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Excitation energy transfer modulated by oscillating electronic coupling of a dimeric system
embedded in a molecular environment
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We have developed a theoretical formulation for excitation energy transfer between structurally fluctuating
dimer molecules in surrounding environments. On the basis of a generalized master equation in which a memory
function plays a vital role, the temporal evolutions of the population densities of exciton at the donor and
acceptor sites are described. By employing an ansatz form for the memory function, the competitive effects of
dimeric coupling and bath modes are analyzed quantitatively, where the roles of oscillating electronic coupling
are highlighted.
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I. INTRODUCTION

Excitation energy transfer in biological and other molecular
systems [1,2] has attracted much interest for a long time,
and it still provides a field of hot debates experimentally
and theoretically in various research subjects. For example,
in the light-harvesting pigment-protein complexes in the
neighborhood of photosynthetic reaction center, the excitation
energy due to the light absorbed by pigments is transferred
with extremely high efficiency. Recent experiments [3,4] have
then suggested that long-lived quantum coherence in the
exciton transfer plays an essential role for this high efficiency
in the Fenna-Matthews-Olson (FMO) protein complex [5]
of the green-sulfur bacterium Chlorobium tepidum and in
the reaction center of the purple bacterium Hodobacter
sphaeroides.

A lot of model calculations [1,2,6] have been carried out
for elucidating the unique mechanism of the excitation energy
transfer in photosynthetic systems. Of key interests in recent
theoretical approaches [7–13] are the role of quantum coher-
ence in the biological function of the chromophoric complexes
and its competition or cooperation with the environmental
relaxation effect due to the pigment-protein interactions in
achieving the directed exciton flow. The roles played by
the electronic coupling between the pigments and by the
exciton-phonon coupling have thus been investigated by many
researchers, yielding a wealth of insights into the sophisticated
mechanism of efficient energy transfer realized in natural
photosynthetic systems.

In this work, we especially focus on a physical effect
which has been ignored in most of the theoretical analyses
to date, but may play an important part in the description
of the excitation energy transfer in biological and other
molecular contexts. In many biomolecular systems, proteins
or nucleic acids have a huge number of vibrational modes,
which are localized or delocalized, and often show a large-
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scale cooperative motion. From a theoretical point of view,
this effect can be incorporated into the model in terms of
the electron-phonon or exciton-phonon coupling [1,2,14–16].
The shift or fluctuation of the site energies of excitons and
the relaxation of excitation populations or coherences are
described through these modelings, and additionally some
inhomogeneities [2] in the site energies can be taken into
account with model parameters as well. As compared with
many attempts to account for these phonon-related effects,
however, those effects that directly influence the strength of
the electronic coupling between the excited pigments have
rarely been incorporated in most model calculations. Since
the electronic coupling is very sensitive to the distance and
relative orientation of donor and acceptor, its value would
be significantly affected by the structural modulations of
molecular environments. It may be remarked in this context
that the fluctuations in the electronic coupling between donor
and acceptor have recently attracted much attention in the
studies of electron transfer reactions in biological systems. It
has been pointed out by many investigators [17–26] that those
fluctuations in electronic coupling associated with the struc-
tural fluctuations of biomolecules may substantially modify
the rate constant of pertinent electron transfer, thus having a
biological significance. In addition, the effect of intermolecular
torsional motion of π -aggregated dimer on excitation energy
transfer has also been analyzed [27]. The purpose of this
work is thus to theoretically investigate the effects of the
correlated fluctuations of the electronic coupling between
excitons on the temporal evolution of excitation energy transfer
due to the conformational oscillations in molecular systems.
In a preceding paper [28], a simple ansatz memory function
to take account of the oscillation effect was employed in
the generalized master equation (GME) for exciton transfer,
which allowed for an analytic solution to the GME via a
cubic algebraic equation. This work then proceeds to a more
general, flexible form of the memory function, reflecting more
reality.

