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Dynamical principles of cell-cycle arrest: Reversible, irreversible, and mixed strategies
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Living cells often alternate between proliferating and nonproliferating states as part of individual or collective
strategies to adapt to complex and changing environments. To this aim, they have evolved a biochemical regulatory
network enabling them to switch between cell-division cycles (i.e., oscillatory state) and cell-cycle arrests (i.e.,
steady state) in response to extracellular cues. This can be achieved by means of a variety of bifurcation
mechanisms that potentially give rise to qualitatively distinct cell-cycle arrest properties. In this paper, we study
the dynamics of a minimal biochemical network model in which a cell-division oscillator and a differentiation
switch mutually antagonize. We identify the existence of three biologically plausible bifurcation scenarios
organized around a codimension-four swallowtail-homoclinic singularity. As a result, the model exhibits a broad
repertoire of cell-cycle arrest properties in terms of reversibility of these arrests, tunability of interdivision time,
and ability to track time-varying signals. This dynamic versatility would explain the diversity of cell-cycle arrest
strategies developed in different living species and functional contexts.

DOI: 10.1103/PhysRevE.86.021917 PACS number(s): 87.16.Yc, 87.17.Aa, 87.17.Ee, 87.18.Cf

I. INTRODUCTION

Switching behaviors between cyclic and steady states
occur in many physical, chemical, and biological systems
[1,2]. The nature of the underlying dynamic mechanisms
can be remarkably diverse [3], depending on the detailed
structural properties of the system. This is especially the case
in biological systems in which evolution or adaptation can
tune biophysical processes to achieve a specific biological
function. For instance, the mechanisms bringing neurons from
resting to spiking states rely on various types of bifurcation
depending on the detailed ionic current properties [4], which
account for the neuronal diversity of firing patterns [5,6] or
synchronization ability [7]. Which bifurcation mechanisms
give rise to oscillations also determine important properties of
oscillatory signaling pathways in living cells [8–11].

The cell-division cycle is another, and perhaps the most
vital, biological process that is driven by a biochemical
oscillator [12], which can be nevertheless stopped under
some circumstances [Fig. 1(a)]. On the one hand, the cyclic
alternation of phases of growth and division underlies cellular
proliferation that is essential for the colonization of environ-
mental niches or the development of multicellular organisms.
On the other hand, specific environmental signals, such as
stress factors, may stop this cycling process, allowing cells
to wait for better conditions or to enter into a specialized
state during which they may repair damages, adopt survival
strategies, or contribute to the division of labor in cell
societies. The process by which cells stop their progression
through the cell-division cycle and eventually diverge toward
another fate is called cell-cycle arrest (or exit) and may
follow various decision-making rules depending on the cellular
context. For instances, some nondividing cells retain the ability
to resume their cell-division cycle when the antimitogenic
signal vanishes [13,14], whereas others lose partially or fully
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their proliferative capacity [15,16]. Noteworthily, irreversible
commitment often takes place after a precommitment stage
during which cells can quickly reenter into the cell cycle
[17,18].

The goal of this paper is to identify the main design and
dynamical principles that account for such a diversity of cell-
cycle arrest strategies used by cells to switch between prolifer-
ating and nonproliferating states. Modeling approaches have
provided a comprehensive picture of the generic mechanisms
of growth-dependent cell-cycle progression in eukaryotic cells
[19]. Basically, the cell-cycle regulatory network features
several positive and negative feedback loops that drive a cyclic
sequence of states separated by irreversible transitions [20].
Recent modeling studies have complemented this picture by
taking into account some specific stress or differentiation
signaling pathways that counteract cell division [21–23]. It
was shown that both the intrinsic dynamics of these signaling
modules and their coupling properties to the cell-division
machinery play an important role in determining the manner
in which the cell-cycle progression would slow down or arrest,
reversibly or irreversibly, in response to these antiproliferative
ansignals. These models are nevertheless based on signaling
and regulatory features that are specific to a given living species
or extracellular context. In contrast, the approach undertaken
in this study seeks to represent the generic dynamics of
the cell-cycle arrest process with a minimal mathematical
model involving a small set of variables and parameters of
biological significance. The preliminary part of this study
will be devoted to design such a model of cell-cycle arrest
based on the coupling between two modules: a cell-cycle
oscillator and a differentiation switch. The bifurcation analysis
of the model will help us to identify the different dynamical
regimes through which cells may arrest their cell-division
cycle and the key control parameters in this process. Fi-
nally, emphasis will be put on the diversity of functional
properties, such as frequency tunability or response to time-
varying signals, that are deployed in these different dynamical
regimes.
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FIG. 1. (Color online) (a) Schematic representation of the bi-
ological process of cell-cycle arrest and reentry. (b) Generic bio-
chemical network model of cell-cycle arrest where thick and thin
arrows indicate mandatory and optional links for cell-cycle arrest.
(c) Examples of antagonistic interactions (x3 inhibits x1 and recipro-
cally in most cases) involved in cell-cycle arrest in bacteria [41,42],
plants [44,45], yeast [22,43], and animals [46–49].

