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Random matrix theory (RMT) and network methods are applied to investigate the correlation and network
properties of 20 financial indices. The results are compared before and during the financial crisis of 2008. In the
RMT method, the components of eigenvectors corresponding to the second largest eigenvalue form two clusters
of indices in the positive and negative directions. The components of these two clusters switch in opposite
directions during the crisis. The network analysis uses the Fruchterman-Reingold layout to find clusters in the
network of indices at different thresholds. At a threshold of 0.6, before the crisis, financial indices corresponding
to the Americas, Europe, and Asia-Pacific form separate clusters. On the other hand, during the crisis at the
same threshold, the American and European indices combine together to form a strongly linked cluster while the
Asia-Pacific indices form a separate weakly linked cluster. If the value of the threshold is further increased to 0.9
then the European indices (France, Germany, and the United Kingdom) are found to be the most tightly linked
indices. The structure of the minimum spanning tree of financial indices is more starlike before the crisis and it
changes to become more chainlike during the crisis. The average linkage hierarchical clustering algorithm is used
to find a clearer cluster structure in the network of financial indices. The cophenetic correlation coefficients are
calculated and found to increase significantly, which indicates that the hierarchy increases during the financial
crisis. These results show that there is substantial change in the structure of the organization of financial indices
during a financial crisis.
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I. INTRODUCTION

Over the last few years, there has been a growing interest
of physicists in economic systems [1,2]. The present study
is to understand the origin of a financial crisis and its
effect on the structure of organization of financial indices.
This paper is focused on the global financial crisis of 2008
and uses correlation and network methods to investigate
its effect on the structure of organization of 20 financial
indices. Random matrix theory (RMT) was developed [3–6]
to deal with the statistics of eigenvalues and eigenvectors
of complex many-body systems. It has been successfully
used to investigate phenomena from different areas such as
quantum field theory, quantum chaos, disordered systems,
and has recently been applied to a large number of financial
markets [7–12] to investigate the structure of cross-correlations
in financial markets. In the random matrix theory approach
the first few largest eigenvalues deviate significantly from the
RMT prediction and the deviation changes during the crisis.
The largest eigenvalue represents the collective information
about the correlation between different stocks and its trend
depends on the market conditions. The components of eigen-
vectors corresponding to the remaining large eigenvalues are
associated with the formation of clusters (organization) in
the financial market, which respond and reorganize during a
crisis.

Another powerful technique is the complex network tech-
nique which has become an important method for studying
properties of complex systems in the real world (physical
systems, social sciences, biological sciences, and financial
markets) [13–20]. The study of complex networks was initiated
by a desire to understand various real systems from the
empirical data [13]. Complex networks display the spatial
topological structure of a system. In this paper the threshold

and hierarchical methods are used to construct the correlation
network of financial indices. Networks generated by the
threshold method [20] using the Fruchterman-Reingold layout
display the network structure in a simple and clear way. If
a system presents a cluster organization then the threshold
method is typically able to detect it. Hence, here the threshold
method is used to study the network organization before and
during the crisis. To detect a possible hierarchical structure
hidden in the global financial data we apply the minimum
spanning tree (MST) [21] method (the MST has been applied
to stock market indices in [22–25]). This method selects the
indices with the closest interactions among all indices and
generates a visual presentation of the linkage relationship
among selected interactions of the financial indices [26–28].
This idea is used here for the global financial indices before
and during the crisis of 2008. The hierarchical clustering
method which organizes the financial indices in terms of
dendrograms is also used to strengthen the hierarchical
results.

The paper is organized as follows: The financial data are
discussed in Sec. II. In Sec. III, the RMT approach is applied
to the global financial indices. The techniques of network
analysis and results are discussed in Sec. IV. Finally, we end
with a conclusion in Sec. V.

II. DATA ANALYZED

We analyze the daily closing prices of 20 financial
markets around the world traded from the period July 2,
1997 to June 1, 2009. These indices are as follows: Argentina,
MERV; Brazil, BVSP; Egypt, CCSI; India, BSESN; Indonesia,
JKSE; Malaysia, KLSE; Mexico, MXX; South Korea, KS11;
Taiwan, TWII; Australia, AORD; Austria, ATX; France,
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FIG. 1. (Color online) Volatility as a measure of fluctuation in
financial indices before (�) and during (◦) the crisis.

