studying the spectrum of the corresponding matrix. Close
to the absorbing state, Eq. (1) can be written as

d 
ρ
dt

= −
ρ + C 
ρ, (2)

where we define the vector prevalence as 
ρ ≡ (ρA
ka

,ρB
kb

) and

C =
(

λaakaaPAA(k′
a|ka) λbakabPAB(k′

b|ka)

λabkbaPBA(k′
a|kb) λbbkbbPBB(k′

b|kb)

)
. (3)

The absorbing state is stable whenever the maximum eigen-
value of matrix C satisfies �m < 1. Otherwise, the absorbing
state is unstable and an endemic state takes over the system.
The critical epidemic point is then defined by �m = 1.

When the networks do not have two-point correlations, the
transition probabilities can be written as

PAA(k′
a|ka) = k′

aaP (k′
a)

〈kaa〉 ; PAB(k′
b|ka) = k′

baP (k′
b)

〈kba〉 . (4)

In this case, the eigenvalues of matrix C are the solutions of
the following equation,

[x − �A][x − �B]
[
x2 − �2

AB

]
= αabαba + μabαba[x − �A] + μbaαab[x − �B], (5)

where

�A = λaa

〈
kaa

2
〉

〈kaa〉 , �B = λbb

〈
kbb

2
〉

〈kbb〉 , and (6)

�2
AB = λab

〈
k2
ab

〉
〈kab〉λ

ba

〈
k2
ba

〉
〈kba〉 ≡ μabμba, (7)

and where

αab = λaaλab 〈kaakab〉2

〈kaa〉〈kab〉 and αba = λbbλba 〈kbbkba〉2

〈kbb〉〈kba〉 .
(8)

Constants appearing on the left-hand side of Eq. (5) have a
clear interpretation. Indeed, �A and �B are the maximum
eigenvalues of networks A and B as if they were isolated.
Therefore if, for instance, �A > 1 then network A is able
to sustain an endemic state by itself when isolated from
network B. Similarly, �AB is the maximum eigenvalue of
the network AB as a pure bipartite system, that is, when
all internal connections inside networks A and B are absent.
Again, when �AB > 1, the pure bipartite network AB is able
to sustain an endemic state, both in the coupled system and
even if there were no connections whatsoever within each
individual network. Constants αab, αba , μab, and μba appearing
on the right-hand side of Eq. (5) contain information about the
strength and nature of the coupling between the nets.

From Eq. (5), it is easy to see that the maximum eigenvalue
of matrix C, �m, is always larger than max (�A,�B,�AB).
It is therefore possible to find endemic states with �m > 1
but where �A < 1, �B < 1, and �AB < 1, that is, situations
where neither networks A and B isolated nor the pure
bipartite network AB are able to sustain the endemic state
and yet the epidemics pervades in the coupled system. This
effect is more or less important depending on the strength
of the coupling, i.e., the number of links between the two
networks—quantified by 〈kab〉 and 〈kba〉—and the specific
correlations between internal and external degrees—measured
by the factors 〈kaakab〉 and 〈kbakbb〉.

In the rest of the paper, we focus on the interesting
case �A < 1, �B < 1, and �AB < 1, and ask under which
condition the endemic state exists, that is, �m > 1. From
Eq. (5), we see that this happens when the right-hand side
of Eq. (5) evaluated at x = 1 is larger than the left-hand side
evaluated at the same point, which after some algebra yields

[αab + μab(1 − �A)][αba + μba(1 − �B)]

> (1 − �A)(1 − �B). (9)

This equation is one of the main results of our paper. It allows
us to evaluate the conditions for the emergence of the endemic
state in many different situations.

In real networks of sexual contacts, the most promiscuous
individuals in one network are also the ones with the largest
number of sexual partners in the other network [10]. This
fact suggests that there exists a positive correlation between
the internal and external degree for a given node. We model
these correlations by taking the vector degree distribution
to be PA(kaa,kab) = PA(kaa)g(kab|kaa), where g(kab|kaa) is
a Poisson distribution with mean k̄ab(kaa) = 〈kab〉kβ

aa/〈kβ
aa〉,

and analogously for PB(kbb,kba). This choice allows us to
interpolate between a random distribution of links between
the two networks, β = 0, and positive correlations, where high
degree nodes in both networks concentrate the majority of the
coupling links, β > 0. Inserting this assumption in Eq. (9), we
obtain the critical lines that define the phase diagram in the
hyperplane �A, �B , αab, and αba .
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FIG. 1. (Color online) Phase diagram showing the healthy phase
and the endemic phase for the case of a random coupling (top),
linear correlations (middle), and superlinear correlations between
external and internal degrees (bottom). In all cases, networks A
and B are identical, with an exponential degree distribution with
〈kaa〉 = 〈kbb〉 = 10 and minimum degree 2. The area depicted in
solid gray corresponds to the healthy phase and the transition to the
endemic state is represented by the black curve. The dashed orange
area corresponds to the endemic state that needs the contribution
of both internal and external links and the white area to the case
when the pure bipartite network alone is able to sustain the endemic
state. The horizontal dashed line marks the point where external
connections outnumber internal ones. Notice that when β increases,
nodes with high internal degrees also have high external degrees with
high probability. Because of this, these nodes are excellent spreaders.
As a consequence, the network needs smaller values of � and/or
interconnectivity to be in the endemic phase.