II. MINIMAL NETWORK MODEL
OF CELL-CYCLE ARREST

A. Network component dynamics

The cell-cycle biochemical network involves the interac-
tions between a large number of proteins including transcrip-
tional activators and repressors as well as kinases and kinase-
regulatory proteins, which altogether interact at different
regulatory levels: transcription, degradation, phosphorylation,
multimerization, or sequestration. Very simple models have
nevertheless been proven useful to capture some key qualita-
tive features of the cell-division cycle [24–26]. We consider
here a minimal network model that gives greater importance to
the network architecture rather than to the detailed reaction rate
equations. Thus, we assume that the normalized concentration
of a given active protein i evolves in time according to the
following generic dynamic equation (see Appendix):

τi

dxi

dt
=

⎛
⎝si +

∑
j

aij x
2
j

⎞
⎠ (1 − xi) −

⎛
⎝di +

∑
j

bij x
2
j

⎞
⎠ xi,

(1)

where the first and second members are the activating and
inactivating kinetic rates, which may both depend on the
concentrations of other active proteins j . This dynamical
system is characterized by a bounded phase space (x ∈ [0,1]),
which is due to inherent saturation effects in biochemical
reactions. In this study, basal inactivation rates di are set
to 1 upon parameter renormalization. Note that for a single
self-activating component, a cusp singularity can be found for
the following coordinates: xc = 1/3, ac = 3.375, sc = 1/8. It
means that the self-activating component behaves as a bistable
switch for aii > ac.

B. Network topology and control parameters

We consider a minimal network topology having solely
three types of regulatory proteins [Fig. 1(b)]: Proteins 1 and
2 regulate the division cycle in which the first protein (e.g.,
cyclin-CDK in eukaryotic cells) activates and is inactivated
by the second protein (e.g., APC in eukaryotic cells). More-
over, these two proteins are considered to be self-activating
(a1,2 > ac), owing to fast positive feedback mechanisms that
contribute to sharp, eventually bistable, responses. Protein 3
is an inhibitor of cell division that inactivates the cell-cycle
activator (protein 1). This inhibition is a hallmark of most
cases of cell-cycle arrest occurring in various organisms and
contexts [Fig. 1(c)]. A frequent property of such cell-cycle
antagonist is to be inhibited, in turn, by cell-cycle activators,
here protein 1, and to be part of a module that may involve
positive feedback mechanisms. The activation and inactivation
matrices associated with this minimal topology are then given
by

aij =
⎛
⎝

a11 0 0
a21 a22 0
0 0 α

⎞
⎠ bij =

⎛
⎝

0 b12 β

0 0 0
b31 0 0

⎞
⎠.

The main signals that control this network are those that
activate the positive regulator of cell division (i.e., growth
factors) and those that activate the regulator that antagonizes
with cell division (i.e., stress or differentiation factors), so that
we can write the input vector as

si = (s1 0 S).

Underlined parameters α, β, and S are the main control
parameters that are actually varied in the course of our model
analysis.

III. BIFURCATION THEORY OF CELL-CYCLE ARREST

A. Distinct scenarios of cell-cycle arrest

In the absence of the stress/differentiation signal (S = 0
and x3 = 0), the model reduces to a two-dimensional system
in which a core negative feedback loop contributes to stable
limit cycle oscillations in some domain of the parameter
space. In this study, parameters are set to a11 = 5, a22 = 3.8,
b12 = 4, a21 = 4, τ1 = 1, τ2 = 0.5, and s1 = 0.1. These model
parameters lead to oscillations occurring at frequency f0 =
0.035. Both the choice of τ1 and τ2 of the same order and the
choice of a11 and a22 sufficiently large (>ac) contributes to the
existence of large amplitude oscillations that typically appear
or disappear through a saddle-node bifurcation on an invariant
circle (SNIC) under smooth changes of the signal s1.

