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Pressure-driven flow through a single nanopore
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We have measured the flow of gas through single ion track pores in a polymer film using a mass spectroscopy
technique. The pores are 12 μm long with diameters in the range of 50–1000 nm, and the flow was driven by
pressure drops in the range 0–30 atm. When the mean free path is large compared to the pore diameter (large
Knudsen number Kn), the flow rate is proportional to the pressure drop and the pore radius R cubed, and is
consistent with a model of diffusive scattering at the pore walls. For Kn � 0.1, the hydrodynamic conductance
increases, as predicted by standard kinetic theory models, and finally approaches the conventional Poiseuille
value with zero slip length.
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Transport of fluids through nanochannels occurs in many
biological systems and is an important feature of all nanofluidic
sensors and reactors. Although there are many computer sim-
ulation studies of transport through individual nanochannels
[1–3], experimental measurements are challenging because
the mass flow rate through a single nanochannel is typically
very small. Most investigations of purely pressure-driven flows
through nanochannels have therefore utilized parallel arrays
containing many channels [4–8] for which the total flow rates
are easier to measure. The inevitable polydispersity of the
channels and possible interconnections of pores in large arrays
make it difficult to identify dissipation mechanisms and to
observe transitions between different types of flow behavior.
These issues are important for understanding mass transport
at the nanoscale, particularly the violation of conventional
hydrodynamic boundary conditions which seem to be required
to explain anomalously high flow rates of gases and liquids
through carbon nanotube arrays [5,8].

There have been only a few previous studies of pressure-
driven flow in single channels of nanometer size. Cheng and
Giordano investigated flow through slits that were small in
one dimension [9]. Recently, Savard et al. have used mass
spectroscopy to measure flow through a single nanometer-
sized hole [10,11] with an aspect ratio (length/diameter) of
approximately 0.5. Here we report measurements using a
similar mass spectroscopic technique, but with nanopipes
with an aspect ratio in the range of 10–200 in which
collisions with the walls establish a pressure gradient along the
nanopipe and determine the flow. The radii of the nanochannels
can be independently determined using ionic conductivity
measurements in aqueous KCl solutions on the same pores. By
varying the aspect ratio by an order of magnitude and varying
the inlet pressure by approximately four orders of magnitude,
our data on the flow rate as a function of the geometry
and pressure drop provides a stringent test of hydrodynamic
models of pressure-driven flow through nanochannels. The
results confirm the applicability of diffuse scattering and
no-slip boundary conditions for the description of transport
through our pores for diameters as small as 50 nm.

The nanochannels were prepared by passing a single heavy
ion (Xe, Au, or Pb) through a 12-mm-thick polyethylene
terephthalate (PET) membrane and then symmetrically etching
the ion track in diluted sodium hydroxide. This procedure

is known to result in cylindrically shaped channels [12].
The final nanochannel diameter was determined by using an
ion conductivity method [13–16]. Experimental details are
described in the Supplemental Material [17].

A PET membrane containing the etched nanochannel is
sealed in a stainless-steel fixture using indium o-rings and
attached to a vacuum system. The low-pressure side of the
membrane is equipped with a turbo pump, a Pirani gauge, a
calibrated leak, and a residual gas analyzer (Stanford Research
Systems), while the high-pressure side has a connection to a
source of gas and conventional capacitance pressure gauges
which together can measure pressures in the range 10−2–104

Torr. The residual gas analyzer (RGA) is essentially a mass
spectrometer which converts the current corresponding to a
given mass into an effective partial pressure. Using the channel
electron multiplier, the minimum detectable partial pressure is
approximately 5 × 10−14 Torr. The high sensitivity to a single
species and relative insensitivity to background outgassing
makes the RGA well suited for this measurement.

