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Sixty years ago, it was observed that any independent and identically distributed (i.i.d.) random variable would
produce a pattern of peak-to-peak sequences with, on average, three events per sequence. This outcome was
employed to show that randomness could yield, as a null hypothesis for animal populations, an explanation
for their apparent 3-year cycles. We show how we can explicitly obtain a universal distribution of the lengths
of peak-to-peak sequences in time series and that this can be employed for long data sets as a test of their
i.i.d. character. We illustrate the validity of our analysis utilizing the peak-to-peak statistics of a Gaussian white
noise. We also consider the nearest-neighbor cluster statistics of point processes in time. If the time intervals are
random, we show that cluster size statistics are identical to the peak-to-peak sequence statistics of time series. In
order to study the influence of correlations in a time series, we determine the peak-to-peak sequence statistics
for the Langevin equation of kinetic theory leading to Brownian motion. To test our methodology, we consider a
variety of applications. Using a global catalog of earthquakes, we obtain the peak-to-peak statistics of earthquake
magnitudes and the nearest neighbor interoccurrence time statistics. In both cases, we find good agreement
with the i.i.d. theory. We also consider the interval statistics of the Old Faithful geyser in Yellowstone National
Park. In this case, we find a significant deviation from the i.i.d. theory which we attribute to antipersistence.
We consider the interval statistics using the AL index of geomagnetic substorms. We again find a significant
deviation from i.i.d. behavior that we attribute to mild persistence. Finally, we examine the behavior of Standard
and Poor’s 500 stock index’s daily returns from 1928–2011 and show that, while it is close to being i.i.d., there
is, again, significant persistence. We expect that there will be many other applications of our methodology both
to interoccurrence statistics and to time series.
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I. INTRODUCTION

It is natural to seek patterns in most everything that we
encounter, prompting the question whether these patterns are
real. Indeed, we normally expect that observations are due
to some deterministic cause. Accordingly, we expect that
“random uncorrelated events,” in space and/or time, should be
devoid of any underlying order. However, in a mathematical
sense, it is plausible for some forms of order to exist in random
data. A familiar example emerges from the normality (or
Gaussian behavior) observed in many statistical distributions
of values as a consequence of the central limit theorem [1].
Here we examine possible signatures of order that we detect
with our eyes but do not satisfy currently established criteria
for order. For example, it is natural to consider different points
in space or time as being related if they are “close” to each
other [2]. By making such an association, it is possible to
identify “clusters” based on nearest-neighbor relationships.
In addition, when examining data from experiments or field
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observations, it is natural to find patterns in the distribution
of peaks in a data set. In this paper, we consider whether
patterns associated with clusters and/or peak values could be
an outcome of independent and identically distributed (i.i.d.)
behavior. We will consider random events in time (e.g., a
Poisson process), an i.i.d. time series (e.g., Gaussian white
noise), and a variety of applications.

Many years ago, the Columbia biologist Lamont Cole
consulted his mathematician colleague Mark Kac regarding
possible periodicity in field-based observations of animal
populations. The annual estimates of the population of a
species constitutes a time series. Peak populations were
associated with years in which the population was greater than
the population in the previous or succeeding years. Cole [3]
presented data obtained by others 30 years earlier for the Arctic
fox and wolf populations in Canada. The data suggested the
existence of a 3- to 4-year cycle in going from peak-to-peak.
The prevailing view was that this was the outcome of a
predator-prey cycle in a complex ecosystem. We denote the
number of years before a new peak occurs by m. Cole [3]
noted that the observed or sample mean of the m values was
m̄ ≈ 3 to 4 and matched the observed mean obtained from
uniformly and independently distributed random numbers
plotted in the same way. As a result of this consultation with
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Kac by Cole, Kac provided an elegant argument, presented
in Cole [3] but neither extended nor published elsewhere.
This argument demonstrated that the wildlife data could be
entirely due to random processes. Kac’s argument considered
three consecutive points and observed that if the data are
from independent and identically distributed (i.i.d.) random
variables, then the probability that the middle point is the
highest is 1/3 independent of the underlying probability
distribution. Kac, in Ref. [3], therefore established that, on
average, there are three events before a new peak occurs.

However, Kac’s resolution of this problem is only a partial
one. What distribution of sequence lengths can we expect?
How would this distribution, in terms of event counts, differ
from that obtained by some deterministic biological or physical
model? Unfortunately, the data sets used by Cole [3] were
not sufficiently long to provide good statistics. Consequently,
more extensive data sets are essential. Imperial College,
London, UK, and its NERC Center for Population Biology
[4] has amassed a very comprehensive set of population
biology-related data. Kac’s observation indicates that the
null hypothesis that the data are consistent with statistically
independent random numbers cannot be dismissed. There
exists substantial controversy, e.g., Refs. [5,6], regarding how
well various predator-prey models fit observational data.

It is important, and a main purpose of this paper, to deter-
mine the distribution of peak-to-peak sequence lengths m for
a random uncorrelated process. We then use this information
to assess whether data sets in a variety of applications are the
outcome of i.i.d. processes or are the product of a complex
dynamic, possibly maintaining memory effects, that provide a
deterministic foundation for the observed data.

In this paper, we will also consider the cluster statistics of
any i.i.d. random variable that represents a point process in
time. A cluster is defined to be a set of events that appear
to be grouped in time, i.e., are mutually closest in time.
The underlying theory for this cluster formation is given in
Ref. [2] as well as elaborated on in the context of hierarchical
and multidimensional behavior. The basic problem we will
consider is as follows: Consider a sequence of events in time
and we display each event as a point on a time line. We then
draw an arrow from each point to its nearest neighbor in time,
either the event immediately before it or immediately after
it. The edge of a cluster is defined by an interval containing
no arrows. In this way, we have constructed a set of directed
graphs, each of which has the appearance of a distinct cluster.
In practical terms, the edges of a cluster are bounded by time
intervals that are longer than their two respective adjacent
interval values. This condition for time intervals is identical to
the local maximum value in the time series discussed above.

We will consider two i.i.d. processes in this paper. The first
is a sequence of events in time in which intervals are selected
randomly and independently from a statistical distribution. The
statistical distribution’s yields cluster sizes in a closed-form
result for any population and the population mean has a value
of 〈m〉 = 3 as given by Newman [2]. The second process is
an uncorrelated time series in which the values are selected
randomly and independently from a statistical distribution.
The statistical distribution of peak-to-peak sequence lengths
also has a mean value 〈m〉 = 3. We show that the sequence
lengths for Monte Carlo simulations for a Gaussian white noise

are in excellent agreement with our theory. We then extend
our analysis to Brownian motion and show that the statistical
distribution of peak-to-peak sequence lengths has a mean value
〈m〉 = 4. We shall consider a variety of problems emerging
from natural hazards to see if they are statistically consistent
with the null hypothesis emerging from a random process. We
also consider random processes that include “memory effects,”
such as those encountered in the Langevin equation [7,8] of
statistical mechanics in the theory of Brownian motion.