In the following sections, a model which describes a single
excitation transfer between a pair of symmetric pigments
(homodimer) is considered, in which the exciton-phonon
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coupling and the variation of the electronic coupling are taken
into account. The model of homodimer is, of course, too simple
to describe those complicated energy transfer phenomena as
observed in the FMO complex, where multiple chromophores
are involved [5,29]. However, the detailed investigations of this
simple model would provide useful insights into mathematical
structures underlying more complex systems. We consider
the GME for the density matrix for describing the temporal
evolution of the population densities of excitations at donor
and acceptor. An ansatz form for the memory kernel associated
with the temporal correlation function of the electronic cou-
pling is then derived from model calculations and employed
in the GME in order to include both the effects of the
stochastic relaxation and the conformational oscillation due
to the environmental phonons or bath modes. The consequent
integrodifferential equation for the excitation energy transfer
is solved as analytically as possible. The significance of the
oscillatory modifications of the electronic coupling is then
illustrated through model calculations for a wide variety of
parameter sets.

II. THEORY

A. Generalized master equation (GME)

In this study, we consider the excitation energy transfer
between donor (D) and acceptor (A) sites embedded in
biomolecular or other environments. The Hamiltonian for the
dimer system is given by [1]

H = H0 + V, (1)

where

H0 = HD|D〉〈D| + HA|A〉〈A| (2)

is the diagonal part in the site representation and

V = J (|A〉〈D| + |D〉〈A|) (3)

represents the off-diagonal part [30,31]. In Eq. (2), HD

and HA include both the contributions of the electronic
excitation energies and the nuclear vibrations (phonons or
bath modes) coupled with |D〉 and |A〉, respectively. Thus,
the electron-phonon coupling that may modify the electronic
energies and dynamics is taken into account implicitly in
the following analysis. Let us consider the situation that
the molecular environment surrounding the dimer system
has a large number of vibrational modes, which may be
described in terms of the normal mode analysis or the principal
component analysis of the system [32,33]. We then assume
that the electronic coupling J in Eq. (3) can be affected by
these vibrational modes, which may be associated with the
large-scale conformational oscillations [24,25,27]. Hereafter,
for simplicity, we focus on the case of symmetric homodimer
in which the donor and the acceptor have identical ground and
excited states.

The system dynamics is described by the Liouville–von
Neumann equation [1,15] as

ih̄
dρ(t)

dt
= [H,ρ(t)] . (4)

The density matrix ρ(t) is then expressed as

ρ(t) = exp

(
− i

h̄
H t

)
ρ(0) exp

(
i

h̄
H t

)
, (5)

where the initial condition at t = 0 is chosen so that the donor
is in the excited state:

ρ(0) = |D〉ρb〈D|. (6)

In Eq. (6), ρb means the density matrix for the bath (phonon)
subsystem, which may be assumed to be in the equilibrium
state for HD at t = 0.

Employing the interaction representations [1,15] as

ρI (t) = exp

(
i

h̄
H0t

)
ρ(t) exp

(
− i

h̄
H0t

)
(7)

and

VI (t) = exp

(
i

h̄
H0t

)
V exp

(
− i

h̄
H0t

)
, (8)

Eq. (4) is rewritten as

ih̄
dρI (t)

dt
= [VI (t),ρI (t)] ≡ LI (t)ρI (t), (9)

where the Liouville operator LI (t) has been introduced. Here,
we rely on the projection operator technique [34] and introduce
a projection operator P which extracts the diagonal part of
any operator in the site representation of the H0 eigenstates;
a complementary projection operator Q, which selects the
off-diagonal part, is also defined as Q = 1 − P . According to
the procedure detailed in the preceding work [28,35–38], we
then find

d

dt
[PρI (t)] = − 1

h̄2

∫ t

0
dt1PLI (t)QLI (t1)PρI (t1). (10)

Here, we consider an explicit matrix representation for the
diagonal part of the density matrix as