In the presence of the stress/differentiation signal S, the
stable limit-cycle oscillation disappears for a certain critical
values S∗ of S. We found that such disappearance occurs via
several main bifurcation routes [Fig. 2], depending on the
precise value of some key parameters of the differentiation
module (α, β, b31):

(i) SNIC0 scenario. For sufficiently small values of α

(including the case α = 0), x3 varies smoothly with S, then
the disappearance of stable oscillations occurs through a SNIC
bifurcation [Fig. 2(a)]. In this bifurcation regime, cell-cycle
arrest is fully reversible as oscillations resume for S decreasing
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FIG. 2. Main bifurcation scenarios for cell-cycle arrest. In the three top panels, plots of the two negative Floquet exponents �, the oscillation
frequency f , and the underlying bifurcation diagrams as functions of S. In the bifurcation diagrams: full (dashed) lines indicate stable (unstable)
fixed point; circles indicate the maximal and minimal x1 values during oscillation; white and gray domains indicate the existence of a stable
steady state and a stable limit cycle, respectively. In the bottom panels, plots of trajectories (gray lines) and fixed point (stable/unstable:
filled/empty circles) in the phase space at the bifurcation point (S = S∗). Left to right panels correspond to different sets of model parameters
associated with distinct bifurcation scenarios: (a) SNIC0 scenario (α = 3.2, β = 5, b31 = 2): Occurrence of a saddle-node bifurcation on
an invariant circle. (b) SNIC1 scenario (α = 3.8, β = 8, b31 = 2): Sequential occurrences of two saddle-node bifurcations, off and on an
invariant circle. (c) SH scenario (α = 3.8, β = 2, b31 = 2): Sequential occurrences of a saddle-node bifurcation off an invariant circle and a
saddle-homoclinic bifurcation. (d) SNLC0 scenario (α = 3.8, β = 2, b31 = 0): Occurrence of a saddle-node bifurcation of two limit cycles.
(e) SNLC1 scenario (α = 3.8, β = 0.5, b31 = 0): Sequential occurrence of a saddle-node bifurcation of two limit cycles and a SNIC0 bifurcation.

below S∗ and the frequency of oscillation scales as
√

S∗ − S

as the bifurcation parameter approaches S∗.
(ii) SNIC1 scenario. For sufficiently large values of α and β,

the SNIC bifurcation point coexists with another stable steady
state. As a result, hysteretic behavior occurs when increasing
S switches the system to this alternative state through a saddle-
node bifurcation at S = Sc1 > S∗, whereas further decrease of
S destabilizes this state through a saddle-node bifurcation off
an invariant circle at S = Sc2 < S∗ [Fig. 2(b)].
(iii) SH scenario. Besides the two SNIC bifurcation sce-

narios above, the limit-cycle oscillations can also disappear
through a collision with a hyperbolic saddle equilibria, which
is usually called a saddle homoclinic (SH) bifurcation. Close
to the bifurcation point, the limit cycle approaches the saddle
equilibria in a way that the oscillation frequency scales
as 1/ ln(S∗ − S). It is to note that this scenario is always
associated with a hysteretic behavior when increasing and then
decreasing the bifurcation parameter S [Fig. 2(c)].

(iv) SNLC scenarios. At last, two others scenarios, occurring
for small values of b31 and high values of α, involve a saddle-
node bifurcation of limit cycles (SNLC). In this bifurcation
scenario, a stable limit cycle coalesces with a saddle one,
so that trajectories further converge to either a fixed point
(SNLC0) [Fig. 2(d)] or another limit cycle (SNLC1) [Fig. 2(e)].
The SNLC0 case is characterized by a hysteretic behavior and
a finite frequency at the bifurcation point. In contrast with
previous scenarios, cell-cycle exit may occur at any phase
of the cell-cycle oscillation, which is very unlikely from a
biological perspective for which such exit is restricted to
specific phases of the cell-division cycle. The SNLC1 case
displays discrete changes of both amplitude and frequency of

cell-cycle oscillation upon change of the stress/differentiation
signal, which is also biologically irrelevant.