II. PROBABILISTIC DESCRIPTION OF PROBLEM
AND KAC’S SOLUTION

Suppose that we have three sequential events with am-
plitudes xn−1, xn, and xn+1, where n designates the middle
event, i.e., xn is the amplitude of the n-th event. Without
loss of generality, we will replace n with 0. Suppose, now,
that these events are independent and can be described by
the same cumulative distribution function 0 � P (x) � 1 for
0 � x < ∞. We can modify our definitions to allow for a
doubly infinite or a finite domain for the random variable
x. For convenience, although this is not necessary for our
derivation, we shall assume that P (x) is differentiable and has
a probability density function p (x) defined by

p(x) ≡ dP (x)

dx
� 0 and P (x) =

∫ x

0
p(x ′) dx ′. (1)

It follows, therefore, that the probability P that the amplitude
of the middle event, designated by x0, is greater than that of
its neighbors x−1 and x+1 is given by

P =
∫ ∞

0
p(x0) dx0

∫ x0

x−1=0
p(x−1) dx−1

∫ x0

x1=0
p(x1) dx1.

(2)

We observe that the integrals over x+1 can be written P (x0),
which can also be said for the integral over x−1. Moreover, we
can express p(x0) dx0 = dP (x0). Therefore, Eq. (2) becomes,
where we no longer have a need for the subscript “0,”

P =
∫ ∞

x=0
P 2(x) dP (x) =

∫ 1

0
P 2 dP = 1

3
. (3)

Remarkably, this result does not depend on the explicit nature
of the underlying probability distribution function P (x). While
this result was immediately obvious using Kac’s [3] argument,
we have now introduced the methodology that we will employ
in calculating the distribution of sequential event lengths, m.

In order to illustrate this behavior, consider Fig. 1. This
figure has two components. We will begin by considering the
first of these, Fig. 1(a), which contains a sequence of eight
events in time. We will regard this as a time line which begins at
time 0. Each point on the time line can be regarded as an event
or a milestone. Moreover, each point corresponds to the sum
of the previous point’s location and a selected interval, namely
the xi , which we now identify as intervals τi . While we refer to
this axis as representing time, it can also represent distance and
other variables in different applications. From each point, we
draw a line terminating in an arrow to its nearest neighbor. We
observe that the configuration that arises displays gaps which
are longer than the time intervals flanking the gaps on both
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(a)

m = 2m = 3 m = 4

(b)

τ3 τ4 τ5 τ6 τ7 τ8τ2τ1

τi

t

FIG. 1. In (a), we show a sequence of nine events in time t .
The interoccurrence times are τ1, τ2, . . . ,τ8. We consider nearest
neighbors in time clustering. The events at the ends of each cluster
are solid circles, while the interior events are open circles. We show
arrows from each point to its nearest neighbor. Intervals with no
intervening arrow correspond to intervals that are longer than those
on either side. The corresponding nearest-neighbor cluster sizes are
m = 3, 4, and 2. In (b), we give a time-series representation of
the sequence of interoccurrence times τi shown in (a). A peak value
is defined to be larger than its two neighboring values. The peaks
in the time series are shown with solid circles and lower values as
open circles. The intervals τ3 and τ7 are peaks. The peak-to-peak
sequence lengths are m = 3, 4, and 2. We see that the time series
representation in (b) is identical to the time line representation in (a).
The nearest-neighbor cluster statistics and the peak-to-peak sequence
statistics are identical.

sides. Similarly, we observe intervals on the time line that
are shorter than those of the intervals flanking them. These
locally shortest intervals have two arrows, each pointing in
the opposite direction. We refer to such intervals and the
presence of two arrows as being “reflexive.” We observe the
emergence of groups of points, interconnected by these arrows,
that we will refer to as “clusters.” Newman [2] showed that
the kind of construction we have presented at the base of this
diagram is a (random) directed graph and showed, analytically,
that the mean number of events in a cluster is 〈m〉 = 3, so long
as the distribution of time intervals is an i.i.d. random variable.
For the example given in Fig. 1(a), we have cluster sizes m = 3,

4, and 2.
In Fig. 1(b), we give a time series representation of the

sequence of interoccurrence times τi shown in Fig. 1(a). A
peak value in the time series is defined to be a value larger than
the two neighboring values. We define a sequence length to be
the number of events that occur until the last event is another
maximum. The sequence lengths in Fig. 1(b) are m = 3, 4,
and 2, which is equal to the cluster sizes in Fig. 1(a).

In Fig. 1, we have presented two seemingly different
constructions which, remarkably, appear to have a common
feature, namely that there are, on average, three intervals
per cluster and three events per sequence. To establish this
connection and the geometries that make this rigorous, the
two parts of this figure are intimately related. We began by
selecting time intervals between events and produced the time
line as a directed graph using the prescription above. In the
middle of each time interval, we then introduced a point with

an amplitude xi proportional to the time interval τi . Hence, the
role of time intervals, for the directed graph, and of amplitudes,
for the line graph, are equivalent. We further note that the
peaks (or local maxima) are situated directly above the middle
of the gaps between the clusters. Further, the valleys (or local
minima) are situated directly above the middle of the reflexive
intervals in each cluster. Therefore, it should come as no
surprise that the derivation we are about to provide for the
distribution of peak-to-peak sequence lengths is essentially
equivalent to that provided in Ref. [2] for one-dimensional
clustering. The construction given in Fig. 1 directly relates
the cluster statistics in the temporal occurrence of events to
any time series, it provides a visual verification of Kac’s [3]
observation that there are on average three events per “cycle”
(in the biological problem) or, more generally, peak-to-peak
event sequence.

Having established this algebraic/geometrical relationship,
we must now analyze the structure of all possible peak-to-peak
sequences. In Fig. 2, we illustrate the “taxonomy” of a time
series that emerges. The shortest such sequence is of length
m = 2, where there is but one intervening point x0 between
peaks situated at x−1 and x+1. However, for these points to
be peaks, they must be higher than the points that flank them.
Therefore, we require

0 < x−2 < x−1 > x0 < x+1 > x+2 > 0. (4)

x0 x0

x0 x0x-1 x1

(a)  m = 2 (b)  m = 3

(c)  m = 4 (d)  m = 4

FIG. 2. Examples of sequence lengths associated with maxima
in time series. (a) Illustration with m = 2. A maximum value is
followed by one low value and then another maximum value.
(b) Illustration with m = 3. A maximum value is followed by two low
values and then another maximum value. [(c) and (d)] Illustrations
with m = 4. A maximum value is followed by three low values and
then another maximum value. The sequence in (d) is identical to the
central sequence in Fig. 1.
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We have shown strict inequalities in this expression; without
loss of generality, we can include the equality in each term
inasmuch as they present a situation with measure zero.
In simulation or data-based applications of the theory, this
potential for equal values requires some care.

Illustrations of sequence lengths m between maximum
values in a time series are given in Fig. 2. In Fig. 2(a), a
single low value lies between the two maximum values. Thus,
the sequence length is m = 2. In Fig. 2(b), a maximum value
is followed by a minimum value and then two events with
increasing amplitudes. The second of these is a maximum
value. This configuration, and its mirror image, describe a
sequence of length m = 3. We expect, as a result, that we will
need to identify configurations where the minimum value is
separated by i events from its peak or local maximum value
on its right and j events from its peak or local maximum value
on its left. Both i � 1 and j � 1 with m = i + j . In Fig. 2(c),
a maximum value is followed by one event with diminishing
amplitude and three events with increasing amplitude so j = 1
and i = 3; the mirror image of this configuration must also be
considered corresponding to m = 4 with j = 3 and i = 1. In
Fig. 2(d), with have a maximum value followed by two events
with diminishing amplitudes (j = 2) and two events with
increasing amplitudes (i = 2) again with m = 4. In each case,
the fourth event after a maximum value is another maximum
value. The sequence in Fig. 2(d) is identical to the central
sequence in Fig. 1.