Figure 1 shows examples of phase diagrams for two
identical networks with a symmetric coupling, that is, �A =
�B = �, αab = αba = α, and μab = μba = μ. In general,
nonsymmetric cases can be easily studied using Eq. (9), which
simplifies to α > (1 − �)(1 − μ) for symmetric coupling. We
consider the case of networks with an exponential degree
distribution and the values of β = 0, 1, and 2. In sexual contact
networks, the number of contacts is limited not by the size of
the network but by people’s ability to engage others in sexual
intercourse during the finite time scale of the epidemics. This
limits the network heterogeneity and justifies our choice of
an exponential degree distribution. The most interesting case
corresponds to the range of parameters where both internal
and external links are needed for the existence of the endemic
state—depicted in orange in Fig. 1, and particularly when the
internal connections outnumber the external ones (the portion

below the dashed line). This area shrinks when increasing
β but, simultaneously, it also appears at lower values of the
ratio of external versus internal connections for the same �.
Therefore, keeping the two networks unchanged and for a fixed
number of links between them, the epidemic can be either in
the healthy phase or in the endemic phase depending on how
these links are distributed among the nodes of the networks.
Notice that, if correlations are strong enough, the bipartite
network alone is able to sustain by itself the endemic state in
the coupled system.

We checked our predictions with large-scale numerical
simulations. The SIS dynamics is simulated with a continuous
time dynamics as follows. During the course of the simulation,
we keep track of the number of infected nodes NI (t) and the
number of active links EA(t), where an active link is defined as
a link connecting a susceptible node and an infected node. At
each step, with probability pr = NI (t)[NI (t) + λEA(t)]−1, a
randomly chosen infected node is turned susceptible whereas,
with probability 1 − pr , an active link is chosen at random and
the susceptible node attached to it is turned infected. After this
procedure, time is updated as t → t + [NI (t) + λEA(t)]−1.
We run this algorithm on the networks used in Fig. 1 of size
N = 106. Having fixed the internal network properties, we fix
the value of � by adjusting the infectious rate λ using Eq. (6).
For each value of �, we change the average external degree
and study the temporal behavior of the prevalence. The critical
point is determined as the point where ρ(t) decays as a power
law [6], as shown in Fig. 2.

Using this method, we compute the critical line in the plane
(〈kab〉/〈kaa〉,�) for the three cases analyzed in Fig. 1. We limit
our search to the domain (〈kab〉 < 〈kaa〉,� < 1). Simulation
results are shown in Fig. 3 along with the analytic predictions
given by Eq. (9). We observe a systematic shift between theory
and simulations. The reason is that our mean-field approach
does not consider dynamical correlations. These correlations
imply that, with high probability, an infected node has its
infecting neighbor still infected during some time right after
the infectious event. This reduces the number of potential new
infections that this node can produce. We can correct this
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FIG. 2. (Color online) Time evolution of the prevalence ρ(t)
below and above the critical point for � = 0.8 for two identical
networks interconnected with linear correlations, i.e., β = 1. Each
network has an exponential degree distribution with 〈k〉 = 10 and
minimum degree 2. The size of each network is N = 106 and results
are averaged over 100 different realizations of the process. Right at
the critical point, the prevalence decays as ρ(t) ∼ t−1.
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FIG. 3. (Color online) Critical lines for β = 0, 1, and 2 for
the same networks as in Fig. 2. Symbols correspond to numerical
simulations, black lines are the theoretical predictions according to
Eq. (9), and blue dashed lines are obtained by rescaling the � axis as
� → �(1 − 〈k〉/〈k2〉)−1. Error bars are of the order of symbol sizes.

effect in the same way as it is done in the SIR model, just by
reducing the number of contacts by one. In our equations,
this is achieved by replacing the maximum eigenvalue of
the networks by � = λ〈k(k − 1)〉/〈k〉. This is, of course, a
limiting case because there are cases where the infecting
neighbor recovers and can be reinfected. Thus, we expect to
find simulation results between these two extremes. We show
this correction in Fig. 3 as the gray area. Indeed, all simulation
points fall within this gray area, confirming then our intuition.
In addition, after this correction is performed, our results can

be readily used to evaluate the epidemic threshold of the SIR
model.

The study of interconnected and/or interdependent net-
works reveals new and unexpected phenomena [15]. Here,
we have shown that two networks well below their respective
epidemic thresholds may sustain an endemic state when
coupling connections are added, even in small numbers.
This may have important implications for the design of
efficient control strategies. However, the effects of the cou-
pling are highly nontrivial and may vary depending on the
strength and the correlations of the interconnecting links.
We foresee similar effects appearing in many different
dynamics showing equilibrium and nonequilibrium phase
transitions.

Note added in proof. Recently, we became aware of two
recent preprints where the SIR model on interconnected
networks is studied [16,17]. In Ref. [16], the authors find
a mixed phase where one network propagates the epidemic
while the other does not. Neither our analytic results nor our
simulation results indicate the existence of such a mixing phase
in our case.
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