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Feed-forward loops and diamond motifs lead to tunable transmission of information in the

frequency domain
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Using a Gaussian model, we study the transmission of time-varying biochemical signals through feed-forward
motifs and diamond motifs. To this end, we compute the frequency dependence of the gain, the noise, as
well as their ratio, the gain-to-noise ratio, which measures how reliably a network transmits signals at different
frequencies. We find that both coherent and incoherent feed-forward motifs can either act as low-pass or high-pass
filters for information: The frequency dependence of the gain-to-noise ratio increases or decreases with increasing
frequency, respectively. Our analysis of diamond motifs reveals that cooperative activation of the output compo-
nent can increase the gain-to-noise ratio. This means that from the perspective of information transmission, it can
be beneficial to split the input signal in two and recombine the two propagated signals at the output. Cooperative
activation can be implemented via the formation of homo- or heteromultimers that then bind and activate the
output component or via the binding of individual molecules of the intermediate species to the output component.
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I. INTRODUCTION

Cells live in a highly dynamic environment. While in some
cases cells may wish to ignore rapid fluctuations and only
respond to persistent changes, in other cases they may have
to do the opposite. For example, in the case of chemotaxis
or osmoadaptation, cells respond to changes in the stimulus
but are insensitive to the absolute level of the stimulus. In
contrast, in response to a changing sugar concentration, cells
respond to the absolute steady-state sugar level, but may wish
to integrate out rapid fluctuations of the sugar level. In general,
to understand how cells cope with a changing environment, we
have to understand how cells transduce time-varying signals.
Moreover, given the observation that the biochemical networks
which process the signals are stochastic in nature, we have to
understand how reliably biochemical networks can process
time-varying signals in the presence of noise.

Cells use recurring network motifs to specifically respond to
temporal characteristics of the input signal. Negative feedback
or incoherent feed-forward loops may be used to only respond
to rapid variations and not to slow changes in the environment
[1], while coherent feed-forward loops can be used to filter out
transient fluctuations in the input and only respond to persistent
changes in the environment [2]. To understand how specifically
and reliably these motifs can respond to inputs with distinct
temporal dynamics, we have to understand how they amplify
input signals as a function of their frequency [3], which is
characterized by the frequency-dependent gain. Moreover, we
have to understand how they propagate biochemical noise as a
function of frequency [3]. Indeed, information theory [4] tells
us that the fidelity by which a signal of a given frequency
is transmitted is determined by the gain-to-noise ratio at
that frequency [3]. We have recently shown for motifs with
different types of feedback regulation that different network
architectures affect the frequency dependence of the gain and
the noise differently [5], which means that both of these

*deronde @amolf.nl

1539-3755/2012/86(2)/021913(24)

021913-1

PACS number(s): 87.18.Mp, 87.18.Tt, 87.18.Vf

quantities have to be studied together in order to understand
how reliably a network transmits time-varying signals.

In this paper, we use a Gaussian model to study the
frequency dependence of the gain, noise, and gain-to-noise
ratio [3,5] of feed-forward loops and diamond motifs (Fig. 1).
Both are common motifs in biochemical networks [6,7].
Feed-forward motifs have been shown to regulate many
different cellular processes, and, indeed, they exhibit very
rich dynamics. Feed-forward motifs can act as sign-sensitive
circuits [8], perform adaptation [1], provide fold-change
detection [9], or attenuate extrinsic noise [10].

While the mean-field response [1,6-10] and the noise
characteristics [11,12] of feed-forward loops and diamond
motifs have been well characterized, also in the context of
information theory [13], how reliably they propagate time-
varying signals has not been studied. This is of specific interest
since the data-processing inequality dictates that information
transmission decreases with the length of the cascade. If
information transmission is the only constraint, the shortest
cascade is the most reliable solution. However, as discussed
above, cells may wish to respond to specific frequencies in
the input signal and they may have to do so reliably. This is
precisely what feed-forward loops and diamond motifs can
achieve, in contrast to simple cascades.

We find that coherent feed-forward motifs and diamond
motifs typically act as low-pass filters for information: They
transmit input signals of low frequency more reliably than
input signals of high frequency. In contrast, incoherent feed-
forward motifs tend to act as high-pass filters for information.
These results are not surprising: While for the coherent motifs
the gain is large at low frequencies, for incoherent motifs the
gain is large at high frequencies. We also show that, in contrast
to the intuitive expectation, a coherent feed-forward loop can
also act as a high-pass filter, while an incoherent feed-forward
loop can also act as a low-pass filter for information.

Our results also reveal that diamond motifs can have a
higher gain-to-noise ratio over all frequencies than simple
two-level cascades, when the total cost of making the proteins
is the same in the two networks under comparison. This
means that from the perspective of information transmission,
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FIG. 1. (Color online) An overview of the different motifs studied
in this paper, including their abbreviations as used in the main text.

it is beneficial to split the signal in two and combine the
two transmitted signals again at the output. This could be
considered as a form of coincidence detection. Interestingly,
a diamond motif is not necessary: The same effect can also
be achieved via cooperative activation of the output via an
intermediate component. For example, the input may stimulate
the formation of a homodimer or a homomultimer, which
then activates the output; alternatively, the input activates a
messenger, for example, a transcription factor, which then
activates the output, the gene promoter, in a cooperative
fashion. Our analysis suggests that the gain-to-noise ratio
increases with the level of cooperativity.

In the next section we briefly introduce the mathematical
background, and in the results section we describe the informa-
tion transmission characteristics of the different feed-forward
motifs. Finally, we discuss some of the implications of this
work and its limitations.

II. METHODS

In this section, we briefly discuss the mathematical back-
ground of our analysis. A more in depth analysis is presented
in Refs. [3,5,14]. The biochemical network consists of the
components S, V; (intermediate(s)), and X. Here S is the input
and X is the output. We model the time evolution of these
components using a set of coupled Langevin equations [15],
which can be nonlinear, for example,

ds _ r 1
E—fs(s)—uss-i- ®), (1)
dv;
§?=1@@m»—umn+mmn, @)
dx . 3
E—fx(svvax)_ﬂxx"f'nx(t)- ()

PHYSICAL REVIEW E 86, 021913 (2012)

For simplicity, we assume linear degradation of each com-
ponent. The various noise sources (1,,, 1) in Egs. (2) and
(3) are assumed to be independent and Gaussian distributed
[16—18], which holds for birth-death reactions. These reactions
are common in genetic networks and can be the result of
coarse graining more complex networks [17]. As a result, we
can study the mutual information for the linearized system
[19-21]. We take the noise strength (|7, 12),{In«|?) as the sum
of the average number of production and degradation events
per unit amount of time for component v;,x [22-24]. We
assume the noise source I'(¢) to be a Gaussian white noise. It
generates an ensemble of input trajectories s(¢) with Gaussian
statistics. The “forces” f; ,, x(s,v,x) model all the reactions
involving the production events of s, v;, and x.

We assume that the network has a steady state and linearize
about this steady state, so that we get a dynamical equation
for the fluctuations of each component, 7;(t) = v;(t) — (v;),
and similarly for the input s and output x. In the linearized
form, the relation between the components i, j is described by
the coupling coefficient J. These are the Jacobian elements of
the deterministic equations ({n(¢)) = 0), and we assume that,
for the calculation of the Jacobian, the correlation between
two components can be linearized (e.g., (SX) = (S)(X)), for
example,

div) dix)
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Jov = = —Uy, I, =——,
M By T Gy

where the first equation holds if f,, is independent of v; itself.
This holds for the motifs considered in this paper since there is
no feedback by any component on its own expressions. Effects
of feedback have been considered previously in Ref. [5]. We
take as the input signal the variations of s(¢) around its mean
(s), §(¢), and as the output the variations ¥ (¢) of x (¢) around
its mean (x). The mutual information rate between the in- and
output trajectories, s(¢) and x(¢), respectively, is defined as [3]
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where Py, is the power spectrum of the signal,

Py (0) = (§ (0) § (—w)), (6)

and § (w) the Fourier transform of §(¢). The gain g2 (w) and
noise N (w) are defined through the power spectra

s Py (@)
gw=7@;, (7)
N () = Py (0) — g% () Py (@) ®)

These definitions are prescribed by using Eq. (5). A large gain-
to-noise ratio ® (w) = g2 (w) /N (w) leads to a high mutual
information rate [Eq. (5)] and this implies reliable information
transmission.

We have made a number of assumptions to obtain Eq. (5).
First, we assume that the linearized system is an accurate
representation of the nonlinear system. To ensure the accuracy
of the linearization we use parameters such that the average
copy number of any species is O (100), such that nonlinear
effect because of low copy numbers are avoided [17,19].
Second, we assume that the variations § (¢) and X (¢) can be
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described by a Gaussian joint-probability distribution. Third,
and last, we assume the signal S to be modular from the
underlying network. Modularity of the signal with respect to
the network indicates that no correlations exist between the
variations in the input signal and the intrinsic noise of the
reactions that constitute the processing network; it also implies
that there is no feedback from the network onto the input signal.
If signal modularity holds, then Eq. (8) is equal to the spectral-
addition rule [17]. In this case, the gain-to-noise ratio ® (@) =
g2 (w) /N (w), does not depend on the input signal, but only on
the information transmission characteristics of the processing
network; it describes the ability of the network to reliably
propagate input signals as a function of their frequency. As an
additional simplification we assume that no (anti-)correlations
between the different noise sources are present [5]. While these
may quantitatively change the results presented below, they do
not qualitatively change them. In the Appendix we discuss the
effect of cross-correlations in more detail.

In the next section we describe the effect of the feed-forward
motif on the information transmission through a biochemical
network. We characterize the gain, noise, and gain-to-noise ra-
tio (®), since these are intrinsic, signal-independent, properties
of the network, when the spectral-addition rule holds [17]. We
compare different motifs with simple linear one-step (S — X)
and linear two-step cascades (S — V — X). We compare
the different networks, unless specified otherwise, under the
constraint that the average production rates of the respective
components are the same in the networks under comparison.

Last, we comment on the differences between the gain-
to-noise ratio, which describes information transmission and
P, (w), which describes power transmission.