Although the RGA directly measures the pressure P ,
our primary interest is in the mass flow rate through the
nanochannel Q; they are related by the pumping speed S,
with Q = SP . The pumping speed is a geometric property of
the pumps and tubing in the vacuum system [18], and can be
estimated to within a factor of 4, but for precise work, it is
necessary to calibrate the detector. This was accomplished by
using a calibrated leak which produced a known mass flow
rate. For helium, we used a NIST certified calibrated leak
which produced 4.45 × 1012 atoms/s, but it was important to
pump on the calibrated leak until it reached a steady-state flow
rate. The pumping speed for helium for our configuration can
be adjusted in the range 1018–1016 atoms/(Pa s).

Helium is a good choice for these transport studies because
the background signal at mass 4 amu is very low so flow rates as
small as 106 atoms/s can be detected. A disadvantage of helium
is that it diffuses readily through many materials. We found
that the diffusion rate of helium through an unetched 12-μm
PET membrane at room temperature was greater than the flow
rate through many of our nanochannels. Measurements of the
permeation rate of helium through a solid PET membrane as
a function of temperature and pressure difference showed that
the flux at 150 K was more than two orders of magnitude
smaller than at room temperature, and at 100 K, the diffusive
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FIG. 1. (Color online) Top: Dense fluid flowing through a pipe
in the continuum regime. Particle-particle interactions are important,
and the mass flow rate Q and the conductance C are proportional
to R4. Middle: Flow of a rarefied gas in a long pipe with diffusive
scattering at the walls. C is proportional to R3. Bottom: Flow of
rarefied gas through an orifice is equal to the number of particles
incident on the area of the aperture which scales as R2. A long pipe
with specular reflection at the walls has the same conductance.

flux through our 12-μm membrane was undetectably small
even for pressure differences of 20 atm. To eliminate the
effects of diffusion, all of our measurements using helium
were conducted with the membrane fixture in a bath of
liquid nitrogen at 77 K; further details are discussed in the
Supplemental Material [17].

The flow rate Q through a flow impedance is proportional to
the pressure drop �P across it; the proportionality constant C

is called the conductance, with Q = C�P . The conductance
is a function of the geometry of the impedance and the physical
properties of the fluid. Detailed models for the conductance
exist for several idealized flows illustrated in Fig. 1 which
are distinguished by the value of dimensionless parameters
including the Knudsen number Kn, which is the ratio of the
mean free path in the fluid to the diameter of the channel, and
the aspect ratio L/D. There are several definitions of Kn used
in the literature. To facilitate comparison to standard models,
we have used the definition of Ref. [19] which is based on
experimentally determined values of the shear viscosity η:

Kn = η
√

2πkBT

2DP
√

m
, (1)

where D is the pore diameter, P is the pressure, and m is
the molecular mass. Values of η for helium were taken from
Ref. [20]. Alternative definitions of Kn based on an estimate
of molecular size neglect interactions and can differ from the
definition of Eq. (1) by up to an order of magnitude.

The simplest case to analyze is flow of a rarefied gas
(Kn � 1) through an orifice (L/R � 0) shown in the bottom
of Fig. 1. Elementary kinetic theory shows that the particle
flux in an ideal gas at pressure P is P/

√
2πmkBT . If the

pressure on the low-pressure side of the orifice is zero,
the driving pressure drop �P = P and the conductance of
the orifice is proportional to the area πR2. It is interesting to
note that the conductance of a long tube is the same as an orifice
if particles reflect specularly from its walls. In this case, every

particle that enters the tube will leave from the low-pressure
side and the conductance is independent of tube length. If the
particles reflect diffusely, some particles which enter the tube
will diffusively scatter back into the high-pressure reservoir.
In the limit of a very long tube, the probability that a particle
which has entered the tube emerges from the low-pressure side
can be calculated exactly [21]; the result is 8R

3L
.

If Kn � 1 the particles do not interact in the tube and
the particle trajectories are independent of each other. In the
opposite limit of a dense fluid with Kn � 1, the particle
motions are highly correlated and flow occurs along stream-
lines. Conventional no-slip boundary conditions imply that the
flow velocity along streamlines at the wall is zero. For fluid
flow at low velocity, viscous interactions between different
streamlines generate a parabolic velocity profile which leads to
the Poiseuille formula for the conductance which scales as R4.