FCHI; Germany, GDAXI; Hong Kong, HSI; Israel, TA100;
Japan, N225; Singapore, STI; Switzerland, SSMI; the United
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FIG. 2. (Color online) (a) First three largest eigenvalues of the
correlation matrices of financial indices using sliding time windows
of 25 days. (b) IPR for the eigenvector U 20 as a function of time,
obtained from correlation matrices of financial indices using windows
of 25 days. The dashed line marks the value 0.05 of the IPR when all
components contribute equally.
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FIG. 3. (Color online) (a) Components of eigenvectors corre-
sponding to first largest eigenvalue. The fact that all components
are positive reflects a common global financial market mode.
(b) Components of eigenvectors corresponding to second largest
eigenvalue. The financial indices form two clusters in the positive
and negative directions, respectively. The positive significant contri-
butions of the components are associated with the cluster of American
(Argentina, Brazil, Mexico, United States) and European (Austria,
France, Germany, Switzerland) indices. The negative significant
contributions of the components are associated with the cluster
of indices corresponding to Asia-Pacific (Egypt, India, Indonesia,
Malaysia, South Korea, Taiwan, Australia, Hong Kong, Japan,
Singapore) indices (except Israel). The components of the two clusters
switch in opposite directions during the crisis.

Kingdom, FTSE; and the United States, GSPC. The data were
obtained from [29]. There are differences in public holidays or
weekends among countries so the data are shifted according
to the rule that when more than 30% of markets did not
open on a certain day, we remove that day from the data,
and when it was fewer than 30%, we kept existing indices
and inserted the last closing price for each of the remaining
indices. Also these markets do not operate in the same time
zones. It has been reported [11] that correlations of Asian
with US indices increases when one considers the correlation
of the US indices with the next day indices of the Asian
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FIG. 4. (Color online) The network at θ = 0.1, (a) before and (b) during the crisis. All financial indices are well connected. (c) At θ = 0.6
(before the crisis), there is a formation of three separate clusters: American (gray vertices), European (dark gray vertices), and Asia-Pacific
(colorless vertices) with disconnected node of India. The Egypt and Israel (elliptical vertices) nodes of the Africa–Middle East cluster disconnect
from the global financial network at θ = 0.5. (d) At θ = 0.6 (during the crisis), the American and European clusters combine together to form
a strongly linked cluster, and the Asia-Pacific cluster connects India and disconnects Indonesia and Malaysia. (e),(f) If the threshold is further
increased to 0.9 then the European indices (France, Germany, and the United Kingdom) consistently constitute the most tightly linked markets.

market. We did not consider weekly data to avoid the problem
of different operating hours between international markets so
that we do not miss major changes in markets which tend to
occur during a small interval of days. Thus, we considered all
indices taken on the same date and filtered the data as in [11].
The global financial crisis of 2007–2009 is known to be the
worst financial crisis since the Great Depression of the 1930s
and had its origins in the United States and then spread to the
world [19]. To investigate the effect of the financial crisis on the
structure of organization of financial indices, we considered
the period before the crisis (June 7, 2006 to November 30,
2007) and during the crisis (December, 2007 to June, 2009).
The periods before (calm) and during the crisis are chosen by
observing the volatility, which gives a measure of the market
fluctuations. The calm and crisis periods, corresponding to the
red line with triangles and the black line with circles in Fig. 1,
show an increase in the value of the volatility of each index
during the crisis period.

III. RANDOM MATRIX THEORY APPROACH

Let Si(t) and Ri(t) denote the daily closing prices and
returns of indices i at time t (i = 1,2, . . . ,N ; t = 1,2, . . . ,T ),
respectively. The logarithmic returns is defined as Ri(t) ≡

ln [Si(t + �t)] − ln [Si(t)], where �t = 1 day is the time
lag. The normalized return for index i is defined as ri(t) ≡
(Ri(t) − 〈Ri〉)/σi , where σi ≡

√
〈R2

i 〉 − 〈Ri〉2 is the standard
deviation of Ri , and 〈· · ·〉 denotes the time average over
the period studied. The equal-time cross-correlation matrix
is computed with elements Cij ≡ 〈ri(t)rj (t)〉 which are lim-
ited to the domain [−1,1]. For the global financial indices
Cij = 1 (−1) corresponds to perfect correlation (anticorrela-
tion) in indices and Cij = 0 corresponds to no correlation.
The financial data of N = 20 indices for T = 387 days
have been used to analyze the crisis. The value of the average
correlation coefficient 〈Cij 〉 increases from 0.4353 (before
the crisis) to 0.4634 (during the crisis) in response to the
financial crisis. The statistical properties of a Wishart matrix
(a correlation matrix of uncorrelated time series with finite
length) are known [6]. In the limit N → ∞ ,T → ∞ with
Q ≡ T/N (�1), the probability distribution of the eigenvalue
λ is given by PRM(λ) = Q