PρI (t) =
(

ρD(t) 0
0 ρA(t)

)
, (11)

and that for the electronic coupling

VI (t) =
(

VDD(t) VDA(t)
VAD(t) VAA(t)

)
. (12)

After short algebra, we obtain a set of coupled equations for
ρD(t) and ρA(t):

d

dt
ρD(t) = − 1

h̄2

∫ t

0
dt1K(t,t1)[ρD(t1) − ρA(t1)], (13)

d

dt
ρA(t) = − 1

h̄2

∫ t

0
dt1K(t,t1)[ρA(t1) − ρD(t1)] (14)

with

K(t,t1) = VDA(t)VAD(t1) + VAD(t)VDA(t1). (15)

The population densities of D and A are then given by

PD(t) = TrbρD(t) (16)

and

PA(t) = TrbρA(t), (17)
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respectively, where Trb represents the trace over the vibrational
states. Introducing a memory function by

M(t,t1) = 1

h̄2 〈K(t,t1)〉b = 1

h̄2 Trb[ρbK(t,t1)], (18)

we finally obtain coupled master equations for PD(t) and PA(t)
as

d

dt
PD(t) =

∫ t

0
dt1[−M(t,t1)PD(t1) + M(t,t1)PA(t1)],

(19)

d

dt
PA(t) =

∫ t

0
dt1[M(t,t1)PD(t1) − M(t,t1)PA(t1)].

(20)

Since the population densities of D and A satisfy a relation

PD(t) + PA(t) = 1, (21)

we may introduce a function

F (t) ≡ 1 − 2PA(t), (22)

which represents the population densities as

PA(t) = 1
2 [1 − F (t)] (23)

and

PD(t) = 1
2 [1 + F (t)]. (24)

Equations (19) and (20) are then reduced to

d

dt
F (t) = −2

∫ t

0
dt1M(t,t1)F (t1), (25)

where the memory function is given by

M(t,t1) = 1

h̄2 Trb{ρb[VDA(t)VAD(t1) + VAD(t)VDA(t1)]}.
(26)

The projection operator formalism developed above is related
to another well-known formalism based on the phonon
correlation functions, the detailed descriptions of which are
found in the literature [1].

B. Memory function

The evaluation of the memory function, Eq. (26), derived
above asks for the calculations of electronic coupling constant
[31] for many conformations of molecular system that evolve
temporally and generate a statistical ensemble at a temperature.
Although it may be possible to numerically perform these
calculations in an ab initio manner even for biomolecular
systems by the combination of molecular dynamics and
fragment molecular orbital methods [39–41], we assume an
ansatz form

M(t,t1) = 2J 2
0

h̄2 exp

(
− t − t1

τ0

)
1 + � cos[ω0(t − t1)]

1 + �

(27)

in the following analysis. Here, the parameters J0, τ0, ω0, and
�, which are assumed to be positive, characterize the strength
of electronic coupling, the relaxation time, the oscillation

frequency, and the magnitude of oscillation, respectively. It
is noted that the relaxation time τ0 describes the modifi-
cation of electronic dynamics due to the electron-phonon
coupling [38].

The oscillating factor in this memory function can be
rationalized as follows. We first assume a short-range form
[30,31] of electronic coupling as proportional to exp(−βx),
where x is the distance between donor and acceptor, and β

is a constant representing the spatial decay of the electronic
coupling. Considering a vibrational behavior with a center x0

and an amplitude �x,

x = x0 + �x cos ω0t, (28)

we express the time-dependent electronic coupling as

V (t) = V0e−β�x cos ω0t . (29)

We then find

V (t)V (t + τ ) = V 2
0 e−β�x[cos ω0t+cos ω0(t+τ )]. (30)

By performing the temporal averaging over the oscillation
period, we obtain

〈V (t)V (t + τ )〉t = ω0

2π

∫ 2π
ω0

0
dt V 2

0 e−β�x[cos ω0t+cos ω0(t+τ )]