Figure 1 shows that for the simple regimes of either
continuum or diffusive flow, the conductance scales as Rn,
where n = 2, 3, or 4 depending on Kn and the boundary
condition. For flows in the intermediate regime where Kn ∼ 1,
a more sophisticated model is required, and there are two
standard approaches that are commonly used. One method
invokes a slip length and constructs an interpolation formula
which smoothly bridges the two flow regimes [22]. Another
method is based on a detailed numerical solution of the
Boltzmann equation [19]. Both methods account for the fact
that the pressure and therefore Kn vary along the tube, and
both models give similar predictions as shown in Fig. 2. Both
models asymptotically approach the Knudsen free molecular

FIG. 2. (Color online) Comparison of various models of the
conductance of a long pipe as a function Knudsen number at the
inlet. All conductances are normalized by the Knudsen free molecular
value 8π

3L
√

2πmkBT
R3 which is valid at large Kn and is represented

by the horizontal blue dotted line. The dashed red curve is the
normalized conductance for viscous laminar Poiseuille flow which
is physically valid only for Kn < 0.01. The solid black curve is the
theory of Ref. [19]. The green dashed-dotted curve is the unified
theory described in Ref. [22] and the magenta dashed-dotted curve is
the generalized Knudsen theory. The inset contains the same plot on
an expanded scale which shows how all of the predictions (including
simple Poiseuille flow) merge for Kn < 0.01.
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FIG. 3. (Color online) The conductance of a nickel pipe of
diameter 25 μm and length 29 cm and a glass capillary 1.8 μm
in diameter and 1 cm long as a function of the Knudsen number
at the high-pressure end. The low-pressure end is held at P = 0.
Measurements were done at room temperature and 77 K using
helium and argon. Red triangles, blue squares, and green circles are
measurements using the nickel tube, while the magenta diamonds
are measurements using the glass capillary. The black curves are
kinetic theory calculations for each temperature and gas species from
Eq. (2). The pressure corresponding to the lowest values of Kn is
approximately 10 atm, while the highest values of Kn correspond to
pressures near 0.01 Torr.

flow value at large Kn and the Poiseuille value at low Kn; they
differ slightly in the transition region Kn ∼ 1, where there is a
shallow minimum in the conductance. These results have been
previously experimentally verified for arrays of tubes with a
diameter of 110 μm [23].

As a consistency check on our experimental procedure, we
measured the conductance of a nickel tube 25 μm in diameter
(Valco Instruments) and 0.29 m long and a glass capillary
(Polymicro) 1.8 μm in diameter and 1 cm long using helium
and argon at room temperature and at 77 K; the data are shown
in Fig. 3. For helium, the relation between helium flow rate
and the RGA reading was established by using the calibrated
leak as described above. The flow measurements with helium
verified the Knudsen formula for large Kn. For argon the
flow values in the Poiseuille regime at small Kn were used
to calibrate the RGA readings. Viscosity data for argon was
taken from Ref. [24]. The kinetic theory predictions for the
conductance C are generated by numerically integrating the
expression

C = 1

�PL

∫ P1

P2

πR3√m√
2kBT

G(δ)dP (2)

from the inlet pressure P1 to the outlet pressure P2, which
is approximately zero in all of our measurements. G(δ) is an
interpolating function valid for isothermal flow and completely
diffuse scattering given in Ref. [25], where δ = √

π/(4Kn),
which is an implicit function of pressure. The dependence of
the conductance on Kn, temperature, and molecular mass is
accurately described by the kinetic theory results.
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FIG. 4. (Color online) The conductance of pores normalized by
the conductance of an orifice of the same diameter as a function of
the Knudsen number at the high-pressure end. The fluid is 4He gas
at T = 77 K. The inside diameter of the pore listed in the legend is
the diameter determined from ionic conductivity measurements; the
same values were used to compute Kn. The pressure ranges from
approximately 31 atm at the low Kn end to 0.01 Torr at the high Kn
end.