2π

√
(λmax−λ)(λ−λmin)

λ
within the bounds

λmin � λi � λmax and 0 otherwise [8]. The smallest (largest)
eigenvalue of the random matrix is given by λmin(max) = [1 ∓
(1/

√
Q)]2. If there is no correlation between financial indices

then the eigenvalues should be bounded between the RMT
predictions, i.e., λmin(max) = 0.597 (1.5063). But for the global
financial indices we find that the smallest (largest) eigenvalue
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FIG. 5. (Color online) (a) Mean degree for various thresholds before and during the crisis. (b) Global clustering coefficients for various
thresholds before and during the crisis. At θ = 0.9 there is no triangle formation in the correlation network and there is only one triplet so its
clustering coefficient is zero. (c) Component number in the index correlation network under different correlation thresholds. When θ > 0.9, the
vertices are nearly all isolated and the component number is approximately the vertex number. When θ � 0.2, the networks are fully connected
and the component number is just 2. (d) For θ � 0, all indices in a clique are positively correlated with each other. The maximum clique size
of the correlation networks of global indices decreases with increase in the threshold.

is λreal
min(max)= 0.0527 (9.0454) before the financial crisis and

λreal
min(max)= 0.0388 (9.5282) during the financial crisis. Thus,

the largest eigenvalues deviate significantly from the RMT
prediction in both periods, which shows that there is a strong
correlation in the financial indices. The largest eigenvalue
represents the collective information about the correlation
between different indices therefore its trend is expected to
be dependent on the market conditions. Figure 2(a) shows the
trend of first, second, and third largest eigenvalues over sliding
windows of 25 days. There is an increase in the first and second
largest eigenvalues during the financial crisis of 2008 while
the third largest eigenvalues do not show significant variation.
Next we compute the inverse participation ratio (IPR) which
allows the quantification of the number of components that
participate significantly in each eigenvector and tells us more
about the level and nature of the deviation from the RMT.
The IPR of the eigenvector uk is defined by I k ≡ ∑N

l=1[uk
l ]4,

where uk
l , l = 1, . . . ,N , are the components of the eigenvector

uk . Figure 2(b) shows the IPR of 20 financial indices using time
windows of 25 days for the eigenvector U 20 corresponding to
the largest eigenvalue.

The eigenvectors corresponding to the first largest eigen-
value are shown in Fig. 3(a). The fact that all the components
are positive reflects a common global financial market mode
and this does not show appreciable change due to the
crisis. Figure 3(b) shows the components of the eigenvectors
corresponding to the second largest value. We find that the
positive components of the second eigenvector (Argentina,
Brazil, Mexico, Austria, France, Germany, Switzerland, the
UK, and the US) switch to negative values during the crisis
while the negative components (Egypt, India, Indonesia,
Malaysia, South Korea, Taiwan, Australia, Hong Kong, Japan,
and Singapore) switch to large positive values during the crisis.
However, the eigenvectors corresponding to the third largest
eigenvalue does not carry much information as the third largest
eigenvalue is near the random matrix bound.

IV. CONSTRUCTION AND ANALYSIS OF NETWORK
OF FINANCIAL INDICES

The network of global financial indices using the threshold
method is constructed as follows: Let the set of financial
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indices define the set of vertices (V) of the network. We specify
a certain threshold θ (−1 � θ � 1) and add an undirected edge
connecting the vertices i and j if Cij is greater than or equal to
θ . Therefore different values of threshold generate networks
with the same set of vertices but different sets of edges [20].
The edges (E) in the graph G = (V,E) which represents the
network of global financial indices are defined by

E =
{
eij = 1, i �= j and Cij � θ,

eij = 0, i = j.