= V 2
0

π

∫ π

0
dθ e−z cos θ , (31)

where θ = ω0t and z = 2β�x cos ω0τ

2 . We can rewrite this
expression using the modified Bessel function I0(z) as

〈V (t)V (t + τ )〉t = V 2
0 I0(z) = V 2

0 I0

(
2β�x cos

ω0τ

2

)
. (32)

Noting [42]

I0(z) =
∞∑

n=0

(z/2)2n

n!	(n + 1)
= 1 + 1

4
z2 + . . . , (33)

and assuming β�x � 1, Eq. (32) leads to

〈V (t)V (t + τ )〉t ≈ V 2
0

[
1 + 1

2 (β�x)2 + 1
2 (β�x)2 cos ω0τ

]
.

(34)

We thus find an oscillating form

〈V (t)V (t1)〉 ∝ 1 + � cos[ω0(t − t1)]

1 + �
. (35)

Further, we next consider another (long-range) case of
V ∝ (x1/x)n, where x1 and n are constants. V (t) may then
be expressed as

V (t) = V0

(
1

1 + �x
x0

cos ω0t

)n

(36)
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according to Eq. (28), and hence

V (t)V (t + τ ) = V 2
0

⎧⎨
⎩ 1

1 + 2�x
x0

cos
(
ω0t + ω0τ

2

)
cos ω0τ

2 + 1
2

(
�x
x0

)2
[cos(2ω0t + ω0τ ) + cos ω0τ ]

⎫⎬
⎭

n

. (37)

Assuming �x
x0

� 1, we find

〈V (t)V (t + τ )〉t ≈ ω0V
2

0

2π

∫ 2π/ω0

0
dt

{
1 − 2n

�x

x0
cos

(
ω0t + ω0τ

2

)
cos

ω0τ

2
− n

2

(
�x

x0

)2

[cos(2ω0t + ω0τ ) + cos ω0τ ]

+ 2n(n + 1)

(
�x

x0

)2

cos2

(
ω0t + ω0τ

2

)
cos2

(
ω0τ

2

)}

= V 2
0

[
1 + n(n + 1)

2

(
�x

x0

)2

+ n2

2

(
�x

x0

)2

cos ω0τ

]
. (38)

Therefore, 〈V (t)V (t1)〉 is again expressed as Eq. (35). Finally,
it is also remarked that the functional form of cos ω0(t − t1)
may arise from a different cause associated with an energy
difference between two electronic states [35]. Thus, in what
follows we will use the form of Eq. (35) without being
restricted to the small � case.

C. Analytic solutions to GME

The integrodifferential equaiton we need to solve is Eq. (25)
with Eq. (27). PA(t) and PD(t) can then be calculated from F (t)
immediately. We can solve this integrodifferential equation by
using the Laplace transform technique [42]. With the initial
condition of F (0) = 1, the solution is written as follows:

F (t) = 1

2πi

∫ σ+i∞

σ−i∞
ds est

⎡
⎣s + 4J 2

0

h̄2(1 + �)

⎛
⎝ 1

s + 1
τ0

+
�
(
s + 1

τ0

)
(
s + 1

τ0

)2 + ω2
0

⎞
⎠
⎤
⎦

−1

, (39)

where σ is chosen so that all the singular points of the integrand
lie to the left of the line Res = σ in the complex s plane. Thus,
if the solutions to the quartic equation

s4 + 3

τ0
s3 +

(
3

τ 2
0

+ ω2
0 + 4J 2

0

h̄2

)
s2 +

(
1

τ 3
0

+ ω2
0

τ0
+ 8J 2

0

h̄2

1

τ0

)
s

+ 4J 2
0

h̄2

(
1

τ 2
0

+ ω2
0

1 + �

)
= 0 (40)