III. RESULTS

A. Simple cascades

Simple cascades form the building blocks of the feed-
forward motif. The feed-forward motif consists of two cas-
cades, one in which the input S directly regulates the output
X via a one-step cascade and one where S indirectly regulates
the output X via a two-step cascade with an intermediate
component V. A diamond motif consists of two two-step
cascades which start and end at the same component, S and X,
respectively. Since we compare the behavior of these networks
with simple cascades consisting of one or two steps, it is useful
to briefly recall their main transmission characteristics. A more
detailed discussion can be found in Ref. [5]. For readability
we refer to the parameters of simple cascades with Roman
symbols, while the parameters in feed-forward motifs are
denoted by Greek symbols.

For a one-step cascade the gain is given by k)% /(@ + m)zc),
where k, = J,, is the coupling between s and x and m, is
the lifetime of X, while the noise is given by (|n,|?)/(w? +
mfc). Consequently, ® of a one-step cascade is constant for
all frequencies (AS). For the two-step cascade the gain is
(kyky)* /(@* + m)zc)(w2 + m%), with two corner frequencies,
m, (the lifetime of V), m,, the noise is k)%(lnvlz)/[(a)2 +
m2)(w* +m2)] + (In:*) /(@ + m?), and as a result © decays
withw 2 forw > (m, + ke (|n,1%)/{n:*))"/? (for more details
see the Appendix).
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B. The feed-forward motif

Two different types of feed-forward (ff) motifs exist. If the
sign of the interaction of S on X and S via V on X are of the
same nature, both either active or inactive, the motif is referred
to as coherent feed-forward (cff). If the signs of regulation are
opposing, the motif is referred to as incoherent feed-forward
(iff). For the coherent motif we can further differentiate with
respect to the integration strategy at the reporter X. If both S
and V are required to produce X, the node X acts as an AND
gate and we refer to the motif as AND-coherent feed-forward
(acff), while if either S or V is sufficient to produce X, we
refer to the motif as OR-coherent feed-forward (ocff). The AND
type is observed in the ara system of E. coli [8], while the OR
type is present in the biosynthesis of the flagellar motor [25].
The motifs are shown in Figs. 2(a) (ocff), 3(a) (acff), and
4(a) (iff). In this section we study an iff motif for which the
negative regulation is always at the response X. As a result,
a distinction between AND and OR regulation in the iff is not
made. We discuss this assumption in more detail in the section
discussing the iff. We now start by studying some general
characteristics of the ff motif.

1. General characteristics

We first study the gain. The gain for the ff is

2 2
85—x 8svx

—N—
J2 (Jos Jx0)?

0+ J2 (@ + J2) (@ + J2)
coherence
2 s dos Jonun
(@4 IE) (@4 )

()=

9)

The first term is the gain due to the direct regulation of X by
S (g2, ), the second term is due to the pathway S — V — X
(g%.,..), and the third term is a term due to the interaction
between the two pathways.

The firstterm g2 | | is the gain of a one-step cascade in which
the input s regulates the output x. It depends on the coupling
constant J,; and the lifetime of the protein X, u! = —J 1.
If the lifetime p! of X is longer than the time scale ™! on
which the input signal varies, w >> w,, then variations in the
input s(¢) are filtered out by the slow response of X.

The second term g2, _ is the gain of a two-step cascade
in which the input s regulates the output x via an intermediate
v. It is seen that the gain of the two-step cascade is the
product of the gain in each cascade step. This gives rise to
two corner frequencies in g2, . , one at J,, = —u, and
another at J,, = —u,, where u, and u, are the degradation
rates of proteins V and X, respectively. The gain is large for
® &K [y, Ly, since in this frequency regime both V and X can
respond rapidly on the time scale of the signal variations, ™!,
while for frequencies w > u,, 1y, the gain decreases strongly,
scaling as w™*, because in this regime the input variations
are filtered by the finite lifetime of both V and X. Note that
a lower degradation rate of the proteins increases the gain
at low frequencies, but also reduces the corner frequencies
beyond which the gain rapidly drops. This is a generic
trade-off between the bandwidth of information transmission
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(the frequency range, bounded by the corner frequency, with
large ®) and the magnitude of the gain in the band.

The third term describes the coherence of the interaction be-
tween the signal transmitted via the direct pathway S — X and
the signal transmitted via the indirect pathway S — V — X.
Both signals originate from the source signal s(#), which means
that their variations are correlated. If sgn(Jy;) = sgn(Jys Jxy)
the third term is positive (since by construction J,, = —,)
and we have a coherent interaction. Such a coherent interaction
is present in cff networks and leads to an increase in the gain.
If sgn(Jys) # sgn(JysJyy), as in the iff motifs, the coherence
term is negative and thus the gain g? () is decreased.

The coherence term in the gain is a function of the
phase of each pathway, and to be more precise the phase
difference, which is the difference between the phase of the
signal at X that comes directly from S, ¢,_,, and that which
comes indirectly via V, ¢;_,,— . The signal oscillations are
described by its amplitude and phase, and both properties are
propagated through the system to the final response X. Without
a phase difference, the two incoming paths have a constructive
interference, while for an increase in the phase difference
the interference becomes destructive, reducing the effect of
the coherent term. Therefore, it is instructive to compare the
phase of the direct pathway ¢,_,, and the indirect pathway
(Ps—vox) at x

¢s~>x = ¢sa (10)

Ps—v—x (@) = ¢y — arctan [3] . (1T)
Moy

For w =0, both signals are in phase. As the frequency
increases, the phase of the signal that is transmitted via the indi-
rect pathway decreases with respect to that which is transmitted
via the direct pathway. At the corner frequency —u, = J,, the
phase differenceis ¢y — @s— y—x (Jyy) = /4 and forow — oo,
the signals are even more out of phase, ¢; — Ps— . = 7/2.
Combining both the phase and amplitude information, we see
that the coherence between the two signals decreases with
increasing o for two related reasons. First, there is a decrease
in the coherence term for large w due to the time averaging over
the fast signal fluctuations resulting from the limited response
time of X and V. Second, the coherence decreases because the
phase difference increases (see the Appendix).

Before we consider the noise, it is useful to briefly consider
the three terms of the gain together. While the gain of the
direct pathway scales for w > i, as w2, the gain of the
indirect pathway and the coherence term scale for w >y, 14y
as w~*. This means that for frequencies @ > , the gain of
the direct pathway dominates.

The noise in the linearized ff motif is

Nyos () Ny (w)
J2mul?) (Ine1?)
— XU 12
NoO=Gin @) wrr) P
(In:l?)
= g2 N, —_ 13

It is seen that the total noise in x is independent of the sign of
regulation of either pathway, since all terms are positive. The
expression also reveals that the noise is the sum of two noise
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sources. One is the intrinsic noise arising from the stochastic
production and decay of X, given by N, (w) = (|n,|*)/(w® +
J2.). The other is the extrinsic noise coming from the stochastic
production and decay of V, which is given by the intrinsic noise
of v, Ny(w) = (I, |?) /(w* + Jvzv), multiplied by a frequency-
dependent gain g2 = J2 /(0> + J2) which reflects how
the noise from v is amplified by J,, and integrated by x
as a result of its finite lifetime. While the intrinsic noise in
X, Ne(w), scales as w2 for w > u, = —Jyx, the extrinsic
noise g2, (w)N,(w) scales as @™ for w > y, iy Indeed,
for w > u,, the noise that originates from v in the indirect
pathway becomes negligible. In Eq. (12) we present a general
expression for the noise without the effect of cross-correlations
({(nynx) = 0). In the Appendix we comment on the effect of
cross-correlations.
Finally, we obtain ® for this three component motif:

()

N(w)

(w2 + Juzu) JxQ:y + (vaJxv)z - 2st~]vs~]xv]vv
T2y + (@2 + J2) (Ine )

O (w) =

14)

While the noise is independent of the sign of regulation in the
pathways, the gain, and hence the gain-to-noise ratio, depends
on the total sign of regulation of each pathway (either S — X
or S — V — X). This indicates that it is not important which
of the reactions in a specific pathway acts negatively; only
the overall effect of the pathway is important for information
transmission.

We are now in a position to study in more detail the ff
motif. As discussed above, for w > u, = —J,,, the gain of
the direct pathway dominates the total gain, because the finite
lifetime of V averages out the variations in the signal that
are transmitted via the indirect pathway. Also the noise that
originates at v in the indirect pathways becomes negligible
in the total noise in x. Therefore, in this frequency regime,
the direct pathway is dominant and ® becomes that of a
one-step cascade, which means that it approaches a constant
value, independent of frequency. For smaller frequencies, the
behavior of the ff motif depends on the relation between J,,
JvssJxw, and Jy, = —p,,, which are the coupling constants
of the direct and indirect pathway and the degradation rate
of V, respectively [Eq. (4)]. When |J,s| < |JpsJxv/Jvol, then
for w <« w,, the signal is transmitted more strongly via the
indirect pathway than via the direct pathway, in which case
the ff motif resembles a two-step cascade [Figs. 2(c), 3(c),
and 4(c), thick red dotted line]; clearly, in the limit that J,
reaches zero, the ff motif becomes a two-step cascade for
all frequencies, in which case ® [Eq. (A10)] is constant up
to a cut-off frequency a)f, = wy(y + Jyp), falling off as w2
for frequencies much larger than that [5]. When on the other
hand |J,s| > |JysJxv/ Juol, then the direct pathway dominates
the gain for all frequencies [Figs. 2(c), 3(c), and 4(c), thick
red solid line]. Indeed, in terms of the gain, the ff network
effectively becomes a one-step cascade. However, the noise
via the indirect pathway still contributes to the total noise
and therefore this pathway effectively acts as a noise source.
This has interesting consequences for the gain-to-noise ratio,
as we describe in the next paragraph, since this allows any ff
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motif to function as either a high-pass or a low-pass filter for
information.

The gain-to-noise ratio [Eq. (14)] of a ff motif varies
monotonically with frequency, but it can either be a decreasing
or increasing function of w. Indeed, both a coherent and an
iff motif can act as either a high-pass or a low-pass filter
for information. We can determine whether ® increases or
decreases monotonically with frequency, by comparing ® at
w — ootothatatw = 0[see Eq. (14)]. The ® is monotonically
increasing, meaning that the network acts as a high-pass filter
for information, if

Jvzy 2/'Lv-]vs
umﬁﬂmﬂﬁﬁ+bm). (15)

In the Appendix we give a more detailed explanation for each
of the terms in Eq. (15). The frequency of the inflection point is

w=/&mﬁ+%wm>
’ 3(In. %)

In the next two sections, we discuss these conditions in more
detail for the coherent and iff motifs, respectively.