We construct financial correlation networks of indices at
different thresholds (in the range 0 to 0.9). The Fruchterman-
Reingold layout is used to find clusters in all these networks.
The Fruchterman-Reingold algorithm is a force-directed lay-
out [30]. In the force-directed layout, vertices are replaced by
steel rings and each edge with a spring to form a mechanical
system. The attractive force is analogous to the spring force
and the repulsive force is analogous to the electrical force.
The basic idea is to minimize the energy of the system by
moving the nodes and changing the forces between them. At
thresholds θ � 0.2 the network of global financial indices is
fully connected as shown in Figs. 4(a) and 4(b). On further
increasing the value of the threshold, first of all, the nodes
of Egypt and Israel corresponding to the Africa–Middle East
cluster disconnect from the global network at threshold 0.5.
The interesting feature of reorganization of financial indices
is found in this financial network at the threshold 0.6. Before
the crisis, Fig. 4(c) shows three separate clusters of indices
namely, the American, European, and Asia-Pacific (except
India). In Fig. 4(d) during the crisis, we find that the American
and European clusters combine together to form a strongly
linked cluster while the Asia-Pacific cluster forms a weakly
linked cluster which connects India and disconnects Indonesia
and Malaysia. These results show that the organization of
financial indices changes when a crisis occurs. The threshold
method using the force-directed layout shows this change
in the organization of financial indices. If the threshold is
further increased to θ = 0.9 as shown in Figs. 4(e) and 4(f),
we find that the European indices (France, Germany, and
the United Kingdom) consistently constitute the most tightly
linked financial indices.

A. Topological structure of financial networks

Mean degree. The degree of vertex i can be defined as
ki = ∑

j �=i eij [20]. The mean degree is based upon the degree
and shows how many neighbors a node in the network has
on average. This measure can be calculated only when the
network has at least one edge connecting the nodes. Figure 5(a)
shows that the mean degree decreases with increase in the
threshold as the number of connected vertices decreases with
increase in the threshold. In the correlation network of financial
indices, a large value of the degree indicates that it is correlated
with many other indices.

Clustering coefficient. If ki nearest neighbors of vertex i

have mi edges among them, the ratio of mi to ki(ki − 1)/2
is the clustering coefficient of vertex i. The global clustering
coefficient is simply the ratio of triangles and connected triples
in the correlation network of financial indices. Figure 5(b)
shows that the clustering coefficients become smaller with
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FIG. 6. (Color online) The MST is composed of the American
(gray nodes), European (dark gray nodes), and Asia-Pacific (colorless
nodes) clusters of indices. Egypt and Israel from the Africa–Middle
East cluster are shown by elliptical nodes. (a) Before the crisis, the
American and European clusters are connected via the United States
and France. The European cluster connects to the Asia-Pacific via
Austria and Singapore. Israel is connected with Europe while Egypt
is linked with Asia-Pacific. (b) During the crisis, the American and
European clusters link together via Brazil and Germany. Financial
indices are organized by their geographical location.

increase in threshold up to 0.4. At θ = 0.9 there is no triangle
formation in the correlation network; there is only one triplet
so its clustering coefficient is zero.

Connected components. If the graph G = (V,E) is discon-
nected, it can be decomposed into several subgraphs which are
known as connected components of G [18,20]. The component
number in the financial correlation network represents the
financial indices that are correlated with each other. Figure 5(c)
shows that the component number depends on the value of the
correlation threshold and increases with increase in the value
of the threshold.

Clique. A clique in an undirected graph is a subset of its
vertices such that every two vertices in the subset are connected
by an edge. In the network of financial indices, the clique finds
the cluster of indices that interact closely with each other. A
maximum clique (|Cl|max) is a clique of the largest possible
size in a given graph. We have used the IGRAPH and R software
to find the maximum clique in the correlation network of global
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FIG. 7. (Color online) The dendrogram representation of financial indices (a) before the crisis and (b) during the crisis, showing the
European-American (thick black lines) and Asia-Pacific (thin red lines) clusters including Egypt and Israel (dashed lines). France, United
Kingdom, Switzerland, and Germany are correlated strongly as compared with other indices. The height of dendrograms of the European-
American cluster decreases while the height of dendrograms of Asia-Pacific increases during the crisis.

financial indices. Figure 5(d) shows that the maximum clique
size in the index correlation network decreases with increase
in the threshold. We observe that up to θ = 0.4 the maximum
clique size is larger during the crisis as compared with the
period before the crisis. For θ � 0.4, there is no change in its
value except at θ = 0.6 where the indices form three clusters,
namely, the American, European, and Asia-Pacific before the
crisis, and two clusters, namely, the American-European and
the Asia-Pacific during the crisis.