We performed similar flow measurements on several
nanochannels in PET membranes with a fixed length (12 μm)
but with diameters (as determined by ionic conductivity
measurements) ranging from 50 to 1000 nm. The conductance
through the nanochannel normalized to the conductance of
an orifice in the ballistic limit (πR2/

√
2πmkBT ) is shown

in Fig. 4 as a function of the Knudsen number at the tube
entrance.

The conductance ratio becomes independent of Kn for
Kn > 1. To determine the power-law dependence on R in
this regime, the average value of the absolute conductance
for Kn > 1 as a function of R is shown as a log-log plot
in Fig. 5. The solid line is the prediction of Knudsen free
molecular theory for the conductance of 4He at T = 77 K with
no adjustable parameters. For comparison, the dashed line is
the conductance of an orifice of radius R which is proportional
to R2. It is clear that the conductance scales as R3 and that the
results are consistent with the Knudsen theory, which is based
on the assumption of diffuse reflection at the channel wall for
all the channels we investigated. Since this analysis is based
on the channel radius inferred from the ionic conductivity, this
result also shows that the channel radius determined by ionic
conductivity in a liquid and by conductance measurements in
a rarefied gas are equivalent.

Since the conductance at large Kn is well described by
the diffuse reflection Knudsen free molecular theory, it is
useful to normalize the conductance data with respect to the
Knudsen conductance, which is shown in Fig. 6. With this
normalization, all of the data for the various pores collapse
onto a single universal curve.

We have utilized an RGA to make measurements of
pressure-driven flow through individual nanometer-scale chan-
nels for a wide range of pressure drops and Knudsen numbers
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FIG. 5. (Color online) Log-log plot of the conductance of pores
in the Kn > 1 regime as a function of nanochannel diameter D = 2R.
Red squares are data such as those shown in Fig. 4 for pores with a
wide range of diameters. The solid line is the Knudsen free molecular
theory for a long tube, which scales as R3; the dashed line is the
conductance of an orifice which scales as R2.

which includes the transition from free molecular flow to
continuum flow. These are measurements on single submicron
channels which encompass both flow regimes. The measured
conductances have been compared to detailed kinetic theory
calculations which become equivalent to the Knudsen formula
in the free molecular regime and to the Poiseuille formula
for small Kn. Our conductance measurements are in good
agreement with these flow models for Kn throughout the range
10−3–102. Comparison of our flow data to the models requires
knowledge of the channel diameter, which we obtained from
ionic conductivity measurements. The good agreement we
obtain with kinetic theory flow models implies that the channel
diameter deduced from ionic conductivity is equivalent to
the diameter deduced from conventional flow impedance
measurements and provides a self-consistency check for
both methods. For Kn > 1, our results are consistent with
completely diffuse scattering at the tube wall. Similar results
were obtained by Gruener and Huber [7] for arrays of 12-nm
pores in silicon at high Kn. By systematically varying the
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FIG. 6. (Color online) Conductance of nanochannels normalized
to the Knudsen free molecular conductance over a wide range of
Kn. The pore diameters in the legend were determined from ionic
conductivity measurements and were also used to compute Kn. The
solid black curve is the theory of Ref. [19], which provides an
excellent representation of all of the data over the entire range of
Kn.

channel radius R, our measurements explicitly show the R3

dependence of the conductance in this regime. For Kn < 0.01,
our results are consistent with conventional hydrodynamics
with zero slip at the wall. These results on polymer pores
which are rough (the average roughness is typically several
percent of the pore radius) [26,27] stand in contrast to results
on flow through carbon nanotubes [5,8], which show flow
conductances several orders of magnitude larger than the
hydrodynamic predictions. These enhanced conductances are
presumably due to the extremely smooth walls of nanotubes
and the fact that nanotubes are more than an order of magnitude
smaller in diameter than the pores investigated here.
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