The data-processing inequality states that information that
is lost cannot be recovered. Consequently, increasing the
length of a cascade reduces information transmission. For this
reason, for equal total production rate of the components within
a cascade, ® of a one-step cascade is always larger than that
of a ff motif. The gain by itself can be larger in a ff motif
than in a one-step cascade [Fig. 3(c), dashed and solid red

(16)
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lines]. However, the intermediate component V in the indirect
pathway introduces an additional noise source, which is not
present in the one-step cascade. The coherence term in the gain
is not large enough to compensate for this increase in the noise.

We have now specified some general characteristics. In
the following we study the coherent and incoherent motif
separately.

2. The coherent feed-forward motif

We will first compare the cff motif, both the OR and the AND
types, with two-step cascades. Next we compare the two motifs
with each other. First, however, we start with a number of
observations which apply to both the acff and the ocff. Unless
specified otherwise, we assume equal degradation rates for the
respective components in the respective motifs and cascades.

The steady-state gain is completely determined by the
average copy number X (=0d(x)/d(s)). As a result, if the
production of x in a cff equals the production of x in a
two-step simple cascade, the gain at zero frequency (w = 0) is
equal. Next, in the linear-noise approximation assumed here,
the intrinsic noise arising from the production and degradation
events of X, N, (w), is equal for the cff and the two-step cascade
if the production rates of x are equal [see Eq. (12)], since we
assume throughout that the degradation rates are the same. If
the production of v is equal as well, the noise N,(w) is equal
in the cff and the two-step cascade. However, the transmitted
noise N,_, ,(w), and thus the total noise N (w) can be different,
as discussed in more detail below.

(b) p
= as— vt (1), (17a)
dx
I =0s+yv — pgx + s (t). (17b)
(d) 0 T T T T
2
3
- _ | S— —>XZ ngQ; 1" — ;|
3 §—>¥/—>X: "I%lgir;g" --
one-step -
4 tWO-StC}'I) | | |
0 0.5 1 1.5 2

log, o[W/Ms [-11

FIG. 2. (Color online) The ocff motif. (a) In the ocff, either S or V is required to produce X. (b) The Langevin equations for the ocff. (c) For
equal production in the total cascade © is shown for different weighings of the two pathways. If the pathway S — X dominates (B, > ay)
(solid red line), the ocff is similar to a one-step cascade (thin gray dashed line) although with smaller gain. If the pathway S — V — X
dominates (thick red dotted solid line), two-step cascade (thin gray solid) behavior is obtained. However, for large w the ocft is similar to the
one-step cascade (scaling as w”), because the signal and noise fluctuations through v are averaged out due to the finite response time of V.
Parameters: k; = 10, u, = 10, u, = 10, kj, =231, k% =11, kﬁ =11, =11,y =10.1,5.8,1.1,and 8 = 1, 5.8, 10.1 for, respectively, thick
red solid, thick red dashed, thick red dotted solid lines. 8 sets the production of x in the cascade, and , sets the time scale. (d) The gain-to-noise
ratio for a cff motif can have both high-pass and low-pass characteristics. For high-pass characteristics, the indirect pathway functions as a
“noise” source at low frequencies, while at high frequencies the noise is filtered out due to the finite response time of V. Parameters: k;, = 100,
Uy =35,y = 10,k! =70, k2 = 1, k2 = 690, o« = 20, 0.3, y = 20, 1000, B8 = 10, 40, respectively solid, dashed.
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With respect to ®, we observe that for large w, the cff
always has a larger ® than the two-step cascade, while for
small @, no general results can be presented. Comparing to
the one-step cascade, ® of the cff is always smaller than that
of a one-step cascade if the total production in both networks
is equal. This is because 1, acts as an additional noise source
that corrupts the signal [Figs. 2(c) and 3(c), bottom].

We discuss the ocff where the two pathways combine
according to OR logic. We first compare the ocff with a
two-step cascade on the footing of equal production costs
for each of the components separately. For @ > 0, the gain
of the ocff is always larger than the gain of the two-step
cascade (Table II): For 0 < w < py,u, the gain of the cff
is boosted by the coherent interaction between the signals
propagated via the direct and indirect pathways, while for
® > W, the signal is attenuated in the two-step cascade by
the finite lifetime of V, whereas it can still be propagated in
the ocff via the direct pathway. The noise N(w) in the ocff
motif is smaller than that in the two-step cascade for all w. The
intrinsic noise N, (w) is equal in both networks. However, the
extrinsic noise coming from v, gfﬁv(a))Nu(a)) [see Eq. (12)]
is not. Since the intrinsic noise in v, Ny(w), is the same in both
networks because the production of v is equal, the difference
must lie in how this noise is propagated to x, which is given
by g2, = J2 /(w* + J2); since J,, is the same, this means
that the coupling between V and X in the ocff motif, JCf

xXv?
must be less than that in the two-step cascade, J% . Indeed, in

the ocff the production of x depends on both s and v, while
in the two-step cascade it only depends on v. Together with
the constraint that the production rates of X are equal, this
indeed implies that JOT < J&: J¥ (v) = JoM (5) 4 JoM (v),
showing that J> < J In the ocff network, the noise in x is
thus smaller because less noise is propagated from v because
of the smaller amplification of the transmitted signal between
v and x. The higher gain and the lower noise means that the
gain-to-noise ratio of the ocff motif is higher than that of
a two-step cascade, as shown in Fig. 2(c). The ocff is thus
able to signal more reliably than the corresponding two-step
cascade.

As discussed above [Eq. (15)] the cff can act as either a
low-pass or as a high-pass filter. It can be shown for the ocff
motif that for equal production of the species separately in the
network, the plateau value of ® in the high-frequency regime
is higher for the high-pass filter than for the low-pass filter.
Therefore, if the goal is to transmit signals reliably at high
frequencies, then a suitable parameter set can be chosen that
yields a high-pass filter with a high ® at high frequencies,
irrespective of ® behavior at low frequencies [Fig. 2(d), thick
red dashed line].

For different constraints on the production the results are
summarized in the Appendix in Tables I and II.

In the next paragraphs we study the acff motif. The acff
motif combines the two paths at X according to AND logic and
is described by Eq. (20). The linearized system has an identical
structure to the ocff, and therefore the results are qualitatively
similar to those of the ocff. However, quantitatively, the results
can be different.

First we compare the acff with the corresponding two-step
cascade. For equal production of v and x individually the
gain of the acff [Eq. (A54)] is always larger than the gain
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of the two-step cascade [Table III]. This again is due to the
coherent interaction between the direct and indirect pathways
at low frequencies, w < w,, Uy, while for high frequencies,
w > w,,wy, the gain of a two-step cascade falls off more
rapidly with frequency than the gain of the direct pathway.
Interestingly, the mathematical dependence of the total noise
N(w) on the network parameters (J,y, MLy, ...) of the acff is
the same as that of the two-step cascade. Since N,(w) and
N, (w) are equal in both networks, this implies that the noise
propagated from v to x (N,_, (w)) is equal:

B2(s)%(Inu]?)

NySxanp = R 18

= T ) (0 + ) 4
K2(In,1%)

(@ + 12) (@ +13)

(19)

Nv%x,ts =

The total rate of production of x by v in the two-step cascade
is ky(v) [Eq. (A7)], while, in the linear-noise approximation
used here, the average total rate of production of x by s and v
in the acff motif is B(s)(v) [Eq. (A53)]; the latter means that
the coupling of x to v is given by J,, = B(s). For equal rate of
production of x in the two-step cascade and the acff—k, (v) =
B(s){v)—the coupling strengths J,, = k, = B(s) in the two
networks are the same, meaning that the extrinsic noise coming
from v, N,_,, is indeed the same. Since the gain is larger, but
the noise is the same, ® of the acff is always larger than that
of a two-step cascade.

The acff cannot transmit information better at small
frequencies than a one-step cascade, given equal total pro-
duction. An interesting observation is, however, that for equal
production of x—thus, at the cost of producing more V—the
acff can perform better than the one-step cascade [Eq. (A57)].
This is in contrast to the ocff, which also under this constraint
has a smaller ©.

Again, we can choose different constraints for the produc-
tion. We have summarized these results in the Appendix in
Tables III and IV.

Finally, we compare the two motifs ocff and acff for equal
separate production of V and X. The acff has a larger gain,
because it has a steeper response function at equal production.
Not only the gain, but also the intrinsic noise (N,-,,) is larger
in the acff. These terms have an opposite effect on ®. For
® — oo the acff has a larger ®, since the noise fluctuations
from v are averaged out and only the gain remains important.
For small w, however, no general conclusion for the ® can be
drawn, but a few observations can be made. An increase in
the coupling J,; of S — X (increasing B) leads to a larger
® for the ocff than for the acff. In this case, the direct
coupling between S and X dominates in the ocff, whereas
this connection is not directly present in the acff due to the
AND-logic integration strategy. The ocff “averages” the effects
of the direct and indirect pathways, while for the acff gate
the pathways are more connected [Fig. 3(d)]. Indeed, one
necessary requirement for the ocff to have a larger ® than the
acff at low frequencies is that the direct pathway dominates
the output. Another necessary requirement for this is that ® of
the acff has to have high-pass characteristics [Eqs. (A73) and
(A74)].