B. Unfolding of a swallowtail-homoclinic bifurcation

The three biologically plausible types of the codimension-
one bifurcation scenario depicted above (SNIC0, SNIC1, SH)
occur in well-defined domains of the parameter space with
coordinates α, β, S, and τ3. In this four-dimensional parameter
space, these domains intersect into a single point (α̃, β̃, S̃, τ̃3)
where a codimension-four bifurcation occurs: the limit cycle
collides with a swallowtail singularity. Close to this singularity,
the present model can be reduced by means of appropriate
changes of coordinates to the truncated normal form given by
the three-parameter family of vector fields [27],

z′
1 = −z1

z′
2 = −z2 (2)

z′
3 = r1 + r2z3 + r3z

2
3 − z4

3,

where r1,2,3(α̃,β̃,S̃) = 0. The condition for the homoclinic
connection to this swallowtail fixed point occurs for τ3 = τ̃3.
A swallowtail-homoclinic bifurcation requires then four pa-
rameters to completely unfold it into n-dimensional manifolds
of codimension-(4 − n) bifurcations (1 � n � 3).

Figure 3(a) shows a two-dimensional section [τ3 = τ̃3 and
S = S∗(α,β,τ3)] of this parameter space where SH, SNIC0,
and SNIC1 domains intersect into lines on which codimension-
two bifurcation occurs: (i) a saddle-node homoclinic bifur-
cation (line II in Fig. 3); (ii) two saddle-node bifurcations,
off and on an invariant circle (line III in Fig. 3); (iii) a
saddle-node bifurcation on a homoclinic connection (line IV in
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FIG. 3. (Color online) (a) Phase diagram as a function of α and β for τ3 = 0.78, b31 = 2, and S = S∗(α,β). Dashed line indicates the path
used for the panel (c) and black circles indicate parameters used in Fig. 2. (b) Schematic phase portrait of various bifurcation scenarios of
codimension one (bottom), two (middle), and four (top). (c) The frequency tunability (T ) and the hysteresis width (H) as a function of the z
coordinate along the path drawn in the phase diagram (a). In (a)–(c), grayscale indicates SNIC bifurcation scenarios (light gray: SNIC0; dark
gray: SNIC1)

Fig. 3). These lines finally intersect into the codimension-four
swallowtail-homoclinic singularity. If τ3 varies, these lines do
not intersect anymore into one point and a more complex phase
diagram with several codimension-three singularities appears
in the vicinity of the swallowtail-homoclinic singularity.

Operating close to this codimension-four singularity pro-
vides the biochemical network with the ability to deploy very
different properties of cell-cycle arrest and reentry upon slight
changes of parameters. This is shown by defining a path in
the parameter space that encloses this singularity [Fig. 3(a)]
and by measuring two quantities along this path [Fig. 3(c)]:
(i) the hysteresis size H defined as (S∗ − S+)/S∗ where
S+ is the signal level for which oscillations appear when
decreasing S; (ii) the frequency tunability T is defined as
(S∗ − S50%)/S∗ where f (S50%) = 0.5 f0. Figure 3(c) shows
that both quantities vary relatively independently depending
on the bifurcation scenario. The SNIC0 bifurcation scenario
exhibits both fully reversible arrest (H = 0) and frequency
tunability. In sharp contrast, the SH bifurcation scenario
is characterized by hysteretic behavior of various extents
combined with a lack of frequency tunability (T = 0), which
is consistent with the fact that the period of the oscillation
approaches infinity logarithmically in this scenario. Alterna-
tively, frequency tunability coexists with hysteretic behavior in
the SNIC1 bifurcation scenario whereas the opposite occurs at
the border between the SH and SNIC0 bifurcation scenarios.
Thus, several patterns of combined properties of hysteretic
size and frequency tunability can be achieved upon moderate
changes of model parameters, which is likely to be useful for
the adaptive or evolutionary selection of an optimal cell-cycle
arrest strategy.

C. Response to time-varying signals

The switching events between proliferating and nonpro-
liferating states occurs upon temporal variations of division,
stress, and differentiation signals. These variations can occur
over a wide range of timescales that can be either larger or
smaller than the cell-cycle period. How do cells interpret
these time-varying signals and divide or exit from their cell
cycle accordingly? A hypothesis is that, like other properties
of cell-cycle arrest, it depends critically on the underlying
bifurcation scenario. To check this hypothesis, we perform

numerical simulations of the network dynamics in response to
a periodic signal of fixed mean Sm, but variable frequency f
and amplitude A

S(t) = Sm[1 + Acos(2π f t)]. (3)

The value of Sm is chosen to be slightly lower than the critical
value S∗: Sm = S∗ − η with η = 0.03. We measure the values
S∗

i = S(t∗i ) where t∗i is the time of division (i.e., corresponding
to the maximum value of x1), such as to define a normalized
quantity χ ,

χ = Sm − 〈S∗〉
A

. (4)

χ equal to 1 (−1) indicates that division events are fully anti-
correlated (correlated) with the stress/differentiation signal.