are expressed by s = α, β, γ , δ, we obtain

F (t) = (α + 1/τ0)
[
(α + 1/τ0)2 + ω2

0

]
(α − β)(α − γ )(α − δ)

eαt

+ (β + 1/τ0)
[
(β + 1/τ0)2 + ω2

0

]
(β − α)(β − γ )(β − δ)

eβt

+ (γ + 1/τ0)
[
(γ + 1/τ0)2 + ω2

0

]
(γ − α)(γ − β)(γ − δ)

eγ t

+ (δ + 1/τ0)
[
(δ + 1/τ0)2 + ω2

0

]
(δ − α)(δ − β)(δ − γ )

eδt . (41)

Before considering the case of finite value of �, we study
some limiting cases for which already known results would be
recovered. When � goes to infinity, Eq. (40) becomes

(
s + 1

τ0

)[
s3 + 2

τ0
s2 +

(
1

τ 2
0

+ ω2
0 + 4J 2

0

h̄2

)
s

+4h̄2

h̄2

1

τ0

]
= 0. (42)

The solution to this equation can be expressed by − 1
τ0

, α̃, β̃,
and γ̃ . Equation (41) then becomes

F (t) = (α̃ + 1/τ0)2 + ω2
0

(α̃ − β̃)(α̃ − γ̃ )
eα̃t + (β̃ + 1/τ0)2 + ω2

0

(β̃ − α̃)(β̃ − γ̃ )
eβ̃t

+ (γ̃ + 1/τ0)2 + ω2
0

(γ̃ − α̃)(γ̃ − β̃)
eγ̃ t , (43)

which agrees with the one already obtained [28].
If � → 0, Eq. (40) becomes

(
s2 + 1

τ0
s + 4J 2

0

h̄2

)[(
s + 1

τ0

)2

+ ω2
0

]
= 0. (44)

We thus find

F (t) = 1

2

(
1

τ0

√
D

+ 1

)
e

(− 1
2τ0

+√
D/4)t

− 1

2

(
1

τ0

√
D

− 1

)
e

(− 1
2τ0

−√
D/4)t

, (45)

where D = 1
τ 2

0
− 16J 2

0

h̄2 [28].

Next we consider general cases. Introducing parameters

a = 1
τ 2

0
, b = ω2

0, c = 4J 2
0

h̄2 , and d = �, Eq. (40) becomes

s4 + 3
√

as3 + (3a + b + c)s2 + √
a(a + b + 2c)s

+ c

(
a + b

1 + d

)
= 0, (46)
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and we hereafter denote the left-hand side of this equation by
f (s). The solutions to Eq. (46) are expressed as

α = −3
√

a

4
+

√
t1 + √

t2 + √
t3

2
,

β = −3
√

a

4
+

√
t1 − √

t2 − √
t3

2
,

(47)

γ = −3
√

a

4
+ −√

t1 + √
t2 − √

t3

2
,

δ = −3
√

a

4
+ −√

t1 − √
t2 + √

t3

2
,

where t1, t2, and t3 are the solutions to the following cubic
equation:

t3 + k2t
2 + k1t + k0 = 0, (48)

where

k2 = −3

4
a + 2b + 2c,

k1 = −[(3a − 8b − 8c)2 − 4(3a2 + 3a2d + 48ab

+ 48abd − 16ac − 16acd − 256bc)]/[16384(1 + d)],

k0 = − a

64
(a + 4b − 4c)2, (49)

with
√

t1
√

t2
√

t3 = −
√

a

8 (a + 4b − 4c) being satisfied. One
then finds

t1 = 1
6 {−2k2 + [4(V1 + 3

√
W1)]

1
3

+ [4(V1 − 3
√

W1)]
1
3 },

t2 = 1
6 {−2k2 + ω[4(V1 + 3

√
W1)]

1
3

(50)
+ω2[4(V1 − 3

√
W1)]

1
3 },

t3 = 1
6 {−2k2 + ω2[4(V1 + 3

√
W1)]

1
3

+ω[4(V1 − 3
√

W1)]
1
3 },

where

V1 = −27k0 + 9k2k1 − 2k3
2,

W1 = 3
(
27k2

0 − 18k2k1k0 + 4k3
1 + 4k3

2k0 − k2
2k

2
1

)
, (51)

ω = −1 + √
3i

2
,

and the products of any two roots should be 4(k2
2 − 3k1).