021913-6



FEED-FORWARD LOOPS AND DIAMOND MOTIFS LEAD TO ... PHYSICAL REVIEW E 86, 021913 (2012)

(a) (b) p
v
pril i AU (t), (20a)
dx
pri Bsv — pax + nx (t). (20b)
(C) — (d) T T T T T T
£ 04r )
[+
=8 —_
< T e
g 2 os8F i
2 0 2 2
log)olw/pg [-1] log,olw/pig [-1] o [TTTTmmemtmeeeall,
0 . . <2k e 7
-- one-step — OR: J 1, >]. -
two-ste] IR OR: :ﬁLZ<J§ﬁ --
 Jv—x X = -1 AND o
ot Nij>Nx [©) 1.6 1 1 1 1 1 1
- Ba,x;gts,x’ ?% 2 0 05 1 15 2 25 3
we I . logjolw/p [-1]

0 2
logyolw/ s [-1]

FIG. 3. (Color online) The acff loop. (a) In the acff, both S and V are required to produce X. (b) The Langevin equations for the acff.
(c) ® of the acff for different weighings (changing «) of the two pathways for equal total production and equal degradation rates. First, for
large w the direct pathway is dominant and both gain and noise [Eqs. (A54) and (A55)] scale with w2, leading to a constant ®, which is larger
than that of a two-step cascade. If « is small (thick red solid), the production of v, p, is small. To compensate for the small production of v,
the production of x should be large, leading to a large 8. Note that &B # 1. The gain g2 scales with f2a?, while the noise N,_., x B%a,
and N, « Ba. For small w, therefore, ® scales as «, while for o — 0o, N,_,, is averaged out and ® scales as ap°. The dependence of the
gain and the noise on p, is slightly different. Therefore, a small bandwidth exists for which the gain decreases more slowly than the noise for
increasing o (thick red solid). For large o the opposite reasoning holds. The thick red dashed line shows the acff with equal production of v
and x individually, as the two-step cascade. Both the gain, noise, and ® are larger. It is interesting to note that for small frequencies and equal
total production, the acff can have a smaller gain-to-noise ratio than the simple two-step cascade (thick red solid and thin gray solid). This is
the case if N,_,, (w) becomes dominant. Parameters: k, = 100, u, = 10, u, = 100, k! =55, k> = 100 k* = 5, & = 0.5, 5, 50, respectively
thick red solid line, thick red dashed line, thick red dotted solid line. 8 such that the total production is equal, respectively 8 = 10.9, 1, 0.01.
set the time scale. (d) The acff (red dotted line) for large w always has a larger ® than the ocff (thick red solid line and thick red dashed line).
However, for small w, depending on Kkinetic rates, ® of the ocff can be larger than the acff (thick red solid line). For this to occur, in the ocff
the direct pathway S — X should dominate the indirect S — V — X pathway. Then, for small @ the ocff acts as a one-step cascade. For the
acff this is not the case, because the coupling between s and v is more complex. Parameters:k, = 100, u, = 10, u, = 100, J2** = JO = 10,
B =1,J2% =16,67 and J} = 83, 33 respectively, solid and dashed lines. i, sets the time scale.

> Yxv

3. The incoherent feed-forward motif If the direct pathway is repressive, the repression strength
depends on the ratio (s)/K, with K being the value of s at
which X is reduced to half its maximal value. In the limit that
K > (s), the repression is very weak, and the influence of the
direct pathway is negligible. The iff then effectively reduces
to a two-step cascade. In the opposite limit, repression is very
strong and the iff becomes adaptive [1,28]. This means that
(x) does not depend on (s). Indeed,

The last class of ff loops that we consider is the iff motif
[Fig. 4(a)]. We discuss one type of iff motif, one in which
negative regulation is implemented in the direct pathway. It
is known that the precise topology can influence the noise
behavior [26,27]; however, the qualitative behavior of ® of
the different possible architectures is similar to that of the
networks studied here. For a more detailed discussion, we
refer to the Appendix. v K () va  K{(s) Kva

An inspection of the gain in Eq. (9) reveals that the (x) = — = A .
coherence term is negative in both types of iff motifs, since o KA (s} pcpto K(s) - patte
either Jy, or the product Jy, Jy, is negative, respectively. This  In terms of the frequency response, adaptation to constant
leads to a reduction of the gain on time scales that are smaller signals corresponds to a zero gain at zero frequency:
than the response times of V and X (w < min {,, iy }).

For w < u,, the two pathways are exactly out of phase, that

21

(vaJxv - vast)2

is, the phase difference is —r, while as w increases, the phase Klgnm 8 ? (w=0)= u2p2
difference reduces to —m /2 (10). ) v ) 2

We model the incoherent regulation using a repressive Hill _ K (V) [ _ s ] ~
function [Eq. (23b)], which is a commonly used coarse-grained (K + (s))* n2u? K + (s)
description of protein interactions, gene, or enzyme regulation. (22)
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FIG. 4. (Color online) The iff motif. (a) The incoherent motif. (Left) The pathway S — V — X is positive, while the pathway S — X
is negative. (b) The Langevin description of the network. (c) The coherence terms acts destructively on small time scales, reducing the gain,
but not the noise, so that ® is reduced. The gain-to-noise ratio of the incoherent motif with a repressive direct link S — X has different
characteristics for three different values of K (23). If K > (s) (thick red dotted line) the negative regulation by S diminishes and the iff motif
resembles a two-step cascade. For large w, the indirect pathway is averaged out; at these frequencies one-step characteristics are observed. If
K < (s) (red solid line), the iff becomes purely adaptive, leading to g> = 0 for w = 0. Note that the lines in the noise plot are overlapping.
Thin gray dashed line, one-step cascade; thin gray solid line, two-step cascade. Parameters: k;, = 100, o =1, u, =1, u, =1 and v = 110,

20, 11 for K/(s) = 0.1, 1, 10. p; sets the time scale.

For large frequencies, only the direct pathway, which in this
example is repressive, transmits information. For information
transmission it is not important whether the pathway acts
negatively or positively on X. The variations in s still affect
the variations in x, but with an opposing sign. For the motif
where the repression occurs in the indirect pathway, similar
conclusions hold, but now the motif functions as a one-step
cascade in the case that repression is weak.

An iff motif with a strong negative interaction in one of the
two pathways acts as a high-pass filter for information. This
is because of the destructive interference of the two pathways
at small frequencies, w < ., y. For higher frequencies, the
gain increases because the phase difference between the two
pathways decreases and also because the indirect pathway
becomes less important as the finite lifetime of V increasingly
averages out the variations in S. The gain therefore has high-
pass characteristics. Since the noise [Eq. (12)] is not affected by
the destructive interference and has low-pass characteristics,
® is high-pass [Fig. 4(c), red line].

For the incoherent motif, a low-pass ® is observed only if
the negative regulation is small (e.g., K >> (s)) and the direct
pathway is negligible compared to the indirect pathway. Then
the motif for small w resembles a two-step cascade [Fig. 4(c),
thick red dotted line], which indeed exhibits a low-pass ®. For
large w the direct pathway will dominate, which means that
in contrast to a two-step cascade, ® reaches a constant as a
function of frequency for w > py, iy

Finally, we compare, for completeness, the iff motif to a
two-step cascade. For equal production of v and x separately,

the iff has a lower ® for small w than the two-step cascade
(Table VI). This is because of the destructive interference
between the direct and indirect pathway in the iff, which
reduces the gain at low frequencies.

C. Multimerization

In this section we examine multimerization of intermediate
signaling components [29]. In this motif, an intermediate
component v is activated by the input signal s, which then
cooperatively activates the output component x [Fig. 5(a)].
The intermediate components could form a protein complex
that then binds and activates the output, but it need not
be: The intermediate components could also bind the output
component, which could be a gene promoter or an enzyme,
separately but cooperatively, thereby activating it. This is a
common motif in gene regulation and also enzyme regulation.

This system is described by

dv
— = QS (l) — /.LUU(I) + Ny (t)s

- (24)
de_, VO () + nx (©) (25)
dr ~ VEnpon MO TR

A 0" (1) — X () + 1y (1) (26)

Here, n is a measure for the cooperativity, the number of V
molecules that are required to activate X. We assume that the
concentration v is very low, K > v, in which case Eq. (25)
reduces to Eq. (26), with y,, ~ y,,/K". For this network, the
concentration of X and the coupling between v and x, J,,,
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FIG. 5. (Color online) The diamond motif. (a) The diamond motif. The diamond motif combines two pathways (S — V — X and
S — W — X), originating from the same source at the response X. With homodimerization U and W correspond to two molecules of
the species V. (b) The difference between the gain, noise, and ® for a network with different levels of cooperativity (24). For increasing
cooperativity (n increases), the gain and the noise both increase. The increase in the noise is smaller than in the gain, since Ny is unaffected by
the cooperative interactions and therefore ® increases. Next, also the knee frequency, and thus the bandwidth, increases, since © scales with
w2 for =% > n’u,. Parameters: k, = 100,k, = 10,k, = 10,1, = 100, ¢, = 1, i, sets the time scale. (c) ® for the diamond motif where
U and W have different degradation rates p, < . If J,5 > Jy; © is low-pass (thick red dotted), since on long time scales (¢t > u;l, the
signal is transmitted while on shorter time scales most transmission is corrupted by the intrinsic noise. If J,; < J,,s (thick red solid), the
slow signal variations transmitted via w are corrupted by noise from u. For faster variations, the noise from u is averaged out and the signal
can be transmitted with larger reliability. Note that the gain for all three parameter sets is equal, and the lines thus overlap. The bandpass
characteristic for ® is thus due to the different dependence of the noise on w. Parameters: k; = 100, u, = 10, two-step cascade: wu, = 10,
k¥ =500, k¥ = 100, « to equalize production of v, y, to equalize production of x, diamond motif: u, = 1,u,, = 100, y, =y, = 0, Yy to
equalize production of x, B to equalize (v*) = (u®") 4+ (w'™) and @ = 0.05k", 0.5k, 0.95k", respectively, thick red solid line, thick red dashed
line, thick red dotted solid line. 1, sets the time scale.

depends on the degree of cooperativity n. The concentration X The noise for this motif is given by

isgivenby (x) = y,(v")/u,. Inthe linear-noise approximation Noosr(@) No(@)

this concentration is given by (x) >~ y,(v)"/u,, and the ) > 3

coupling Jy, , = ny,(v)"~!, where the subscript n in J,,., N (@) = n= I =t {u]7) (Inx17) 28)
indicates that we consider the coupling between v and x (@ +u2) (@ +u2)  (0®+ul)

when the degree of cooperativity is n. Since we compare the 5

networks on the footing of equal productions costs and the = g2 () Ny(w) + {nsl%) . (29)
degradation rates are kept constant, we find that the coupling e (wz + M)zc)

constant Jxv,n'forasystem in WhiCh’”f V molecules are required Clearly, increasing n increases the extrinsic noise in x that
to activate X is related to the coupling constant J,, ,—; for a originates in v, Ny_,(w) = g12)~>x Ny (@) but not the intrinsic
system in which only one V molecule is required to activate  pojse in x, N,(«w). Increasing the coupling Jyy, = n Jevneti

X, simply via Jxv,n = nJxvn=1- does not change the intrinsic noise, but it does affect how
For this motif, the gain is given by fluctuations in v are amplified at the level of x.
n* Iz i Js © then reads
gz(a)) — - )czv,nzl2 vs ~. (27)
(CL) + H’x) (w + “’v) @( ) Jvzs szv,n:l (30)
w) = .
It is seen that the gain increases with the cooperativity 7. wan:l () + n'—z (a)2 + p,%) (Inx1%)
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From Eq. (30) it is clear that ® increases with the cooperativity
n. This is because while the overall gain g2, and the extrinsic
noise N,_, (@) both increase with n, the intrinsic noise N, (w)
does not. Interestingly, not only the amplitude of ® increases,
but also the knee frequency and thus the bandwidth for
reliable information transmission. Indeed, the knee frequency
w. is set by Cz)z = :u'% + nzfxzu,n:l(|Tlv|2>/<|77x|2> = Wy(py +
n2yn:1), showing that it increases with n [Fig. 5(b)].