Figure 4 compares the response to this time-varying input
for the three classes of models in which SNIC0, SNIC1,
and SH bifurcations occur, respectively [same parameters
as in Figs. 2(a)–2(c)]. Both similarities and discrepancies
are observed. On the one hand, all models display a 1:1
synchronization tongue shown in Fig. 4(a) that connects to
the natural frequency f0 at vanishing amplitude of signal
oscillation. This synchronization region correlates with values
of χ close to 1 [Fig. 4(b)], which indicate a high anticorrelation
between division event and the stress/differentiation signal.
On the other hand, this region of 1:1 synchronization and of
high values of χ is found to be much larger in the case of
the SNIC0 or SNIC1 bifurcation scenarios than in that of SH
bifurcation scenario, although the SNIC1 and SH scenarios
display hysteresis of similar extent.

These qualitatively different synchronization properties are
related with the distinct manner by which the phase-space tra-
jectory converges to the steady state for suprathreshold signal
(S > S∗). In the SNIC0 bifurcation scenario, the transverse
stability of the whole trajectory contributes to the stabilization
of the 1:1 synchronization state. In addition, the proximity in
phase space between the stable steady state and the limit cycle
allows to keep the convergence time (to the steady state) small
enough. As a result, the system is reset for a large range of
forcing frequency to the same state before resuming cell-cycle
oscillations. This is in stark contrast with what happens in
the SH bifurcation scenario: transverse instability can occur
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FIG. 4. (Color online) Dynamic response to a sinusoidal signal S(t) [see Eq. (3)] in the different bifurcation scenarios [Left: SNIC0 with
the same parameters as in Fig. 2(a); Middle: SNIC1 with the same parameters as in Fig. 2(b); Right: SH with the same parameters as in
Fig. 2(c)]. (a)–(b) Plots of the 1:1 synchronization region (a) and χ (b) as a function of the frequency f and amplitude A of the signal. (c) Plots
of the phase-space trajectories (thin green line) relative to the position of the steady-state solution branch (thick black line) for a given signal
modulation [circles in (a): f = 0.025 and A = 0.5].

when the trajectory crosses a homoclinic manifold (for a given
value of S) and the convergence time is typically large due to
the discrete distance in phase space between the limit cycle
and the stable steady state. These arguments are schematically
illustrated in Fig. 4(c) where it is shown that the phase-space
trajectory approaches one steady-state branch in the SNIC0

and SNIC1 scenarios, in which synchronization occurs, but
not in the SH scenario. Interestingly also, the existence of
two steady-state branches provides the SNIC1 model with the
ability to elicit hysteretic responses when the signal changes
slowly enough but fully reversible responses with prompt
reentry into the cell-division cycle when the signal changes
at the typical timescale of the cell-division period.

IV. CONCLUSION

In summary, we have shown that the properties of cell-cycle
arrest are tightly related with the underlying bifurcation
scenario that itself depends on a few key network features.
In particular, the self-activating or inhibitory strengths of
the antiproliferative pathway critically determine the manner
in which cell-cycle oscillations slow down, stop, restart,
and synchronize in response to time-varying signals. The
experimental assessment of these design principles would be
to determine how genetic or pharmacological perturbations
of cell-cycle inhibitory components impact cell-cycle arrest
properties in response to various stress protocols. Whatever
the type of stress (thermal, oxidative, osmotic, nutrient
deprivation, etc.), the important point is to expose cells to
temporal patterns of stress such as oscillations of various
frequencies, to allow the estimation of the extent of both
hysteresis and synchronization. The identification of several

biologically plausible bifurcation scenarios provides also a
comprehensive picture that encompasses the distinct cell-cycle
arrest strategies encountered in different species or contexts.
On the one hand, the SNIC0 bifurcation scenario corresponds
to the reversible arrest strategy in which cells promptly resume
their division cycle upon removal of the stress or differentiation
signal. On the other hand, the SH bifurcation scenario fits with
the irreversible differentiation strategy required to withdraw
from the cell division for some period of time or permanently,
such as in terminal differentiation or senescence. Interestingly,
the SNIC1 bifurcation scenario provides a mixed strategy that
combines irreversible arrest for slow and significant changes in
the signal and reversible arrest for rapid or moderate changes
in the signal. Several cell-cycle arrest processes in bacteria,
amoebae, or mammals [17,18,28,29] seem to follow this
scheme in which a reversible step precedes an irreversible
decision. Consistent with our study, this hybrid strategy
has been proposed to maximize both adaptable and reliable
decision making over a broad range of dynamic environmental
changes [29]. It also provides a simple mechanism to account
for the lengthening of the G1 phase observed during animal
development that precedes irreversible differentiation of stem
and progenitor cells [30].