This illustration establishes how we need to construct
a taxonomy describing all possible peak-to-peak event se-
quences. In particular, we employ as our starting point the
local minimum or “valley” in a peak-to-peak sequence. We
need to consider the circumstance where the distance from the
valley to its right-hand peak is i events and to its left-hand
peak is j events. Let us now calculate the probability of
the simplest case, the two-event sequence where i = j =
1 depicted in Fig. 2(a), using the probabilistic framework
established previously for Kac’s result in Eq. (2). Given the
inequality in Eq. (4), it follows that the probability P2 that a
five-event sequence can contain a peak-to-peak sequence of
length 2 is

P2 =
∫ ∞

0
p(x0) dx0

[ ∫ ∞

x1=x0

p(x1) dx1

∫ x1

x2=0
p(x2) dx2

]

×
[ ∫ ∞

x−1=x0

p(x−1) dx−1

∫ x−1

x−2=0
p(x−2) dx−2

]
. (5)

We observe in the previous expression that the second term
in square brackets is formally identical to the first. Moreover,
each of these terms in brackets corresponds to the probability
that the peak is removed by 1 event from the valley. It is
convenient to express this term as

F (x0,1) ≡
∫ ∞

x1=x0

p(x1) dx1

∫ x1

x2=0
p(x2) dx2

=
∫ ∞

x1=x0

P (x1) p(x1) dx1. (6)

Intuitively, this F (x0,1) term provides the probability that
the valley with amplitude x0 is removed by only one point
from the peak in question. Since the latter integral runs from

x1 = x0 to ∞, it is convenient to employ the complement of
the distribution defined by

Q (x) ≡ 1 − P (x) and p(x) dx = −dQ(x). (7)

This substitution proved to be invaluable in Ref. [2] whose de-
tails are very similar to the present problem. As a consequence,
we observe that

F (x0,1) =
∫ x1=x0

∞
[1 − Q(x1)] dQ(x1)

=
[
Q(x1)

1
− Q2(x1)

2

]x1=x0

∞
= Q(x0)

1
− Q2(x0)

2
. (8)

It is useful to think of this term F (x0,1) as designating the
probability, given that the minimum amplitude is at x0, of
having the peak to the right 1 event later, i.e., at the next
event with amplitude x1 and with the succeeding point x2 <

x1. (Momentarily, we will see how to exploit this result in a
recursive definition.) It follows, therefore, that

P2 =
∫ ∞

0
p(x0) F 2(x0,1) dx0

=
∫ 0

x0=∞

[
Q(x0)

1
− Q2(x0)

2

]2

dQ(x0)

=
∫ 1

0

[
Q

1
− Q2

2

]2

dQ

=
[
Q3

3
− Q4

4
+ Q5

20

]1

0

= 2

15
. (9)

What this means is that the number of two-event sequences
will be numerically equal to 2/15 times the total number of
events. Remarkably, the functional dependence of P (and Q)
on the amplitude x0 simply disappeared. This is reminiscent of
the “record-breaking” statistical theory [9–12] whose outcome
is independent of the details resident in the underlying
distribution function.

Suppose, now that we wanted to calculate the probability
of the three-event sequence depicted in Fig. 2(b). It follows
directly that each of the two (mirror-image) configurations
that can produce a three-event sequence has the probability

P3 =
∫ ∞

0
p(x0) F (x0,1) F (x0,2) dx0. (10)

We associate the term in F (x0,1) with the peak at x−1 and
the reduced amplitude point x−2, as before. However, we have
now introduced a term F (x0,2) which corresponds to

F (x0,2) =
∫ ∞

x1=x0

p(x1) dx1

∫ ∞

x2=x1

p(x2) dx2

∫ x2

x3=0
p(x3) dx3.

(11)

From the structure of the latter, we observe that

F (x0,2) =
∫ ∞

x1=x0

p(x1) F (x1,1) dx1

=
∫ 0

x1=∞

[
Q(x1)

1
− Q2(x1)

2

]
dQ(x1)

= Q2(x0)

2!
− Q3(x0)

3!
. (12)
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Indeed, by induction, we can show that

F (x0,n) =
∫ ∞

x1=x0

p(x1) F (x1,n − 1) dx1

= Qn(x0)

n!
− Qn+1(x0)

(n + 1)!
, (13)

which describes the probability, given that the minimum
amplitude is at x0, of having the peak to the right (or to the
left) n events later (or earlier). We are now able to calculate the
probability for all possible configurations of peaks and valleys.

In the foregoing, we began by evaluating the probability of
a configuration where there was a minimum amplitude event
x0 flanked on each side by a peak. In other words, the valley
or minimum amplitude event was related to one event on its
left (x−1) and one event on its right (x+1). We now generalize
this probability, incorporating i events on its left and j events
on its right, using the definitions we have just established by
defining a probability

P(i,j )

=
∫ ∞

x=0
p(x) F (x,i) F (x,j ) dx

=
∫ 0

x=∞

[
Qi(x)

i!
− Qi+1(x)

(i + 1)!

][
Qj (x)

j !
− Qj+1(x)

(j + 1)!

]
dQ(x)

=
∫ 1

0

[
Qi

i!
− Qi+1

(i + 1)!

] [
Qj

j !
− Qj+1

(j + 1)!

]
dQ, (14)

where we no longer need to employ a subscript for the event
amplitude x0. Following a little algebra, we obtain

P(i,j ) = 1

i! j !

[
1

i + j + 1
− 1

(i + 1)(j + 1)

+ 1

(i + 1)(j + 1)

1

i + j + 3

]
. (15)

Now, suppose that we want to consider all event sequences
where the interval from peak-to-peak is m. We then must
consider the sum of all i � 1 and j � 1 such that m = i + j .
For this purpose, we define by F(m) the fraction of clusters of
length m � 2 formed from an individual point by

F(m) ≡
m−j∑
i=1

P(i,m − j ) = 2m (m − 1)

(m + 1)! (m + 3)
. (16)

This expression is identical to that obtained in Ref. [2] for
the fraction or rational number of clusters of length m formed
from an individual event. Finally, we can show, following a
little algebra, that

∞∑
m=2

F(m) = 1

3
. (17)

This is equivalent to Kac’s result and Eq. (3). In words, when
we sum this quantity over m � 2, we obtain the fraction or
rational number of sequences formed from an individual event
in a time series.

In these calculations, we have been exploring the probabil-
ity F(m) that a given peak-to-peak sequence has length m. To
convert this to the probability that a given event belongs to a
sequence of length m, we multiply the former sequence-based

fraction F(m) by the number of events m associated with it,
namely

�(m) = mF(m) = m 2m (m − 1)

(m + 1)! (m + 3)
, (18)

and the sum of all such probabilities,
∞∑

m=2

�(m) = 1, (19)

as we expect.
The quantity F(m), when multiplied by the number of

events N in a data set, provides the expected number of event
sequences of length m (apart from end effects). Since that eval-
uation corresponds to a counting experiment, the uncertainty
or standard error in such an estimate is

√
F(m) × N .