To summarize, we observe that information transmission
can be increased by cooperatively activating the output.
This could either be achieved via homomultimerization of
the intermediate component, or by separate binding of the
intermediate molecules to the output component. We note that
an increase in n increases the nonlinearity of our system and
therefore the approximation might break down. However, for
the parameters used here [Fig. 5(b)], numerical simulations of
the nonlinear system agree very well with the linear theory
(see the Appendix).

D. Diamond motif

The multimerization motif discussed above could be con-
sidered to be a special case of a diamond motif, in which
the intermediate components are identical. Here, we consider
the general scheme in which they are different: the diamond
motif [30-34]. We compare the ® of this motif to that discussed
above. Moreover, we compare the performance of this motif to
that of a two-step cascade; if ® of the diamond motif is higher
than that of a two-step cascade, then this indicates that from

2
85u—x

2
8s>wox
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the perspective of information transmission it is beneficial
to split the signal after the input and recombine the signals
downstream, at the output.

We consider a diamond motif in which the two intermediate
components U and W can either form a homodimer U, or W5,
respectively, or a heterodimer UW; note that in this network
the intermediate components effectively activate the output via
AND logic. We compare the performance of this motif to that
of a homodimer motif in which there is only one intermediate
component V, which forms a homodimer V,; this corresponds
to the scenario discussed before with n = 2. The diamond
motif is described by

D s (1) = e () + 0, (1)
= Bs () — pypyw () +ny (1),

dr
dw
dr
dx_ Yalt> (1) + Y w? () + 2y () w (1)
dt
31)
— UxX (t) + Nx (t) .

The factor 2 is introduced so that the diamond motif reduces
to the motif with only one intermediate component V when
the properties of the components U and W are identical
and equal to those of V. If y, =y, = 0, only heterodimer
activation is possible. In general, the values of the y’s might
be different depending on the respective binding kinetics of
the components U and W.
The gain of the diamond motif of Eq. (31) is

coherence

(Jeudus)?

(Jewdws)*

2un Justw]ws (a)2 + Mul’bw)

2 _
$O =212 (@ 1 12)

(@7 +13) (@7 + 143)

. 32
(@ 2) @+ 1) (0 + 13) >

Here, Jus = &, Jus = B, Juu = 2V (u) + 2Vuu (W), Jrw = 2¥u (W) + 2¥5w ().

The first two terms in Eq. (32) describe the gain due to the transmission of the input signal via the pathways containing U and
W, respectively, while the third term describes the coherence of their interaction at the output X. It can be verified that when U and
W are identical and equal to V, meaning that @ = 8, o, = 2, Jys = Jups = Jos/2, (V) = (W) + {U), Viw = Yu = Yo = Yo = V>
Jouw = Jew = Jypn=2 = 2y (v), and p, = pyy = [y, the gain of the diamond motif equals that of the homodimer motif.

The noise of the diamond motif of Eq. (31) is

Nu%x(w) Nw%,v(w) Nx(w)
N(a)) = ‘Ix2u<|77u|2) szw(|)7w|2) (|77x|2)
(@ + 1) (@ +13) (@ Fu]) (@ +u3) (@ +m)
=g’ (@) N(0)+ g, (@) Ny(w) + Ny (o), (33)

where we have exploited that (1, (w)n,(—w)) = 0 when U and W are different. If the properties of U and W are identical and
equalto V, then Jo, = Jrw = Jeypnmas u = M = Mo» (I1412) = (Inw]?) = (In,]?)/2 and the noise of the diamond motif is indeed

equal to that of the homodimer motif.
The gain-to-noise ratio for the diamond motif is

0 (w)

) H (@, 100) 4 (JxwJws)” H (@, 10) + 2T Jus T Juos (07 + pptn)

where H(x,y) = x* + y2.
We now compare ® of the diamond motif to that of the
homodimer motif. To compare on equal footing, we assume in

CH (@, 100) J2, (10 + H (0,10 2, (110 1?) + H (@, 10) H (@, 18) (11, 1%)

(34)

what follows below that the production rate of x is equal in the
two motifs—y, (U)2 = 2y {u)(w) + yu <M)2 + Yw <w)2_and
that the production rate of v in the homodimer motif equals
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the sum of that of u and w in the diamond motif; a,(s) =
afs) + B(s).

If the degradation rates of the intermediate components in
the two motifs are equal—u, = u,, = py—and the coupling
between the intermediate components and the output is the
same—y,, = Yy = Yw—then © of the diamond motif is equal
to that of the homodimer motif, as it should, since there is
no distinction between the components. If the components
U and W are different, leading, for example, to different
couplings (¥, # Yw, still assuming equal degradation rates),
the homodimer motif has a larger ® than the diamond motif
at small w < [, Ly, MLy. In this case, the gain is equal for
both processes because the concentration of X is taken to be
the same in both networks. Hence, the difference in the ®
originates from the noise. The noise term Ny () is equal in
both networks, because the production and degradation rates
of X are taken to be the same in the two networks. However, the
extrinsic noise propagated from the intermediate components
is larger in the diamond motif, Ny, + Ny > Ny . Itcan
be shown that under the constraints that (a) the production of v
equals the total production of # and w and (b) the production
of x is the same in both motifs, the extrinsic noise is minimized
when the coupling of u and w to x are identical.

We stress, however, that the gain-to-noise ratio of this
diamond motif is higher than that of a simple two-step cascade,
with one intermediate component V that does not activate
X in a cooperative manner. Indeed, for a diamond motif the
coherent interaction between the two pathways plays a crucial
role. While for a motif with noncooperative activation of the
output by the two pathways, this coherence between the two
pathways exactly compensates for the decrease of the gain
of each independent pathway, for a network with cooperative
interaction, the coherence term increases ® over that of a
simple two-step cascade. In other words, splitting the input
signal into two and then recombining them with AND logic at
the output does increase the gain-to-noise ratio.

Finally, we study a motif in which only the heterodimer
UW, and not the homodimers U and W5, can activate the
output X. We thus consider the case that y,, = y, = 0, and
consider what happens if the degradation rates of U and
W are allowed to be different. With unequal degradation
rates, a bandpass filter for information is possible, if the
coupling of one pathway to x is stronger than the coupling
of the other pathway. We take w, > u,, such that the
pathway S — W — X is capable of transmitting information
on faster time scales than the pathway S — U — X. If
B > «, the input signal is relayed more strongly via the
pathway containing W, and the other pathway acts as a noise
source. Consequently, for small frequencies, w < w,, signal
transmission will be corrupted by noise originating at u, but
for u, < w < w,, this noise is averaged out. We thus obtain a
band-pass filter for information transmission [Fig. 5(c), thick
red solid line]. By actively changing the degradation rates p,,
and p,, the cell can tune the frequency range of the band.

IV. DISCUSSION

Our analysis relies on two key assumptions. First, it
assumes that the network can be linearized. By comparing the
results of our analysis with those of stochastic simulations of
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the full nonlinear network, we found that this assumption is
quite accurate. This is because the copy numbers are fairly
large [O (100)] and hence the fluctuations relative to the mean
are small, such that the transfer function is indeed linear on
the scale of the fluctuations. Second, our analysis ignores the
effect of cross-correlations in the noise terms, it assumes that
(nin;) =0 for i # j. For networks consisting of birth-death
reactions, such as those occurring in gene networks, the
cross-correlations are, in fact, zero [17]. However, in general,
for association-dissociation reactions and protein modification
reactions these cross-correlations can be important. More
in particular, these cross-correlations can significantly
affect information transmission in push-pull networks [17],
especially when the enzymatic reactions are in the zero-order
regime; yet, when these reactions are in the linear regime
(i.e., linear in the subtrate concentration), the effect of
cross-correlations are significantly reduced [17], and the
results presented here thus directly apply to these networks as
well. In the Appendix we discuss in more detail the importance
of cross-correlations in the noise for the transmission of
information in time-varying signals via ff motifs.

Our analysis reveals that ff motifs and diamond motifs are
very rich information processing devices. More specifically,
our study shows that both coherent and iff motifs can act as
either low- or high-pass filters for information. This behavior
can be understood by noting that while at high frequencies
the direct pathway always dominates the output signal, at low
frequencies the contribution of each pathway to the output
varies between networks, depending on the coupling constants
between the components in the network; moreover, at low
frequencies, the output strongly depends on the nature of the
interaction between the two pathways. If the interaction is
coherent, as in cff motifs, then the frequency dependence of the
gain, noise, and gain-to-noise ratio tends to have low-pass char-
acteristics. If, however, not only at high frequencies, but also
at low frequencies the direct pathway dominates the response,
then the gain-to-noise ratio can have high-pass characteristics;
in this case, the signal is predominantly transmitted via the
direct pathway, while the indirect pathway acts as a noise
source, masking this signal at low frequencies. For an iff motif,
the gain is low at low frequencies because of the destructive
interference between the two pathways; consequently, the
frequency dependence of the gain-to-noise ratio of iff motifs
tends to have high-pass characteristics. However, an incoherent
motif can also act as a low-pass filter for information. This
scenario arises when the direct pathway acts weakly on the
output at low frequencies; then at low frequencies the output
is dominated by the indirect pathway, which exhibits low-pass
signal filtering, while at high frequencies it is dominated by the
direct pathway. More generally, our analysis demonstrates that
by changing the coupling constants between the components
the frequency-dependence of the gain, noise, and gain-to-
noise ratio can be sculpted in almost any desirable manner.
Importantly, this shows that the topology by itself does not
determine the qualitative behavior of the system.