Here, we derive the conditon that α, β, γ , and δ are
real numbers all together. The discriminant of the quartic
equation (46) is

D4 = 256C3
0 − (

27C4
3 + 192C3C1 − 144C2

3C2 + 128C2
2

)
C2

0

− (
6C2

3C
2
1 + 4C2

3C3
2 + 80C3C

2
2C1 − 144C2C

2
1

− 16C4
2 − 18C3

3C2C1
)
C0 − (

4C3
3C1 − 18C3C2C1

−C2
3C

2
2 + 27C2

1 + 4C3
2

)
C2

1 , (52)

where

C3 = 3
√

a,

C2 = 3a + b + c,
(53)

C1 = √
a(a + b + 2c),

C0 = c[a + b/(1 + d)].

The derivative of the left-hand side of Eq. (46) is

f ′(s) = 4s3 + 9
√

as2 + 2(3a + b + c)s

+√
a(a + b + 2c). (54)

The discriminant of the cubic equation f ′(s) = 0 is then

D3 = −108a2b + 36ab2 + 504abc + 36ac2 − 128b3

− 384b2c − 384bc2 − 128c3. (55)

If D3 > 0, f (s) has three (real) minimal or maximal points;
α′, β ′, and γ ′, which are the solutions to f ′(s) = 0, are then
expressed by

α′ = − 3
4

√
a + 1

12 [(V2 + 12
√

W2)
1
3 + (V2 − 12

√
W2)

1
3 ],

β ′ = − 3
4

√
a + 1

12 [ω(V2 + 12
√

W2)
1
3 + ω2(V2 − 12

√
W2)

1
3 ],

γ ′ = − 3
4

√
a + 1

12 [ω2(V2 + 12
√

W2)
1
3 + ω(V2 − 12

√
W2)

1
3 ],

(56)

where

V2 = 27
√

a(a + 4b − 4c),
(57)

W2 = 27a2b − 9ab2 − 126abc − 9ac2 + 96b2c

+ 96bc2 + 32b3 + 32c3,

with the products of any two roots being 9a − 24b − 24c.
If D4 > 0, the solutions to f (s) = 0 are either all real

numbers or all complex numbers with imaginary parts. If α′, β ′,
γ ′ are real and f [min(α′,β ′,γ ′)] < 0 or f [max(α′,β ′,γ ′)] <

0, two of the solutions are real at least. Therefore, the condition
that all the solutions to f (s) = 0 are real is D4 > 0, D3 > 0,
and f [min(α′,β ′,γ ′)] < 0 or f [max(α′,β ′,γ ′)] < 0. Using an-
other expression, the condition is D3 > 0, f [min(α′,β ′,γ ′)] <

0, f [median(α′,β ′,γ ′)] > 0 and f [max(α′,β ′,γ ′)] < 0, which
is equivalent to the above one. On the other hand, when the
equation f (s) = 0 has at least two complex solutions with
imaginary parts, F (t) may exhibit an oscillatory behavior
associated with the quantum coherence of exciton energy
transfer (vide infra).