We observed that F(m) was proportional to the probability
of a sequence being of length m. In order to convert it to
a probability, we must normalize it according to Eq. (17).
Therefore, we now define the normalized probability quantity
f (m) by

f (m) = F(m)∑∞
n=2 F(n)

= 3 × 2m (m − 1)

(m + 1)! (m + 3)
, (20)

where f (m) is the normalized probability that a sequence has a
length m. The (population) mean sequence length 〈m〉 is given
by

〈m〉 =
∞∑

m=2

mf (m) = 3. (21)

Thus, under very general conditions, the mean sequence length
〈m〉 for an i.i.d. process is 3. When we consider a data set with
N elements that contains M sequences (or clusters), we will
calculate the sample mean m̄ according to

m̄ = N

M
, (22)

where N is the number of events in the time series and
we have introduced the “overbar” to designate a sample
average. Furthermore, the variance σ 2 of the population may
be expressed,

σ 2 =
∞∑

m=2

[m − 〈m〉]2f (m) = 3 e2 − 21 ≈ 1.167 168 30.

(23)

Accordingly, the standard error in a sample will be approx-
imately the square root of the population variance given in
Eq. (23), namely 1.080 355 636, divided by

√
N − 1. The

probabilities f (m) that a sequence has a length m from Eq. (20)
are given in Table I.

Finally, it is important to establish for simulations an
empirical estimate or sample mean of the fraction of sequences
that have length m. We will designate this (sample) estimate
of the fraction using an “overbar,” i.e., as f̄ (m).

It is common in probability theory [1] to construct a
generating function g(x) according to

g(x) ≡
∞∑

m=2

f (m) xm. (24)
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TABLE I. Probability f (m) that an i.i.d. sequence has a length m

as obtained from Eq. (20).

m f (m) Decimal

2 2
5 0.400 000

3 1
3 0.333 333

4 6
35 0.171 429

5 1
15 0.066 667

6 4
189 0.021 164

7 1
175 0.057 143

8 2
1 485 0.013 468

9 4
14 175 0.002 822

10 4
75 075 0.000 533

In order to do this, we insert Eq. (20) for f (m) into the
expression for the generating function Eq. (24). We inspect
the resulting expression for terms in the power series that have
the appearance of an exponential and proceed to deconstruct it
accordingly. Following a derivation given in Newman [2], we
observe that

g(x) = 3 (x − 1)2 exp(2x)

2 x3
+ 2 x3 + 3 x2 − 3

2 x3

= 2

5
x2 + 1

3
x3 + 6

35
x4 + 1

15
x5 + · · · . (25)

As a consequence of our existing definition Eq. (20), g(x)
varies smoothly from 0 to 1 as x goes from 0 to 1. We
now extend our analysis to problems associated with random
processes with memory, utilizing the Langevin equation of
kinetic theory and Brownian motion as our paradigm.

III. BROWNIAN MOTION AND THE LANGEVIN
EQUATION

Our discussion thus far has focused on problems where the
underlying physics has no memory; it constitutes an indepen-
dent and identically distributed random process. There are,
however, many problems in statistical physics that do possess
memory and an appreciation of its influence is important here.
Brownian motion describes the irregular motions exhibited by
small grains or particles immersed in a fluid and undergoing
rapid agitation by collisions with much smaller particles. The
velocity of a free particle u(t) in the absence of an external
field of force is generally given by Langevin’s equation [7,8]

du(t)

dt
= −β u(t) + A(t). (26)

We will employ only part of the classic derivation essential to
our discussion in one dimension. Here, −β u(t) describes the
dynamical friction force with β related to the collision rate with
smaller particles, and A(t) describes the fluctuations associated
with the Brownian motion and is regarded as being temporally
decorrelated and can be regarded as an i.i.d. variable.

The solution of Eq. (26) can be written

u(t) = u0 exp[β(t0 − t)] +
∫ t−t0

0
A(t − τ ) exp(−βτ ) dτ,

(27)

where u0 = u(t0) is the initial condition. Supposing that β(t −
t0) 	 1, this can be approximated as

u(t) ≈
∫ ∞

0
A(t − τ ) exp(−βτ ) dτ. (28)

Suppose, now, that we discretize Eq. (26), forming a first-order
finite difference equation, where ti = t0 + i�t . In other words,
we set set ui = u(ti), Ai = A(ti) and obtain

ui+1 − ui

�t
≈ −βui + Ai (29)

so

ui+1 = (1 − β�t) ui + �t Ai. (30)

For convenience, we will replace �t Ai with the i.i.d. variable
ηi and introduce a quantity α defined by

α ≡ 1 − β�t ≈ exp(−β�t), (31)

thereby allowing us to write the recursion relation

ui+1 = α ui + ηi. (32)

We observe that this finite difference equation can be solved
immediately to give

un+1 =
n∑

i=0

αi ηn−i + αn+1 u0. (33)

We normally regard α < 1 and note that αk ≈ exp(−kβ�t)
for k = 0,1, . . . , which renders Eq. (33) as a discretized
version of Eq. (27). We observe that Eq. (32) is equivalent to a
first-order autoregressive process [13,14] which is frequently
encountered in time-series analysis. Interestingly, Cole [3]
and other biologists have speculated on the possibility that
observed time series for wildlife populations might be better
described by running sums of random numbers.

There are two limits in which we wish to consider Eq. (33),
as well as the intervening range for α. In the first limit, we
let α = 0, which implies that β�t 	 1 by the exponential in
Eq. (31). In other words, α = 0 implies that the velocity un+1

maintains no memory of its past value and becomes the current
value of the fluctuation ηn. In this case, we expect that the
fluctuating force is i.i.d. and Gaussian, i.e., has the character
of Gaussian white noise. We will consider this topic in the
next section. For 0 < α < 1, the sum in Eq. (33) remains well
defined and is associated with statistical mechanical principles,
such as the “fluctuation-dissipation theorem.” However, in the
second limit, we let α = 1 which is equivalent to assuming that
there is no dissipation. In this limit, the current velocity un+1

is simply the sum of all previous velocities. The variance of
the velocity increases linearly in time and the velocity values
diverge. This limit corresponds to a Brownian motion that has
an infinite range of correlations.

In what follows, we will simulate the Langevin equation
via Eq. (32) with α varying from 0, the i.i.d. Gaussian noise
case, to 1, the Brownian motion case which preserves memory
of past history over all time.
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IV. PROBABILISTIC DESCRIPTION AND SOLUTION
FOR BROWNIAN MOTION

Brownian motion is described by Eq. (32) with α = 1.
In words, what distinguishes one value of the time series,
namely ui , from the next, namely ui+1, is the addition of
the i.i.d. fluctuating noise ηi . Therefore, what determines
whether ui+1 is greater or less than ui is solely the sign of
ηi . We note, therefore, that the random variable that emerges
is the difference between two successive time-series elements.
Since, as Kac observed, extrema and, hence, the emergence
of peak-to-peak sequences requires three random elements
on average, it follows that four time-series events will, on
average, produce a peak-to-peak sequence, in contrast with
the three i.i.d. events which, on average, separate peak-to-peak
sequences. We shall, using methods similar to those we
employed earlier, derive both the mean number of events in a
Brownian sequence and the distribution of sequence lengths
that arise from Brownian processes.