B. Minimum spanning tree

We construct the network of financial indices by using
the metric distances dij = √

2(1 − Cij ) forming an N × N

distance matrix whose elements vary between 0 and 2 [21].
The number of possible nodal connections of financial indices
is large, i.e., N (N − 1)/2. The MST reduces this complexity
by showing only the N − 1 most important nonredundant con-
nections in a graphical manner. We use the Prim algorithm [31]
for drawing the MST. In Fig. 6(a), before the crisis, the MST
shows that the American cluster is linked with the European
cluster through nodes of the United States and France. The
American and European clusters have Brazil and France as
their hub vertices. Singapore and South Korea are the hub
vertices in the Asia-Pacific cluster. Austria from the European
cluster is linked with Singapore of the Asia-Pacific cluster.
Egypt is connected with India of the Asia-Pacific cluster while
Israel is connected with France from the European cluster.
With Brazil, France, Singapore, and South Korea at the center,
the structure of the MST is more starlike before the crisis. In
Fig. 6(b), during the crisis, Brazil and France still remain at the
centers of the American and European clusters, respectively,
and Brazil is linked with Germany, connecting the American
and European clusters. The node of Austria is linked with Hong
Kong, connecting the European and Asia-Pacific clusters.
Hong Kong, South Korea, and Australia are the major hub

vertices in the Asia-Pacific cluster. With Brazil, France, Hong
Kong, South Korea, and Australia connected in a chain the
structure of the MST is more chainlike during the crisis [28].
We observe that there is a strong tendency for financial indices
to organize by geographical location.

C. Hierarchical clustering

The average linkage hierarchical clustering algorithm is
applied to the distance matrix to produce the best treelike
dendrogram [32]. The dendrogram is a mathematical and
pictorial representation of the complete clustering procedure
and the arrangement of nodes and stems is the topology
of the tree. The dendrogram itself describes the process by
which the hierarchy has been obtained [32]. The structures of
the European-American (thick black lines) and Asia-Pacific
(thin red lines) clusters are shown in Figs. 7(a) and 7(b);
Egypt and Israel are shown by dashed lines. We find that
during the crisis, the height of the dendrograms of the
European-American cluster decreases while the height of
the dendrograms of the Asia-Pacific cluster increases. This
shows that the European-American indices interact (correlate)
strongly while the Asia-Pacific indices (including Egypt and
Israel) correlate weakly during the crisis. France is the tightly
linked index in the European cluster in both periods. This
further distinguishes the behavior of the European-American
cluster from the Asia-Pacific cluster and indicates that the
hierarchy of European and American indices increases while
the hierarchy of Asia-Pacific indices decreases during the
crisis.

We compute the correlation between the distances implied
by the tree construction and distances defined by the original
data, quantified by the cophenetic correlation coefficient
(CCC) that measure the amount of hierarchy [32,33]. The
CCC value is found to be 0.903 (before the crisis) and 0.933
(during the crisis) which is a significant change in the case of
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financial indices. This indicates that hierarchy increases during
the financial crisis.

V. CONCLUSION

The RMT analysis of correlation matrices provides infor-
mation about the formation of clusters of indices. We show
that the components of the eigenvectors corresponding to the
second largest eigenvalue form two clusters of indices in the
positive and negative directions. The components of these
two clusters switch in opposite directions during the financial
crisis. We constructed networks at different thresholds. The
Fruchterman-Reingold layout is used in order to find the
clusters in the networks. At threshold 0.6, we show that clusters
of the European and American indices combine together to
form a strongly linked cluster during the financial crisis.
However, the behavior of the cluster of indices corresponding
to the Asia-Pacific cluster is found to be different from that
of the American and European cluster, and forms a weakly
linked cluster during the crisis. The topological properties

of financial correlation networks at different thresholds are
studied before and during the crisis. The MST, dendrogram,
and CCC analyses reinforce these results and show that the
hierarchy increases during the crisis period. In conclusion, our
findings show that there are major changes in the structure of
the organization of financial indices during the financial crisis.

In a financial market, crisis and booms are some of the
most important phenomena. Studying the crisis and finding
the organizational changes of clusters during a crisis period
is useful and interesting as similar changes may occur during
other crises, leading to innovative ways for prevention and
control.
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