III. NUMERICAL RESULTS AND DISCUSSION

In the following analyses, for simplicity, we employ a value
of τ0 = 100 fs. We adopted this value according to a case
for FMO protein [9,29], while this specification is made only
for the sake of numerical illustrations since only the relative
amplitudes among the model parameters are essential (see
Fig. 4 below). We first show in Fig. 1 the temporal variations
of PA(t), where J0 and ω0 are varied in the range of 10
fs � h̄/J0, ω−1

0 � 1000 fs, and � is set equal to be unity.
For a fixed value of ω0, an oscillatory behavior of PA(t)
appears with the increase of the coupling strength J0, which is
associated with the quantum coherence of exciton transfer. The
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FIG. 1. (Color) Temporal evolutions of the population density of
exciton at the acceptor site PA(t) for τ0 = 100 fs, � = 1, and h̄/J0 =
1000 (blue), 400 (red), 100 (green), 10 (purple) fs. (a) ω−1

0 = 1000 fs.
(b) ω−1

0 = 100 fs. (c) ω−1
0 = 30 fs. (d) ω−1

0 = 10 fs.

structural oscillation represented by ω0 and � then modulates
this behavior of PA(t) through the interference with the effect
of J0. As seen in Fig. 1, this effect modifies the frequency
of oscillation in PA(t) as well as its magnitude. Figure 2
then illustrates the details in the case of ω−1

0 = 30 fs for
100 fs � h̄/J0 � 400 fs. It is noted that the oscillation in
PA(t) does not always appear even when the quartic equation
(46) has solutions with imaginary part. Although Eq. (46)
has two real and two complex roots for h̄/J0 > 286 fs, the
oscillation is not observed. PA(t) has both the oscillating and
damping components, and the oscillation does not appear when
the overdamping terms dominate PA(t). On the other hand,
Eq. (46) has four complex roots for h̄/J0 < 286 fs, and the
oscillation is observed.

Figure 3 shows the results of PA(t) for h̄/J0 = 100 fs
and 8 fs � ω−1

0 � 800 fs, where the quartic equation (46)

FIG. 2. (Color) Temporal evolutions of the population density of
exciton at the acceptor site PA(t) for τ0 = 100 fs, ω−1

0 = 30 fs, � =
1, and h̄/J0 = 400 (blue), 300 (red), 286(black), 200 (green), 100
(purple) fs.

FIG. 3. (Color) Temporal evolutions of the population density of
exciton at the acceptor site PA(t) for τ0 = 100 fs, � = 1, h̄/J0 =
100 fs, and ω−1

0 = 800 (blue), 80 (red), 40 (green), 8 (purple) fs.

has four solutions, all of which have imaginary parts. It is
interesting that the variation of PA(t) as a function of ω−1

0 is
not monotonous; the amplitude of oscillation is significantly
suppressed in the case of ω−1

0 = 40 fs. This is due to the effect
of interference between two oscillating modes with different
frequencies and similar magnitudes.

Phase diagrams for the behavior of PA(t) are illustrated in
Fig. 4 for various values of �. The solutions to the quartic

FIG. 4. (Color) Phase diagrams for the behavior of the population
density PA(t) as a function of b/a and c/a. (i) Blue region:
superposition of two oscillating contributions with D4 > 0 and
D3 < 0; Eq. (46) has four complex roots. (ii) Purple: superposition of
two oscillating contributions with D4 > 0 and D3 > 0 (four complex
roots). (iii) Green: superposition of one damped oscillation term
and two monotonously decaying terms with D4 < 0 and D3 > 0
(two real and two complex roots). (iv) Red: superposition of one
damped oscillation term and two monotonously decaying terms with
D4 < 0 and D3 < 0 (two real and two complex roots). (v) Yellow:
superposition of four decaying terms with D4 > 0 and D3 > 0 (four
real roots). (a) � = 0.1. (b) � = 1. (c) � = 10. (d) � = 100.
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FIG. 5. (Color) Temporal evolutions of the population density of
exciton at the acceptor site PA(t) for τ0 = 100 fs, ω−1

0 = 580 fs, � =
10, and h̄/J0 = 410 fs [blue: the equation of f (s) = 0 has two real and
two complex solutions], 390 fs (red: four real solutions), 370 fs (green:
two real and two complex solutions), 350 fs (purple: four complex
solutions). (a) 0 fs � t � 1000 fs. (b) 1000 fs � t � 2000 fs.

equation (46) may have imaginary parts or not, which is
depicted by the color representation over the b/a versus c/a

plane. The parameter region in which all the four solutions
are real, represented by yellow color in Fig. 4, appears in
the cases of � = 10 and 100. In some parts of the red and
green regions, the oscillation in PA(t) is not observed due to
the overdamping effect. In the blue and purple regions, where
PA(t) does not have the overdamping terms, the oscillation of
PA(t) is observed.