In analogy to Sec. II, we want to calculate the probability
that a time-series element ui is a local minimum with but one
element to its right. In other words, what is the probability p1

that ui < ui+1 and ui+1 > ui+2, i.e., that the peak is removed
by only one point? From Eq. (32), it follows that this is the
product of the probability that ηi > 0 with the probability that
ηi+1 < 0. Assuming that the median value of η is 0, as it would
be with Gaussian noise, then each of those probabilities would
be 1/2 and

p1 = (
1
2

)2
. (34)

If the median value was nonzero, then ui would on average
undergo a uniform drift. In many problems, the mean and
the median of a distribution are the same but not always.
Remarkably, unlike our previous discussion of i.i.d. processes,
we do not need to incorporate the details implicit to the
distribution function associated with the ηi . Similarly, the
probability that the peak on the right is removed by two points
from ui is

p2 = (
1
2

)3
(35)

and, by induction, for k = 3,4, . . . ,

pk = (
1
2

)k+1
. (36)

It also follows that we get the same expression describing the
probability that the peak on the left is removed by j points
from ui . Thus, the probability P̂ (j,k) that the “valley” ui has
a peak j points to the left and k points to the right is

P̂ (j,k) = (
1
2

)j+k+2
. (37)

Here, we have introduced a “ ˆ ” to designate quantities
associated with Brownian motion, unlike the i.i.d. situation
where the symbols employed are not identified in this way. It
follows, therefore, that the probability that Brownian motion
will have a peak-to-peak sequence with j + k elements will
be proportional to P̂ (j,k).

We now find the probability f̂ (m) corresponding to all
possible combinations m = j + k of such configurations
of peak-to-peak sequences with length m = 4. It follows,

TABLE II. Probability f̂ (m) that a Brownian sequence has a
length m as obtained from Eq. (39).

m f̂ (m) Decimal

2 1
4 0.250 000

3 1
4 0.250 000

4 3
16 0.187 500

5 1
8 0.125 000

6 5
64 0.078 125

7 3
64 0.046 875

8 7
256 0.027 344

9 1
64 0.015 625

10 9
1 024 0.008 789

therefore, that f̂ (m) can be written for m � 2 as

f̂ (m) = γ

m−1∑
j=1

P̂ (j,m − j ) = γ (m − 1)

(
1

2

)m+2

, (38)

where γ is a constant to be determined that will assure that∑∞
m=2 f̂ (m) = 1. After some algebra, we identify γ = 1/4 so

f̂ (m) = m − 1

2m
, for m = 2,3, . . . . (39)

This is the normalized fraction of segment lengths of length
m. This expression for Brownian motion dramatically differs
from Eq. (20) for i.i.d. time series. Importantly, we observe that
the decay rate with respect to m of f̂ (m) is much slower than
for f (m) as a consequence of the role of memory. Moreover,
for a Brownian process, it follows, after some algebra, that

〈m̂〉 =
∞∑

m=2

m f̂ (m) = 4, (40)

as expected from the argument presented earlier. Analogously
to Table I, we present in Table II the corresponding values for
Brownian motion, further confirming the memory effect.

Moreover, we have calculated and present below the
generating function ĝ(x) for Brownian motion data, namely

ĝ(x) = x2

(2 − x)2
= 1

4
x2 + 1

4
x3 + 3

16
x4 + 1

8
x5 + . . . ,

(41)

which, as before, varies smoothly from 0 to 1 as x goes from
0 to 1.

In the theory, m designates the number of events in a
peak-to-peak sequence or in a cluster. In realizations of the
process, m̄ describes the sample average of m while 〈m〉
describes its (theoretical) formal average or population mean.
We designate by the letter f the distribution of of sequence
lengths or cluster sizes m, which represents the fraction that are
m long. We designate by the letter g the generating function for
the distribution functions f . For the i.i.d. theory, we use f (m)
and g(x) and, for the Brownian theory, we use f̂ (m) and ĝ(x).
Finally, in the analysis of simulation or observational data, we
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utilize the sample average of the fraction, namely f̄ (m). We
employ this notation through the rest of this paper.

V. GAUSSIAN WHITE NOISE

As our first example, we will consider the maximum value
statistics of a Gaussian white noise. The values in this time
series are selected randomly from a Gaussian distribution of
values. The values are uncorrelated in time. A maximum value
is defined as a value larger than the two neighboring values.
We determine the sequence of lengths m between maximum
values for 4096 data points in each of 10 time series.

In Fig. 3, we give the fraction f̄ (m) of the sequences that
have a length m as a function of m. In addition, we present
the standard error for the simulation results computing from
the 10 data sets. Also included in the figure are the values
given in Table I for the i.i.d. theory. Clearly, there is good
agreement. For the i.i.d. theory, the mean sequence length
is 〈m〉 = 3 (exactly); for our analysis of the Gaussian white
noise, we have m̄ = 2.9916. Since Gaussian white noises are
symmetrically distributed, we would get the same result for
the statistics of minimum values.

We calculate for each m the theoretical value for the number
of sequences F(m) × 4096 that we expect, the sample mean
from our 10 Monte Carlo simulation sets and the standard
error estimated from those simulations. Finally, we calculate
the observed discrepancy between the sample mean and i.i.d.
theory in terms in standard error units, which we call the
relative error. Since this is an i.i.d. random process, we do not
expect that the last column will depart significantly from the
range of −1 to 1. This is shown in Table III. Importantly, we
performed many independent checks on our simulation results,
particularly regarding convergence, in establishing the validity
of our results. Moreover, we showed in Ref. [2] explicitly how
convergence properties conformed with our expectations from
probability theory.
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I.I.D. Theory
Gaussian White Noise
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m

)

m

_

FIG. 3. Dependence of the fraction of sequences f̄ (m) with
sequence length m on m for the maximum values of a Gaussian
white noise (open squares) and for the i.i.d. theory, also showing
estimates of the standard error.

TABLE III. Sequence counts for the white noise time series and
for the i.i.d. theory. The white noise data are the average sequence
length statistics for the 10 time series, each with 4096 points. Also
shown are estimates of the uncertainty established from the theory,
i.e., the standard error, and the departure between the white noise data
and i.i.d. theory in units of the standard error.

i.i.d. White Standard Relative
m theory noise data error error

2 546 551.0 24.23 0.206
3 455 459.3 20.09 0.214
4 234 234.2 15.48 0.013
5 91 84.8 12.47 −0.497
6 29 30.5 4.58 0.328
7 8 7.4 3.13 −0.191
8 2 1.0 1.41 −0.707

VI. SEQUENCE AND CLUSTER STATISTICS OF GLOBAL
SEISMICITY

We now consider the statistics of the occurrence of earth-
quakes on a global scale. One question we address is whether
these earthquakes occur randomly in magnitude. The second
question we address is their statistics of (time) clustering.
Specifically, we ask whether clusters of three in time tend to
dominate. The moment magnitude mw is the standard measure
of the intensity of a strong earthquake. This quantity provides
a simple representation for the stress tensor’s action over a
distance using dimensionless units that are equivalent to the
original definition by Gutenberg and Richter of earthquake
magnitude. An example of the temporal clustering of large,
catastrophic earthquakes are the mw = 9.1 (2004) Sumatra
earthquake, the mw = 8.3 (2010) Chile earthquake, and the
mw = 9.0 (2011) Japan earthquake. Because of the many
problems associated with the magnitudes of large earthquakes,
we will restrict our study to the global Centroid Moment
Tensor (CMT) catalog, which is available at Ref. [15] on the
Internet. It is necessary to specify a minimum magnitude for
which the catalog is complete. For the CMT catalog, we take
this threshold moment magnitude to be mw = 5.5 [16,17].
We consider the set of global earthquakes for the period
1 January 1977 to 31 December 2011. This set includes 14 014
earthquakes. The moment magnitudes of these earthquakes
constitute a time series. Again, a maximum moment magnitude
earthquake is defined to have a moment magnitude larger
than the moment magnitudes of the two global earthquakes
adjacent in time. We determine the sequence lengths of global
earthquakes between these maximum magnitude earthquakes
in our time series.