For equal total production cost of all molecules in the
network a cff motif has a lower information transmission
capacity than a simple one-step motif. However, if we allow
for a higher production cost in the ff motif (e.g., we require
equal production of x, but allow for the additional production
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of the intermediate component V), a cff motif in which the two
pathways are combined following AND logic can have a larger
©® than the one-step cascade. Combining the pathways follow-
ing OR logic has always a smaller ® than the one-step cascade,
even for larger total production. This demonstrates for these
simple cascades a possible advantage of coincidence detection.
Our results also underscore the important observation that
the power spectrum of the output signal is not a good measure
for information transmission [5]. The results on the iff motif
provide a concrete illustration of this idea: While the frequency
dependence of the gain exhibits band-pass characteristics,
the frequency dependence of the gain-to-noise ratio shows
high-pass characteristics; indeed, at high frequencies not only
the gain, and hence the output, decreases, but also the noise.
The cff motif with a high-pass gain-to-noise ratio provides
another striking example: While the gain and hence the output
decreases with frequency, the gain-to-noise ratio increases;
this is because the high gain at low frequencies is masked
by the high noise. Our results thus show that in order to
draw any conclusion on how reliably a network can transmit
time-varying signals, one needs to measure not only the
power spectrum of the output P,,(w), but also the power
spectrum of the input Pg;(w) and their cross-power spectrum
Py, (w): From these quantities one can obtain the gain g%(w) =
| Pox(w)])?/ P2 (w) and the frequency dependence noise N(w),
and hence the gain-to-noise ratio [see Egs. (7) and (8)].
Finally, our analysis of the diamond motifs reveals that
cooperatively activating the output can markedly enhance the
gain, as well as the gain-to-noise ratio. The latter is due to
coincidence detection: While variations in the input signal lead
to correlated variations in the intermediate components that
tend to boost the output, noise generates uncorrelated fluctua-
tions in the intermediate components. We emphasize that this
mechanism is very generic. Indeed, cooperative activation of
the output can be implemented in many ways: via the formation
of homo- or heteromultimers that then bind and activate
the output component or via the individual binding of the
intermediate components to the output component. While co-
operative activation of the output via one and the same type of
intermediate component, as in the case of homodimerization,
increases the overall gain-to-noise ratio, cooperative output
activation via components that are different, as in the case of
heterodimerization of the intermediate components, makes it
possible to mold the frequency dependence of the gain-to-noise
ratio, even allowing for band-pass filters for information.
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APPENDIX: SUPPLEMENTARY INFORMATION

All cascades have the following simple (linear) birth-death
process for the signal

ds

o =k —mgs +n, (). (A1)

PHYSICAL REVIEW E 86, 021913 (2012)

1. Simple cascades

Simple cascades, cascades without ff interaction, are
described using roman symbols for the kinetic rates, while
motifs with ff interactions, are described using Greek symbols.
The network for the one-step simple cascade is described by

dx
— = ks —myex + 15 (). (A2)
dt
Gain, noise, and gain-to-noise are
k2
2 X
= —r A3
£ = (A3)
(In:I?)
N = —, A4
= (Ad)
2 k2 ky
Y G . (AS)
N(w)  (In]?)  2(s)
The network for the two-step simple cascade is described by
d
= ks =m0, (A6)
d
d—: =k, v —mx + 1, (). (A7)
Gain, noise, and gain-to-noise are
2 (kyky)?
= , A8
g (w) (@ +m2) (@ +m2) (A3)
K (ml?) (In:I?)
N = X , (A9
O Tm) @ ) @ emy A
2 k k 2
O =2 @ _ (k) (A10)

N(@) k20, *) + (0? +m2) (In. )

a. Production constraints

In the following sections we compare the one-step (0s)
and two-step (ts) cascades with different ff motifs. We always
assume that degradation rates for proteins are equal, unless
specified otherwise. We use three different constraints, such
that the comparison is performed on an equal footing. These
constraints are as follows (with ts = two-step, ff = feed-
forward, os = one-step).

(1) Equal production of x, free production of v:

0s ff
Px = Px-

ts

Py = P, (A1)

We note that this also implies (|n%]?) = (|n%|?) = (|nT|?).
(2) Equal total production of x and v:
Py + PV =pX+ 0V, pY =Pk +py. (A12)
(3) Equal production of x and v separately (this constraint
has no meaning for the one-step cascade):
Py =Pk, PV =P (A13)
We note that this also implies (|n*|?) = (Inf[%), (In%]?) =
(nf ).
Unless specified otherwise, the degradation rates are equal
for components in either cascade, for example, m, = (,.
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2. The effect of cross-correlations in the noise
The Langevin equations for the cff motif with OR logic are

dv
—:(XS—MUU+7]U(I),

7 (A14)

d
& sty —mx (), (A15)

dt

and the most general expression for the noise N (w), as defined
through Eq. (8) (main text) is

(Ins1?)
w? + pu?

2 {Iml*)
(0 12) (02 )
Koy (Mullx)
(@ +13) (@ + 13)
Comparing Eq. (A16) with Eq. (12) (main text) the
difference lies in the appearance of the term consisting of
the cross-correlations in the noise. This term, however, can
be positive or negative, depending on the precise molecular

interactions [3,5,17]. Indeed, for a molecular reaction where
V transforms into X,

N (w) =

(A16)

\VEN'S (A17)
the Langevin equations change into
dv
E=as—(7/+uv)v+nv(t), (A18)
dx
—=Bstyv—x (1), (A19)

dt

For these molecular reactions the cross-correlation (n,n,) is
negative, reducing the total noise. The physical intuition for
this effect is that for this type of molecular interaction the
production event of X is identical to the degradation event of V.
Therefore, the noise, defined through to the summation of all
individual production and degradation events, overestimates
the actual noise. Indeed, the expression for the noise is

N () < 29)@y +B G + )
(12 + @?) (v + 1)

which if decay of V is assumed to be absent (i, = 0) reduces to

_2AS) (@ +B)
AR

Comparing Eq. (A21) with Eq. (A42) we observe that the
noise is reduced, especially at low frequencies, since the
effective transmission of noise from V to X has decreased.

However, not only the noise term is affected, but also the
gain has changed, leading to

, (A20)

(A21)

() = @V TBY T+ o
(12 + 0?) (@ + (v + )

(A22)

If decay of V (i, = 0) is assumed to be absent, this reduces to

_ (ay +By) + B0’

2
g (12 + @?) (@* + y2)

(A23)

which is equivalent to the result in the main text for y = w,,.
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We now focus on an enzymatic push-pull network:

v+s’;i‘vsL>vP+s, (A24)
X+S%_XSL>XP+S, (A25)
X 4 VP %_ XVP s XP 4 VP, (A26)
VP + Eq % VPEqy 5 V + Eg, (A27)
XP 4 Eg —= XPEq - X + Eq. (A28)

ds

In the limit that d; > r;, the back-reactions can be integrated
out and we obtain

V+S -2 VPas, (A29)
X+8 -2 xP+s, (A30)
X+ VP25 XP VP, (A31)
VP + By 25 V4 Eg, (A32)
XP + Eq &5 X + Eq. (A33)

This is a nonlinear coarse-grained push-pull network. Al-
though it resembles a birth-death process, it is not, since in
the push-pull network the cross-correlations between VAV
and X,XP are still present (because there is a constraint on the
total substrate concentration). In order to study the influence
of cross-correlations on gain, noise, and gain-to-noise, we
compare this push-pull network with an equivalent birth-death
process.

S 25> VP s, (A34)
S =5 xP+s, (A35)
VP 2 XP 4 VP, (A36)
\ViguaNy ) (A37)
xP =5 @ (A38)

The expressions for the frequency-dependence of the gain,
noise, and gain-to-noise ratio are unwieldy and we do not
present them here, but in Fig. 6 we show the gain, noise, and
® for different values of Vr and Xy, the total copy numbers
of X and V, respectively, where the average of the components
in each of the two networks has been made equal by changing
the rate «; of the birth-death reactions.

It is seen that for large Vr > (S) [Figs. 6(c) and 6(d)] the
difference in g?(w), N (w), and ® between the push-pull
and birth-death network is larger than for small V; < (S)
[Figs. 6(a) and 6(b)] which is in agreement with earlier
observations [17]. This effect is stronger if also X7 is large
compared to its substrates {S),(V") [compare Figs. 6(c)

021913-13



W. H. DE RONDE, F. TOSTEVIN, AND P. R. TEN WOLDE

-5 gain  ==-- S,
_6 Lnoise e S

-3 -2 -1 0 1 2 3

(c)

7 Lgain  ==--
B T —
8o —_—

@) [ Nw) [s'], 6w) [s]

-3 -2 -1 0 1 2 3
10g10[°-’/ g [-11

PHYSICAL REVIEW E 86, 021913 (2012)

(b) 3 T T T T T
=2 9k i
S 1L i
~oF ) .
3
Z aF
= gain ===
32 -2 Fnoise  eweeees
on e —
3 | | | |

= -3 [gain === \
3 | noiSe  sweeeee
o, 4 o -
5 I I I I I

-3 -2 -1 0 1 2 3
lOgm[‘JJ/ g [-11

FIG. 6. (Color online) For different values of V7 [(a),(b) V7 = 10, (¢),(d) V7 = 2000] and X7 [(a),(c) X7 = 10, (b),(d) X7 = 1000] the
gain (dashed), noise (dotted), and gain-to-noise ratio (solid) are shown. The results from the push-pull network are shown in thick black, the
birth-death system is shown in thin red. Results are shown on the basis of equal average (V'), (X*). For V; < (S) [(a),(b)]® of the push-pull
network and birth-death system are very similar, while for V7 > (S;) [(c),(d)]® of the push-pull network is smaller than that of the birth-death
network, due to the large effect of the cross-correlations in reducing the noise. Parameters: k, = 100, p; = 0.1, p, = 0.1, p3 = 0.1, ps Ep = 10,

psEp = 10. u, sets the time scale.

and 6(d)]. The cross-correlations tend to reduce N (w) and
g% (w) in the push-pull network. The decrease due to the
cross-correlations is more prominent in the gain, and as a
result, ® of the push-pull network is smaller than for the
birth-death network.