Our study also sheds light on another important aspect of
cell division control, which is the periodic forcing of the cell-
cycle oscillator [31]. The in vivo origin of this modulation can
be the 24-hour periodic circadian gating associated with day-
night alternation [32] or the ultradian oscillations in signaling
pathways [33,34]. The ability for the cell-division cycle to be
entrained for a large range of forcing frequency and amplitude
may provide some selective advantage to cells in these specific
contexts. Likewise, a large 1:1 synchronization domain has
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been shown to be important for the robust entrainment of
circadian oscillators [35] or for the reliability of neuronal
firing [36].

More generally, this study stresses the fact that biological
systems are likely to harness the dynamical versatility and
flexibility in the vicinity of high-codimension singularities,
as it has also been shown in other biochemical circuit designs
[37–40]. A further step will be to delineate how slower adaptive
or evolutionary forces drive these systems to select appropriate
dynamical behaviors in a context-dependent manner, which is
a key property of living systems.

APPENDIX

In this appendix we describe in some detail the generic
mathematical form used in Eq. (1) to represent the time
evolution of protein concentrations. Such dynamic evolution
can be controlled at various levels such as by phosphoryla-
tion/dephosphorylation mechanisms, transcriptional control or
degradation.

Let consider first the case in which the activity of proteins
P is only regulated through phosphorylation and dephos-
phorylation reactions, which are activating and inactivating,
respectively. The reaction scheme for this system is as follows:

P
k+−⇀↽−
k−

P∗, (A1)

where the asterisk indicates the inactivated state of the
protein. Defining x̃ and x̃tot as the activated and total protein
concentrations (in the limit of large protein number) and using
the law of mass action leads to the following dynamic equation:

dx̃

dt
= k+(x̃tot − x̃) − k−x̃. (A2)

Equation (1) is finally derived after (i) normalizing the protein
concentration x = x̃/x̃tot, (ii) assuming that the phosphory-
lation and dephosphorylation rates are the sum of a basal
term and a term that depends on the concentrations of other
proteins in a quadratic manner due to cooperative effects, and
(iii) factorizing by the basal inactivating parameter allowing
to introduce the variable τ on the left-hand side of Eq. (1).

Equation (1) is also a suitable approximation in the case of a
protein species whose concentration X is regulated at the level
of transcriptional activation and repression. Let us assume the

existence of two classes of transcriptional factors, an inducer
Y and a repressor Z, which both bound to the free promoter D

encoding the regulated protein species. The inducer-promoter
complex Di (the repressor-promoter complex Dr ) activates
(inhibits) the transcription of mRNA. The system of reaction
is given by

D + nY
k+−⇀↽−
k−

Di

D + n′Z
K+−⇀↽−
K−

Dr

Di

sm−→ Di + mRNA (A3)

mRNA
dm−→ ∅

mRNA
sP−→ P

P dP−→ ∅

repressor-promoter DNA complex.
Given a constant promoter concentration D + Di + Dr =

Dtot (normalized here to 1), averaging over many fast bind-
ing and unbinding events between the promoter and the
transcription factors allows the computation of the mean
concentration over time of the bound promoter. For sufficiently
slow degradation of proteins as compared to mRNA, a
quasi-steady-state approximation can be used to compute the
steady-state concentration of mRNA, such that the equation
for the time evolution of protein concentrations X reads

dX

dt
= sP sm

dm

k Y n

1 + k Y n + K Zn′ − dP X, (A4)

where k = k+/k− and K = K+/K−. This equation can be put
into the form τ (f1 + f2) ẋ = f1 (1 − x) − f2 x after suitable
renormalization: λ = dP dm

sP sm
, x = λ X, and τ = 1/dP . Equa-

tion (1) can be finally obtained under the rough approximation
that the quantity f1 + f2 does not vary much in the phase space.

Thus, the model using Eq. (1) implicitly omits the case of
cross-regulatory events where different enzymes or different
transcription factors interfere, as well as the case of regula-
tory schemes combining transcriptional and post-translational
controls. Use of quadratic terms for transcriptional or post-
translational protein interactions reflects the effect of bio-
chemical cooperativity, providing here a primary source of
nonlinearities in the model.
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