In Fig. 4, we give the fraction f (m) of the sequences that
have a length m as a function of m. Also included in the figure
are the values given in Table I for the i.i.d. theory, as well as the
expected standard error. The earthquake magnitude statistics
are well approximated by the i.i.d. theory. The mean sequence
length for the earthquakes is m̄ = 3.0006, compared with the
value of 〈m〉 = 3 for the i.i.d. theory.

In the case of global seismicity, we also present in Table IV
our results quantifying the departure of moment magnitude
statistics from an i.i.d. process. As in the case of a Gaussian
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FIG. 4. Dependence of the fraction of sequences f̄ (m) with the
sequence length m on m for the maximum moment magnitudes of
global earthquakes (open squares) and for the i.i.d. theory (closed
circles). Standard error estimated from the i.i.d. theory.

white noise, we observe no statistically significant departure
of the CMT moment magnitude data from a random process.

We next turn to the interoccurrence time statistics of the
same set of global earthquakes. Specifically, we look at the
temporal clustering of events. We consider a cluster in which
one of the adjacent earthquakes is the nearest in time as
illustrated in Fig. 1. The interoccurrence time defining the
break between two clusters is longer than the two adjacent
interoccurrence times. Thus, it is a local maximum as discussed
above.

In Fig. 5, we give the fraction f̄ (m) of the clusters that have
a size m as a function of m. Also included in the figure are the
values given in Table I for the i.i.d. theory. As can be seen, the
results in Fig. 5 are very similar to those in Fig. 4. The mean
cluster size for the earthquakes is m̄ = 2.9964 compared with
the value 〈m〉 = 3 for the i.i.d. theory. We also tabulate the
results from the interoccurrence time calculations in Table V.

There is a widely held superstition that bad events happen
in sequences of three in time. Great earthquakes are certainly

TABLE IV. Sequence counts for global earthquake magnitude
time series and the i.i.d. theory. The earthquake magnitude data are
the sequence length statistics for the time series of 14 014 mw � 5.5
earthquakes for the period 1 January 1977 to 31 December 2011. Also
shown are estimates of the uncertainty established from the theory,
i.e., the standard error, and the departure between the earthquake
magnitude data and the i.i.d. theory in units of the standard error.

i.i.d. Earthquake Standard Relative
m theory mag. data error error

2 1870 1882 43.24 0.277
3 1558 1539 39.47 −0.481
4 801 785 28.30 −0.565
5 312 335 17.66 1.302
6 99 104 9.95 0.503
7 27 23 5.20 −0.770
8 6 3 2.45 −1.225
9 1 1 1.00 0.000
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FIG. 5. Dependence of the fraction of clusters f̄ (m) with the
cluster size m on m for the interoccurrence times of global earthquakes
(open boxes) and for the i.i.d. theory (solid circles). In a temporal
cluster of occurrence times, each earthquake’s nearest neighbor in
time is a member of the cluster. Standard error estimated from the
i.i.d. theory.

bad events. Our analysis shows that, on average, they do occur
in sequences of three, even though they are uncorrelated in
time.

Interestingly, we observe a small but statistically significant
departure from i.i.d. behavior in the observed number of
clusters containing only m = 2 points. In particular, the
departure from theory in units of the estimated standard error
is observed to be −2.8, which would be regarded as nearly a
3σ departure from i.i.d. behavior, while the magnitude results
were not similarly effected. A possible interpretation for this
observation is that there is a modest deficit due to relatively
small aftershocks.

VII. LANGEVIN MODEL AND RELATION BETWEEN
GAUSSIAN AND BROWNIAN NOISE

So far, we have related our random (i.i.d.) theory to
results that have the appearance of being “random.” Clearly,

TABLE V. Cluster counts for interoccurrence times of global
earthquakes and the i.i.d. theory. The earthquake interval data are
cluster length statistics for the 14 014 mw � 5.5 earthquakes for the
period 1 January 1977 to 31 December 2011. Also shown are esti-
mates of the uncertainty established from the theory, i.e., the standard
error, and the departure between the earthquake interoccurrence data
and the i.i.d. theory in units of the standard error.

i.i.d. Earthquake Standard Relative
m theory interval data error error

2 1870 1749 43.24 −2.798
3 1558 1551 39.47 −0.177
4 801 821 28.30 0.707
5 312 324 17.66 0.679
6 99 108 9.95 0.905
7 27 30 5.20 0.577
8 6 7 2.45 0.408
9 1 4 1.00 3.000
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FIG. 6. Dependence of the fraction f̄ (m) of sequences with the
sequence length m on m for the maximum values of the Langevin
model with α = 0.0,0.2,0.4,0.6,0.8, and 1.0.

a Gaussian white noise time series is expected to satisfy
i.i.d. statistics since adjacent values in the time series are
uncorrelated. We have also shown that global seismicity both
in terms of an earthquake magnitude time series and in terms
of event clustering in time are well approximated by the i.i.d.
theory.

We now consider an example in which there are significant
deviations from i.i.d. behavior. In particular, we will consider
the Langevin model given in Eq. (32). A Gaussian white noise
is generated and utilized in this model. We consider time series
with α = 0.0,0.2,0.4,0.8, and 1.0. In each case, we determine
the sequence lengths between maximum values for the time
series that we consider. In Fig. 6, we give the fraction f̄ (m) of
the sequences that have a length m as a function of m.

We find a strong dependence on α with a systematic increase
in longer sequence lengths with increasing values of α. The
result is, as expected, since increasing α reduces short-range
(high frequency) fluctuations. We quantify this result in Fig. 7,
where we give the mean cluster size m̄ as a function of the
memory-related term α. We observe that m̄ can be roughly

2.8
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3.6

3.8

4.0

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 7. Dependence of the mean cluster size m̄ on the quantity α

for the Langevin model shown in Fig. 6. We have an approximately
linear increase of m̄ from 3 to 4 as α approaches 1.
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FIG. 8. Comparison between our Brownian motion theory f̂ (m)
and Brownian motion simulations f̄ (m), including error bars, as a
function of sequence length m.

approximated using linear interpolation in α between the
two end-member results, i.e., an i.i.d. process (α = 0) and
Brownian motion (α = 1). In Fig. 8, for our Brownian motion
theory and Brownian motion simulations, we give the fraction
f̄ (m) of the sequences that have a length m as a function of
m for α = 1 (open squares) from Eq. (39). We also show the
theoretical result f̂ (m) for a Brownian process (solid circles)
as well as an estimate for the standard error. We observe the
quality of agreement between the theory and observations.
Finally, in Table VI, we tabulate our comparison between our
20 000-point Brownian (α = 1) motion simulation results and
our theory.

VIII. AURORAL ELECTROJET AL INDEX

The Auroral Electrojet (AE) index was first developed by
Davis and Sugiura [18] as a measure of global electrojet
activity in the auroral zone and describes, in part, the Earth’s
magnetospheric response to solar activity. After significant
computation and normalization of magnetic field data obtained

TABLE VI. Cluster counts for Brownian motion data correspond-
ing to α = 1 and Fig. 7.