Figure 5 shows the calculated results of PA(t) for τ0 =
100 fs, ω−1

0 = 580 fs, and � = 10. With the increase of J0, the
number of solutions to the quartic equation (46) with imaginary
parts varies. Only in the case of h̄/J0 = 350 fs, where all the
four solutions have imaginary parts, is the oscillatory behavior
of PA(t) visible in the figure. In the case of h̄/J0 = 390 fs,
the equation has four real roots, and PA(t) does not show
the oscillation. In the cases of h̄/J0 = 410 and 370 fs, the
quartic equation has two real and two complex roots, whereas
a difference exists between them. In the latter case, PA(t) is
observed to have a maximum at t ≈ 2525 fs (not shown), while
in the former case PA(t) is a monotonously increasing function
of time. This is because the damping effects work differently.

In the case of h̄/J0 = 370 fs, the simple damping terms have
shorter time scales than the damped oscillation term. After the
damping terms have become hardly effective, the oscillation
term becomes a major contribution to PA(t).

When the equation f (s) = 0 has four solutions with
imaginary part, PA(t) can be expressed as

PA(t) = 0.5 +
2∑

i=1

hi(t), (58)

where hi(t) = Ai exp(−t/τi) cos(ωit + φi). We here introduce
an index to represent the contribution arising from the minor
oscillation part

I = min
{∫ ∞

0 [h1(t)]2 dt,
∫ ∞

0 [h2(t)]2 dt
}

∑2
i=1

∫ ∞
0 [hi(t)]2 dt

, (59)

which takes a value between 0 and 0.5. The behavior of PA(t)
can then be described in terms of a single hi(t) function
if I vanishes, otherwise PA(t) would be expressed as a
superposition of two damped oscillating functions. Let us
then observe the cases of h̄/J0 = 10 fs in Figs. 1(c) and
1(d), where I = 1.2 × 10−3 and 1.5 × 10−2 for the former
and the latter, respectively. This analysis thus explains that
the former shows a simple damped oscillating behavior,
while the amplitude of the latter does not always decay as
a function of time. Further, we find I = 3.1 × 10−6, 5.7 ×
10−2, 0.14,6.0 × 10−5 for ω−1

0 = 800, 80, 40, and 8 fs in
Fig. 3. Therefore, one observes simple damped oscillations
in the cases of ω−1

0 = 800 and 8 fs. On the other hand, the
superposition effect of oscillations is visible in the cases of
ω−1

0 = 80 and 40 fs, which is especially significant in the
latter case.

IV. CONCLUSION

On the basis of the generalized master equation, we have
proposed a theoretical formulation to describe the excitation
energy transfer between dimeric molecules. Environmental
effects arising from surroundings are taken into account in
terms of memory function which can be evaluated as a
temporal correlation function of electronic coupling between
donor and acceptor. In particular, an oscillation effect that
was overlooked in earlier studies has been highlighted in this
work. Assuming an ansatz form for the memory function,
we can quantitatively discuss the effects of dimeric coupling,
relaxation, and oscillation due to phonon modes on the exciton
dynamics. Conversely, it would be possible to extract the
information about the molecular parameters from the behavior
of exciton transfer observed in experiments. The present theory
thus provides a basis for these analyses, which would be
useful for explaining experimental results accumulated in
photosynthetic and other research fields such as those for
molecular aggregates [27,43].
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