3. Discussion on Eq. (15) (main text) for the coherent
feed-forward motif

In this section we provide some intuition on Eq. (15)
(main text) for a cff motif. ® of a cff motif either increases
monotonically with frequency or decreases monotonically
with frequency, as mentioned in the main text. If Eq. (15) (main
text) is satisfied, it increases monotonically, and the motif
acts as a high-pass filter for information. We can intuitively
understand the terms in Eq. (15) (main text) as follows. A
decrease in the ratio J,;/Jy; means that the input signal
s is relayed more to x directly than to x via v. However,
while the direct pathway S — X contributes to information
transmission at all frequencies—its ® is flat—the indirect
pathway S — V — Xonly contributes at low frequencies—®
of a two-step cascade falls of as w2 for high frequencies.
The effect of the indirect pathway, both the gain and the
noise, at high frequencies becomes negligible. Indeed, in
the limit that J,,/J,, reaches zero, the signal is transmitted
completely via the direct pathway only; yet, while the ®
of the direct pathway, a one-step cascade, is flat, ® of the
cff increases with frequency, because the indirect pathway

still adds noise to the signal, especially in the low-frequency
regime.

The presence of the second term on the right-hand side
of Eq. (15) (main text) can be understood by noting that it
arises from the interplay between the noise [Eq. (12) (main
text)] and the coherence term in the gain [Eq. (9) (main text)].
We can understand the dependence on u, = —J,, by noting
that at high frequencies @ > u, the coherence and the noise
coming from v hardly contribute to the gain and the total noise
N(w), respectively, while at w = 0 the coherence decreases
with increasing degradation rate as /,L;l [Eqg. (9) (main text)]
while the noise coming from v decreases as ;2 [Eq. (12)
(main text)]. Similarly, at @ = 0, the coherence increases with
J.» while the noise coming from v increases with J2,. Thus, at
low frequencies decreasing the degradation rate y, and/or in-
creasing the coupling between V to X, J,,, increases the noise
more than it does the gain, thus reducing ® at low frequencies,
while at high frequencies the influence on ® is negligible.

4. OR-coherent feed-forward
The network is described by

dv
' =as — v+, (1),
dx

- = - Mx x (7),
7 Bs +yv — pyx + 1y (1)

(A39)

(A40)
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FIG. 7. (Color online) In these panels we show the gain (solid line, left axis) and phase (dotted line, right axis). In panel (a) we show
the gain and the phase for an ocff motif. The decrease of the gain corresponds with the increase in the phase difference between the indirect
S — V — X and direct pathway S — X. In panel (b) we show a similar plot, but now for the diamond motif with pathways of equal length,
but with different degradation rates of the intermediate components. Again we observe that the initial decrease in the gain coincides with the
increase in phase difference. However, although the phase difference decreases for larger w again, the gain continues to decrease, due to the
time averaging of the fluctuations over the lifetime of the intermediate components.

and the gain, noise, and gain-to-noise [see Egs. (9), (12), and
(14) (main text)],

_(ay + B+ JLo?

2
E T [
M) 4 (@0 + 13) ()
N (w) = (a)2 n M%) (wz n Mi) ) (A42)
_ 2 2.2
O () = @V T B+ flo (Ad3)

Y2 + (0 + u2) (In.]?)

In Fig. 7 (left) the dependence of the gain and the phase
difference between the direct S — X and indirect S — V —
X pathway as a function of frequency is shown. For w < u,
the two pathways have no phase difference, but for an increase
in frequency the phase difference increases and as a result the
magnitude of the coherent term in the gain decreases. The
magnitude of the coherent term also decreases due to the
time-averaging over the finite lifetime of the intermediate

component V. Even for a constant phase-difference, at large w
the gain decreases.

In Tables I and II we list the expression for ® for different
production constraints. ® of the one-step cascade given equal
production of x is always larger than that of the ocff. Compared
to the two-step cascade, for @ — oo the ocff motif always has
a larger ©, since the noise source N,_,, is averaged out, and
only an effective one-step cascade with constant ® remains.
Thus, we only compare the ocff with the two-step cascade for
w — 0.

The various constraints lead to different results. The first
scenario, where we independently constrain p, and p, and
take u, = m, in both cascades leads to an expression for ® in
the two-step cascade that is smaller than that for the ocff for
all w. The gain in both the ocff and the two-step cascade are
precisely equal (not shown), and therefore the larger ® is due
to the increase in the noise (N (w)) in the two-step cascade. A
constraint that allows for more freedom in the network is such
that only the production of x is constrained, but there is free
production of v. We observe that for v = 0, ® for the ocff is

TABLEI The results for the gain, noise, and gain-to-noise ratio for the one-step cascade and the two-step
cascade in parameters of the ocff, given the constraint conditions. For the two-step only the @ — 0 limit is
given, since for large w the ocff always has a larger ®. We assume always 1, = m,. E.p.x, equal production
of x; E.t.p., equal total production; E.s.p., equal separate production.

Constraint One-step 0%
= ay — (uptay)® ocff
Epx ke=p o, ©="amm > O]
E.tp. Always larger
Two-step OF (w = 0)
2
E.p. k.k, = 4 = Gwphey)
P k=Pt © 13 (102423 Guo ey
Etp (kx —+ I'Lv)kv = (o{ + ﬂ) Uy +ya ® = kx(ﬁl(ikiio;(i’);ruv))
2
E.s.p. k, =a, g = (u»fgéy)
(obtay)? 0 2y, 200 2
_ Bits B g ) (i )
ke=y o N= T
(moptay)

= v
Ut 1y 2) 443 ()
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TABLE II. Summary of the results for the ocff.

Constraint One-step vs ocff ~ Two-step vs ocff

®0s >®ocff
®os >®ocff

Equal production of x
Equal total production

Parameter dependent
Parameter dependent

Equal separate production Of <@
larger than the two-step if
2(s)
VAl < == GuB +ay)?, (A44)
2(s
2a(s)y* < ,ﬁ (moB +ay)’, (A45)
2

ay2 < M, (A46)

ky

This inequality is not satisfied if, for example, k, — o0, since
then the two-step cascade effectively becomes an one-step
cascade and as a result, has a larger ® than the ocff.

For w — oo, ® of the ocff with high-pass (hp) filter
characteristics can have a larger plateau value than an ocff
with low-pass (Ip) characteristics, under the constraint that the
production of v and x separately are equal. This can be shown
by solving for the inequality

AN A
lim ©" > lim " — | =] @4

w—> 00 w—> 00
Mo Mo

]/lp()llp> alp ZMLP

—+ ——, (A48)
MLP B ylp

yhpahp Olhp N ZMBP
Mgp phe yhe
(A49)

low-pass (Ip) — BP < (ﬂlp +

high-pass (hp) — A" < (,Bhp +

The first line describes the inequality. The second line
describes the requirement for A and the third line the
requirement for 8", which are obtained following substitution
of (|n,?) and (|n,|*>) in Eq. (15) (main text). From the
constraints of equal separate production we obtain

(1) = (|l ) — o =™, (A50)
Ip,1p hp ., hp
(I = (|2 ) — B2+ L = o+ L. (ASY)

Solving the system of inequalities Eqs. (A47)-(A49) with
Egs. (A50) and (AS51) using MATHEMATICA, it can be shown
that these can always be fulfilled. However, the full expressions
are unwieldy to present here. Even if 8P — oo, reflecting that
the low-pass filter effectively is a one-step cascade, parameters
can be found for which the high-pass filter can still have a larger
® for large w. However, the difference between the low-pass
and high-pass filter is negligible.
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5. AND-coherent feed-forward
The network is described by

dv
il + 1 (1), (A52)
dx
— = Bus — X + 15 (1), (AS3)

dt

and the gain, noise, and gain-to-noise [Eqgs. (9), (12), and (14)
(main text)] by

B(0)? (@ + 4p12)

2 —
N [ N
B I + (0 + 1) (Inel)
A e e B
2 2 2 2 2
0 () = £ B(v)? (@ + 4p12) (456)

N@) — B2 (m P+ (@ + 1) ()

For equal production of x and for @ — o0, ® of a one-step
cascade is equal to ® of the acff. For w = 0, we obtain the
relation

0% (w = 0) < O (0w = 0) (A57)
B*(v)? B*(v)?
1 |2><4 5 TR (A58)
Nx (Inel?) + (52) (Inul?)

where the last line holds if B(v)/a < 3{|n.|*)/{|n,|?). This
inequality can be sufficed for example in the limit that 8 —
0. Then the acff has a larger ® than the one-step cascade
for w = 0. This limit corresponds to a situation where the
noise N, [Eq. (12) (main text)] is negligible, and the noise
contributions N (w) in both motifs are similar. The gain in
the acff is larger than in the one-step cascade. This seems
contradictory, but is a result of the production constraint. In
the acff the production of x, py, is B(s)(v), such that if (v) is
very small, the production rate 8 becomes very large to ensure
equal production of x. This is in contrast to the ocff, where
the production of x is B(s) + y (v) and if (v) is nearly zero,
production still is possible through the direct pathway S — X.
Due to this coincidence coupling between the two pathways,
the gain for the acff is larger than for the one-step cascade.