Brownian Brownian
m theory f̂ (m) simulation f̄ (m)

2 1250 0.250 1211 0.241
3 1250 0.250 1302 0.259
4 938 0.187 940 0.187
5 625 0.125 666 0.133
6 391 0.078 389 0.077
7 234 0.047 229 0.046
8 137 0.027 141 0.028
9 78 0.016 64 0.013
10 44 0.009 31 0.006
11 24 0.005 27 0.005
12 13 0.003 5 0.001
13 7 0.001 8 0.002
14 4 0.001 1 0.000
15 2 0.000 3 0.001
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FIG. 9. Dependence of the fraction of clusters f̄ (m) with cluster
size m on m for interoccurrence times of the auroral electrojet AL
index (open boxes) and for the i.i.d. theory (solid circles).

at a number of stations, the largest (upper) and smallest
(lower) values are selected and are designated as the AU
and AL indices, respectively. The AL index presents the
lower envelope for geomagnetic activity as a function of
universal time (UT). It is of particular interest, as it provides
a quantitative measure of the significance of magnetospheric
substorms as a mode of response of the magnetosphere to
the solar wind. Thus, the AL index can be regarded as
the response of a complex electromagnetic charging system
(Earth’s magnetospheric environment) to a stochastic energy
source (the Sun and space weather). The data we present [19]
cover the last two solar cycles beginning 1 January 1984 and
ending 31 May 2011, and contains 44 510 events. In particular,
the data correspond to the time intervals between successive
substorm onsets measured to the nearest second over a time
frame spanning more than 27 years. Importantly, modeling
efforts employed to understand the AL index have focused
on the use of high-order autoregressive methods; our model
Eq. (32) is a first-order autoregressive method.

We consider a cluster in which one of the adjacent storms
is nearest in time, as illustrated in Fig. 1. In Fig. 9 we give the
fraction f (m) of the clusters that have a size m as a function

TABLE VII. Cluster counts for the AL index data and the i.i.d.
theory. Also shown are estimates of the uncertainty established from
the theory and the departure between the AL data and the i.i.d. theory
in units of the standard error.

i.i.d. AL Standard Relative
m theory data error error

2 5935 5327 77.039 −7.892
3 4945 4916 70.321 −0.412
4 2543 2602 50.428 1.170
5 989 1060 31.448 2.258
6 314 387 17.720 4.120
7 85 112 9.220 2.929
8 20 28 4.472 1.789
9 4 6 2.000 1.000
10 1 1 1.000 0.000

of m. Also included in the figure are the values given in
Table I for the i.i.d. theory. There is a small but significant
deviation between i.i.d. theory and the data. This is also
illustrated in Table VII. The mean cluster size of the data
is m̄ = 3.0822 compared with 〈m〉 = 3 for the i.i.d. theory.
This is evidence of a small degree of persistence.

IX. OLD FAITHFUL GEYSER ERUPTIONS

The nature of geysers has been of great interest over
recorded history. The most famous of these, Old Faithful,
in Yellowstone National Park was named by the Washburn
expedition of 1870, who were impressed by its size and
frequency. Evidently, this cone-type geyser has been erupting
in nearly the same fashion throughout the recorded history of
Yellowstone. Through the years, it has become one of the most
studied geysers in the park. Rinehart [20] appears to have been
the first to have developed a physical, albeit nonquantitative,
model for its activity and its bimodal character: the longer the
recurrence time between eruptions, the longer the duration of
the eruption, establishing a conceptual link between the time
to transport and heat water, and the extent of the eruption.

National Park Service (NPS) geologist Ralph Hutchinson,
among others, collected substantial amounts of data which
were then analyzed statistically by Azzalini and Bowman [21],
who validated the bimodality in a quantitative way. Intuitively,
this can be seen as an outcome of a uniform rate of water
supply to the geyser system. As a result, eruption predictions
can be made using a regression formula based on the duration
of an eruption. NPS rangers predict eruption times within ±10
minutes 90% of the time, but it is not possible to predict more
than one eruption in advance. Dowden et al. [22] developed
a hydrodynamic model for eruptions that yielded an estimate
for geyser power output. Hutchinson et al. [23] reported on
pressure and temperature as a function of time measured from
1983 to 1993 using probes at 22 m depth and employed a
video camera to characterize the conduit geometry. Hutchinson
died during an avalanche just before the submission of the
manuscript and the National Park Service no longer employs
a geologist to monitor Old Faithful’s activity.
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FIG. 10. Dependence of the fraction of clusters f̄ (m) with cluster
size m on m for the recurrence times of eruption of Old Faithful geyser
(open boxes) and for the i.i.d. theory (solid circles).
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TABLE VIII. Cluster counts for Old Faithful geyser data for the
recurrence time for the 5692 events in 2010 and the i.i.d. theory. Also
shown are estimates of the uncertainty established from the theory
and the departure between the geyser data and the i.i.d. theory in units
of the standard error.

i.i.d. Geyser Standard Relative
m theory data error error

2 760 1119 27.57 13.02
3 633 689 25.16 2.23
4 326 251 18.06 −4.15
5 127 61 11.27 −5.86
6 40 13 6.32 −4.27
7 11 0 3.32 −3.32
8 3 0 1.73 −1.73
9 1 0 1.00 −1.00

The Geyser Observation and Study Association (GOSA), an
incorporated nonprofit scientific and educational corporation,
was founded some years before Hutchinson’s untimely death
and has monitored Old Faithful geyser electronically using
data loggers since 2000. Since then, its recurrence intervals
have varied from 44 to 125 min with an average of about
90–92 min. This device measures the runoff water temperature
at a point about 20 m from the vent toward the west. The
sensor picks up preplay and the eruption start. The data were
collected by Ralph Taylor, a park volunteer working under
an NPS research permit, and by personnel working for the
Geology Department of the Yellowstone Center for Resources.
Taylor assembled the eruption times and NPS the temperature
data. The digitized data and other information can be obtained
online at Ref. [24] we employed the data set for our analysis.

We consider a cluster in which one of the adjacent eruptions
is the nearest in time as illustrated in Fig. 1. In Fig. 10, we give
the fraction f̄ (m) of the clusters that have a size m as a function
of m. Also included in the figure are the values given in Table I
for the i.i.d. theory. There is clearly a strong deviation from
i.i.d. behavior. The mean cluster size is m̄ = 2.6685 compared
with the value 〈m〉 = 3 for the i.i.d. theory. We take this low
value of m̄ to be evidence of antipersistence in the behavior
of the geyser time series. Extreme antipersistence would be a
sequence of long-short-long-short. . .. In this case, we would
have m̄ = 2. The observation that the mean cluster size is
shorter than the value 〈m〉 = 3 found for an i.i.d. process is
direct evidence of antipersistence in the time series. The degree
to which a departure from i.i.d. behavior is present in the data
is clear from Table VIII.

X. STANDARD & POOR’S 500 DATA FROM JANUARY 1928
TO DECEMBER 2011

Many extremely long financial time series are available. As
a typical example, we will consider the daily closing prices of
the Standard and Poor’s 500 stock index for the period 1928
to 2011. Following standard practice [25], we utilize the daily
returns Ri defined by

Ri = Yi − Yi−1

Yi−1
, (42)

10-4

10-3

10-2

10-1

100

2 3 4 5 6 7 8 9

I.I.D. Theory
Standard and Poor’s

f (
m

)

m

FIG. 11. Dependence of the fraction of sequences f̄ (m) with
sequence length m on m for the time series of daily returns of the
Standard and Poor’s 500 stock index (open squares) and the i.i.d.
theory (solid circles).

where Yi is the closing price on day i and Yi−1 is the closing
price on the previous day; Ri is the fractional daily gain or
loss. The daily values of Ri constitute a time series. Again, a
maximum value is defined to be an Ri that is larger than both
Ri−1 and Ri+1. We determine the sequence lengths of days
between these maximum values of Ri in our time series. The
data were obtained from two sources. For the period 1928–
1993, we employed Ley [26], while the 1994–2011 data was
from Ref. [27].

