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Comment on “Time needed to board an airplane: A power law and the structure behind it”
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Frette and Hemmer [Phys. Rev. E 85, 011130 (2012)] recently showed that for a simple model for the boarding
of an airplane, the mean time to board scales as a power law with the number of passengers N and the exponent is
less than 1. They note that this scaling leads to the prediction that the “back-to-front” strategy, where passengers
are divided into groups from contiguous ranges of rows and each group is allowed to board in turn from back to
front once the previous group has found their seats, has a longer boarding time than would a single group. Here
I extend their results to a larger number of passengers using a sampling approach and explore a scenario where
the queue is presorted into groups from back to front, but allowed to enter the plane as soon as they can. I show
that the power law dependence on passenger numbers is different for large N and that there is a boarding time
reduction for presorted groups, with a power law dependence on the number of presorted groups.
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Frette and Hemmer’s recent work [1] showed that for a
simple model of the airliner boarding process, the dependence
of the mean time to board 〈T (N )〉 on the number of passengers
N � 16 is well fit by a power law with an exponent α =
0.69 ± 0.01. The model consists of one passenger per row,
where passengers enter a single aisle at the front of the plane,
advance instantaneously until they reach their row or run into
another passenger, and take a fixed time to sit in their seat and
clear the aisle once they have reached it. They developed a
sophisticated analysis based on an explicit enumeration of all
possible permutations to calculate the time exactly for all N �
14 and sampled the set of possible permutations for N = 15
and 16. The power law was computed by fitting the resulting
mean boarding time as a function of N . As noted by the authors,
this scaling has an interesting implication for what they call
the “back-to-front” strategy. They assume that the passengers
are presorted by row into several groups, so that the passengers
in the last M rows are in the first group, the next M rows in the
next, etc., but the order of the passengers within each group
is random. The groups are allowed to board the plane one at
a time from back to front, but each group does not begin until
the previous one is finished. The result is that the total mean
time to board is longer than the time for boarding as a single
random group because, for example, with two groups,

Nα < 2 (N/2)α = Nα2(1−α) (1)

if α < 1. However, requiring that each group finishes sitting
before the next group is allowed to begin is not efficient and is
in fact not the way airlines structure their boarding process. A
much closer approximation (neglecting variants such as letting
frequent travelers or higher paying passengers board first) is
that passengers are presorted by row into groups within the
queue, but allowed to board as soon as they can.

I have implemented Frette and Hemmer’s model and sim-
ulated the boarding time for randomly sampled permutations.
The sampling algorithm randomly selects from a uniform
distribution of permutations by generating permutations of the
initially sorted queue using Durstenfeld’s algorithm [2] with
the random number generator built into GFORTRAN 4.5.1 [3]. I
use 107 samples for each value of N up to 4096 and 106 samples
for N up to 16 384 and evaluate the means and variances of

the boarding times. The variance divided by the number of
samples is the square of the one standard deviation uncertainty
of the estimate of the true mean. To confirm that my sampling
approach reproduces the exact calculation of Ref. [1], I plot
〈T (N )〉 as a function of N in Fig. 1. I compute power law fits
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FIG. 1. Top: mean time to board a plane 〈T (N )〉 as a function
of the number of passengers N on a log-log scale. Symbols show
simulation results and the solid line is a power law fit for small N , as
in Ref. [1]. Bottom: logarithmic derivative of 〈T (N )〉 as a function of
N on a lin-log scale. Symbols show simulation results, the solid line
is a guide to the eye connecting the points, and the dashed line is a
fit of d ln(〈T (N)〉)

d ln(N) to a constant plus a decaying exponential of ln(N ) for
N � 16.
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of my results by fitting the logarithm of 〈T (N )〉 to a linear
function of the logarithm of N . The errors on 〈T (N )〉 are
negligible on this scale (less than 7 × 10−4 for N � 4096 and
less than 3 × 10−3 for larger N ). For 2 � N � 16, a power
law fit

〈T (N )〉 = cNα (2)

gives

c = 0.945(1 ± 0.01), α = 0.692 ± 0.004, (3)

in excellent agreement with the published results. I also find
that the standard deviation of the distribution fits a power law
with a best fit exponent of 0.343 ± 0.002, within the error
bars of the published result of 0.32 ± 0.02. A comparison of
my sampled 〈T (N )〉 to Frette and Hemmer’s exact results for
10 � N � 14 [4] (data not shown) shows excellent agreement
and no sign of systematic error.

It appears from the plot that the data for N > 20 deviate
significantly from the fit. A plot of the logarithmic derivative
(Fig. 1), which would be constant for a power law, shows
an effective exponent that decreases for increasing N . The
logarithmic derivative appears to approach 0.5 and is indeed
well fit by a constant plus a decaying exponential in ln(N ),

d ln(〈T (N )〉)
d ln(N )

= a + b exp[−c ln(N )], (4)

with a best fit value for the constant a of 0.4966 ± 0.0007.
This may not be the true functional form for the logarithmic
derivative, but it does appear that the limiting behavior for
〈T (N )〉 in the large N limit is a power law with exponent 0.5.

I checked for systematic error in the sampling algorithm
by comparing its results to several alternatives for N = 48,
where the sample mean of 12.82 is significantly different from
the extrapolated low N power law prediction of 13.77. Using
a different permutation algorithm (randomizing an initially
sorted queue by swapping 100N randomly selected pairs), a
different, linear-congruential random number generator [5], or
increasing the number of samples to 108 or 109 gives results
for 〈T (N )〉 that agree within 0.001. This range of variation
is comparable to the error estimate of 0.0004, confirming
the reliability of the sampling results and the statistical
significance of the deviation between the sampling results and
the low N power law. I do not have an explanation for the
observed dependence of the effective exponent on N . While
the sampling algorithm has been tested in several ways, it is
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FIG. 2. Mean time to board plane 〈T (N )〉 as a function of number
of presorted groups Ng for N = 48 on a log-log scale. Symbols show
simulation results and the dashed line is a power law fit for small Ng .

possible that some unidentified systematic error is affecting
the results.

To measure the effect of partially sorting the incoming
passengers into groups but allowing each one to board as soon
as possible, I presorted the passengers into Ng nearly equal
size groups within the boarding queue (the first N modNg

groups are larger by one passenger than the remaining groups).
I then sampled the distribution of boarding times for these
partially sorted queues for N = 48. The mean boarding time
for a partially sorted queue 〈Ts(N,Ng)〉 as a function of group
size Ng is plotted in Fig. 2. For Ng = 1 I recover the original
result and for Ng = N , i.e., a fully sorted queue, the boarding
time is exactly 1. For small numbers of groups the reduction
in boarding time is approximately a power law in Ng , with
variation at large Ng because of the discreteness of small
groups. The best fit exponent of the power law for Ng � 11
is −0.45 ± 0.01. This scaling means that presorting the full
queue into 5 groups reduces the mean boarding time by about
a factor of 2. The overall efficiency of the boarding process,
however, would also be influenced by any additional time
required to presort into groups, which could offset some or all
of this simple model’s predicted boarding time decrease.

I thank K. E. Ross for pointing out the difference between
original boarding strategy and the one actually used by airlines.
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