In Fig. 11, we give the fraction f̄ (m) of sequence lengths
m as a function of m. Also included in the figure are the
values for the i.i.d. theory from Table I as well as the expected
standard error. The mean sequence length for the financial
data is m̄ = 3.1858 compared with the value 〈m〉 = 3 for
the i.i.d. theory. We also present in Table IX our results
quantifying the departure of the financial from an i.i.d. process.
From a comparison of the financial value of m̄ = 3.1858
with results for the Langevin model given in Fig. 7, we
see a correspondence with α ≈ 0.25, an indication of mild
persistence.

TABLE IX. Sequence counts for the 22 147 Standard and Poor’s
500 daily returns for the period 1928–2011 and the i.i.d. theory.
Also shown are estimates of the uncertainty established from the
i.i.d. theory, i.e., the standard error, and the departure between the
Standard and Poor’s data and the i.i.d. theory in units of the standard
error.

i.i.d. S&P Standard Relative
m theory data error error

2 2956 2344 54.37 −11.26
3 2464 2293 49.64 −3.44
4 1267 1388 35.60 3.40
5 493 639 22.20 6.58
6 156 220 12.49 5.12
7 42 52 6.48 1.54
8 10 12 3.16 0.63
9 2 7 1.41 3.54
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XI. DISCUSSION

Our studies of events in time, depicted as points on a time
line, considered the cluster statistics of nearest-neighbor events
in time. Our analysis was for random i.i.d. events which, by
definition, are uncorrelated in time. We focused on developing
a theory for the presence of such clusters, which we tested
against a variety of standard distribution functions. An analytic
expression for the distribution of cluster sizes f (m) was given
in Eq. (20) and numerically listed in Table I. The mean cluster
size was found to be 〈m〉 = 3.

We went on to explore time series of quantities emerging
from biological and physical processes. We noted the ob-
servation made by Kac [3] that, when plotted, the average
peak-to-peak sequence interval would be three events. We
believed that there was a connection between the statistics of
clusters and that of peak-to-peak sequences. We found that
connection when we studied sequences of interoccurrence
times as though they were time series. This equivalence is
illustrated in Fig. 1. The interoccurrence time between two
neighboring clusters is, by definition, larger than the two
neighboring time intervals. In terms of the equivalent time
series, this interval is a local maximum in that it is larger
than the two adjacent values. As can be seen in Fig. 1, the
distribution of sequences is identical to that for the equivalent
time series. Thus, Eq. (20) is applicable to the mean sequence
length between local maxima, which is 〈m〉 = 3, a result
previously demonstrated by Newman [2].

The equivalence discussed above allows us to apply
sequence statistics for local maxima in any time series.
Our analysis is valid for our i.i.d. time series (i.e., without
correlations) for any statistical distribution. To exhibit the
validity of our analysis, we have determined the sequence
statistics for a Gaussian white noise. The excellent agreement
between the simulations and the analytic results are illustrated
in Fig. 3 and Table III. The mean cluster length for the
simulations is m̄ = 2.9916 compared with the theoretical value
〈m〉 = 3.

We have also studied the sequence statistics for sequence
lengths between local maxima in Brownian motion. Once
again, an analytical expression was obtained for the statistical
distribution of the sequence lengths, and this is given in
Eq. (39). The mean sequence length was found to be 〈m〉 = 4.
We have generated Brownian motion as the running sum of
Gaussian white noises and obtained the sequence statistics
for the local maximum values of our Brownian motion. The
excellent agreement between our simulation and the analytic
results is illustrated in Fig. 8 and Table V. The mean cluster
length is m̄ = 3.9809 compared with the theoretical value
〈m〉 = 4.

In order to study the dependencies of sequences statistics
on correlations, we utilize the recursive form of the Langevin
equation, which is equivalent to a first-order AR process, given
in Eq. (32). The mean cluster size m̄ is given as a function of
the Langevin parameter α in Fig. 7. The transition from a
white noise [α = 0, 〈m〉 = 3] to a Brownian motion [α = 1,
〈m〉 = 4] is clearly illustrated.

In order to illustrate the application of sequence and cluster
statistics, we consider several sets of observations. We, first,

have compared our results with the global occurrence of large
earthquakes. We consider both the time series of magnitudes
and the time intervals between occurrences. For the sequence
statistics of peak earthquake magnitudes but slightly less so for
the nearest-neighbor cluster statistics in time, we find excellent
agreement with the i.i.d. theory. We speculate that the small
departure observed in the interoccurrence time statistics is
due to aftershocks. Nevertheless, the mean sequence size for
large earthquakes is m̄ = 3.006, and the mean cluster size for
the temporal occurrence of large earthquakes is m̄ = 2.996.
We suggest that this exemplifies the adage that “bad things
come in threes.”

We next considered the auroral electrojet (AL) index. The
data corresponds to the time intervals between successive
substorm onsets. The cluster statistics of nearest-neighbor
events are given in Fig. 9 and Table VII. The mean cluster
length of the data is m̄ = 3.0822 compared with 〈m〉 = 3 for
the theory. This is evidence for a small degree of persistence.

We also studied the time intervals between the eruptions
of Old Faithful geyser in Yellowstone National Park. The
cluster statistics of nearest-neighbor eruptions in time are given
in Fig. 10 and Table VIII. The mean cluster length of the
data is m̄ = 2.6685 compared with the i.i.d. value 〈m〉 = 3.
This is indicative of antipersistence. There is a statistically
significant tendency for a long interval to be followed by
a short interval and a short interval to be followed by a
long interval, more so than strictly “random” behavior would
dictate.

The final example that we considered was related to the time
series of daily closing prices of the Standard and Poor’s 500
stock indexes. In order to eliminate the influence of long-term
trends, we considered the daily returns defined in Eq. (42).
The prices can be approximated as Brownian motion so the
differences (returns) can be approximated as a white noise.
The comparison of the sequence statistics of the returns with
the i.i.d. (white noise) theory given in Fig. 11 and Table IX
indicate a small positive correlation. For the data, m̄ = 3.1455
compared with the i.i.d. value 〈m〉 = 3.

In this paper, we formulated the problem of describing
events in time through their interoccurrence times and the
emergence of clusters based on nearest-neighbor associations.
Further, we formulated the problem of describing time series
of events characterized by measured amplitudes which, when
plotted, produced sequences of peak-to-peak events. We
showed that both problems were mathematically identical
insofar as their description of the number of events per cluster
and per sequence. Further, we calculated in closed form the
associated distribution function for the number of events
in a cluster or in a sequence, demonstrating that the mean
value was 3. We also consider the Brownian motion problem
corresponding to a running sum of time series value, obtained
its associated distribution function, and demonstrated that its
mean value was 4. Finally, we applied these analytic results
in the exploration to a variety of problems. Since biological
time series for feral animal populations tend to be relatively
small and subject to great uncertainty, we focused on physical
and economic time series, exploring problems ranging from
measures of natural hazards to financial indices. We found,
in many cases, remarkable agreement with the theory we

026103-13



NEWMAN, TURCOTTE, AND MALAMUD PHYSICAL REVIEW E 86, 026103 (2012)

formulated based on i.i.d. processes and, when there were
significant departures from the theory, we could apply the
added insight to a deeper understanding of the underlying
problem.
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