As expected, the acff has a larger ® than the simple two-
step cascade if we equalize both p, and p, separately. More
interesting is the behavior at low frequencies for the two other
constraint types. If we equalize the total production the two-
step cascade has a larger ® than the acff if

(B )T + o — k)
2(s) (o + kx)
BAv)? (0 + 412)
A P{ ) + o7 + )l
Bis) + wy B*") +a —k,
ky + 1y k(v aCff)

where this is possible if g(s) > k, or o > k,. From the
constraint condition of total production we have the equality

(ky + 1y) ky = pya + Ba(s). Taking these relations together,
we observe that for B(s) > k, we require k, > 1, while for

(A59)

> 4, (A60)
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TABLEIII. The results for the gain, noise, and gain-to-noise ratio
for the one-step cascade and the two-step cascade in parameters of
the acff, given the constraint conditions. For the two-step only the
o — 0 limit is given, since for large w the ocff always has a larger
®. E.p.x, equal production of x; E.t.p., equal total production; E.s.p.,
equal seperate production.

Constraint One-step (OX
E.p.x ke = B(v) e = ﬁi](%
E.t.p. ke = o+ B{v) O = (0t|+/3(| )))2 > @dcff
(|n
Two-step Of (w = 0)
Ep.x kek, = B0* M, ®= (s)ep)”

2
<\n.r\2m%+(<”k+“<|nu|2>
3

Etp. ket )k = ple+ plu*l) 0= Fiiiy

2(s)(ky+it0)?
_ 2 _ <<s>aﬂ)2
k=, &= a2
o _ P +) B I 1)
E.s.p. ke = £ B(v) N = T

o — (s)erB)?
©= (Ine|? u%+(< R

o > k, werequire k, > 1. In both cases the two-step cascade
transforms into a one-step cascade because one of the two
steps directly tracks the changes upstream.

The other option, where we constrain the production of x,
but not v,

(Uacff)

kx=,3(S)W,

leads to the following expression for the gain-to-noise ratio at
low frequencies for the two-step cascade:

(o B0*T))?
Bs Z‘;) <|’7 | )"‘P‘%

(A61)

Ow=0)= (A62)

(nel?)

The ratio of ®’s is

O (» = 0) _ 4(,3(8)( verf) )2<|fl | >+M%(vts)2<|nx|2>
O (w = 0) (Bs) (WS)2{| 2t |*) + 12 ()2 (], [2)
(A63)
)k HE%) ()
2 +
I 26)Bs) (A64)
a(s)k2 + (W) (| ]*)
“a 2(s)(B(s))*
F ko2 (I |
:4a+ ,  where F=M.
ky + F 2a2(s)
(A65)

If k, > « the two-step cascade has a larger ®. This reflects
again a situation where the two-step cascade has one very
fast step and acts effectively as a single one-step cascade (see
Tables III and IV.

6. Comparison of the coherent feed-forward
AND and OR motifs

We study if ® of the acff is larger or smaller than ©® of the
ocff. We equalize production of both v and x such that we have

ocff acff ocff acff ( A66)

Py, = Dy = =,
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TABLE IV. Summary of the results for the acff.

Constraint One-step vs acff Two-step vs actf

Equal production of x Parameter dependent Parameter dependent

Equal total production Q% >@ff Parameter dependent

Equal separate OF <@
production

= B*M(v),

p)(gcff — p;cff s ,Bocff+ ﬂ
v

(A67)

and using these constraints and Eqs. (A43) and (A56), we
obtain the ratio

(BT + 22)? (? + 4p2)
(B2 (w? + u2) + (ay)* + 2aBy 1y
Y2In?) + (0 + 12)(In?)

(B Y Iml2) + (@2 + ) Inel?)
(A69)

®acff (a))

®octf (w) = (A68)

In the limit @ — oo we obtain
ocff ay 2
(B +5X)
(ﬁocff)Z

such that for large w the acff has a larger ®. In the other limit
w = 0, we obtain

O (»w — 00) _

QM (0 — 00)

> 1, (A70)

@acff (w — 0) (ﬁocff 7 )24M12,
Ol (w=10)  (B°M)2u2 + (ay)* + 2aBy i,
y2(Ino?) + 2 (In.l?)
(B )2 1mal?) + 12l ?)
(A71)
y2{Imul?) + ud{In:l?) (AT2)
(B2 )2 (1) + 122
such that if

4 (Y2 (Inul®) + nollne®)

ocff 2
< (’3 a“"+y> (Il + u(Ined?,  (A73)

the ocff has a larger ®. This condition [Eq. (A73)] can be
satisfied if in the ocff motif the direct pathway S — X couples
(large B) much stronger to X than the indirect pathway S —
V — X(small @) (Table V). Interestingly, the parameter values
for which this condition is satisfied, result in an ® for the acff
motif with a high-pass filter. This we show by comparing the
two extrema for the acff (w — 0o and w = 0),

4M%(ﬂocff + o;_;:)2

®acff (w=0)= , (A74)
(ks 49 (0, 12) + 2 (.l
) )
IBOCﬁ + ay
lim ©*" () = e n) : (A75)
=0 (In<l*)
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TABLE V. Summary of the results for the comparison between
the acff and the ocff.

Constraint w—0 w —> 00

Equal separate production ~ Parameter dependent @ @ocff

where it can be shown that, given the condition in Eq. (A73)
is satisfied, the acff has a larger ® for large frequencies than
for small frequencies.

7. Incoherent feed-forward motif

The network is described by

dv

—— =as — U+ 1y (1), (A76)
dt

dx vKv

= — Iy (1) AT7
- K+ HxX 4 1y (1) (AT7)

The gain, noise, and gain-to-noise [Egs. (9), (12), and (14)
(main text)] in general terms are

 usdew 4 JonJes) 4 T2 007

2 = , A78
g (@) (@ +72) (@ + 2) (AT8)
T2 I + (@ 4+ u2) (Inel?)
N = , A79
B I
2 2.2
O (w) = (JosIyv + Joudis)” + me (A80)

T2 Anul?) + (02 + 1) (Inl?)

First, we study the influence of the topology. For the iff,
four different topologies exist with respect to the regulation.
It is known that different topologies have influence on the
noise characteristics. Here we show that ® indeed depends on
the specific topology, comparing both a different position for
the negative regulation, and the type of integration of the two
pathways at the X component.

Instead of negatively regulating X by V or S, we can also
negatively regulate V by S, such that we have

dv aKy

- = — Uy + 1y (1),
T Keax P 1y (1)

dx
—— =Bs+yv— px + 0, (1),

dt
where we have assumed the signals combine at X following OR
strategy. In the previous section, we equalized production and
studied the difference in the coupling parameters J;;. Here,
instead of equalizing production, we equalize the Jacobian
coefficients (as a result the gain is equal). For these coupling
parameters, we compare the production of the components
(and thus the noise terms). We refer to the topology with
superscript V for negative regulation of V and superscript X
for negative regulation of X:

(A81)

(A82)

K
I =0X = oV ——— =a¥, (A83)

(Ky + (s))

K
JYmgX gy oy KW - (A84)

‘ ‘ (K + (s))
K

JV =I5 | — yV =X . A85
Xv | xv| y K+<S> ( )

PHYSICAL REVIEW E 86, 021913 (2012)

Following these equalities, we write for the noise terms

K
Y =2a’ e JVF - =2(Ky + (s)a® >nf, (A86)
v _ . x K{v) (s) X
% =20815) 4y o) =20F <1+K+<s>>>”X'
(A87)

For equal coupling constants the noise terms (or equivalently
the production terms) in the iff motif are larger for negative
regulation on V than on X.

Second, we discuss the effect of linearization. It is interest-
ing to note that the Hill-functional prescribing the effect of the
negative interaction has a saturated regime. Indeed, rewriting
the Hill function [Eq. (23b)] as 1/(s/K + 1), we observe that
if s > K or s < K the negative interaction is saturated. One
could expect that for fluctuations that drive the system from
the unsaturated regime to the saturated regime the differences
between the linearized and nonlinearized system are large. To
study this in detail, we focus on Fig. 4 and Eq. (23) (main
text) and we discuss all three regimes, K > (S), K = (S),
and K < (S).

If K > (S), we can approximate the Hill function by a
linear dependence of X on V, so no effect should be observed.
Similarly, for K ~ (S), no saturation effect is expected. The
Hill function saturates if due to fluctuations s £ s > K or
s + 8s <« K. However, the size of the fluctuations in s are on
the same order of /{S), since S is driven by a birth-death
process. The fluctuations therefore do not drive the system
to the saturated regime, as long as (S) > O(10) and the
linearization should give reasonable results. The last scenario
is the one in which K < (S), indicating that the negative
regulation is maximal. In this regime, the response can only
track the variations in s with very small amplitude, since
due to the negative regulation, the fluctuations are greatly
suppressed. This effect can also be observed in the linearized
system, since for this small K value, the gain (the amplitude
of the transmitted fluctuations) is considerably smaller than
for systems with larger K. The amplitude of the fluctuations
is not large enough to drive the system out of the completely
suppressed state, and as a result the linearization is a good
approximation.

If the pathways combine following AND logic we have

dx

Ip YV Tt (7). (A88)
Now, we equalize production terms
K

4 % v X
o — =’ (s), A89
Py Ky + (5) Py (s) ( )
Y =r)ls) pf = v (A90)

X X K+
and obtain o =" Ky[(Ky + (s){s)]7! and y =

vK[(K + (s))(s)]”'. We then compare the Jacobian
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terms

P S S S . U
v (Ky + (s)* 7" (Ky + (s) (s)”

(A91)
K{v) K (v)

W=y =v—ul—— JX=y " (A2
s =Y =T om T e 7
JxVu =vy(s) = VL; J,fi = VL, (A93)

({s) + K) ({s) + K)

and we observe that JX > |J)|, while J, > JX. Therefore,
we conclude that at large frequencies the AND integration with
negative regulation on V has a larger ® than for negative
regulation on X. For small frequencies ® depends on the
specific parameters.

Compared with a one-step cascade for equal production of
x (so v is not constrained), we have for ® of the incoherent
motif

K K ko 1y
pl=po o 2K oy R K
K + (s) K + (s) o
(A94)
leading to
Kk \2 o (ki) )2
(K%(l;)) + (K+<s>) w’ kY
Q@) = —— < 5o
(L) (o 2) + (2 + w2) (a2 Snel®)
(A95)

such that the incoherent motif always has a smaller ® than the
one-step motif for equal production of x.

Compared to the two-step motif and equal total production
we distinguish two scenarios. First, we assume equal produc-
tion of v and obtain

iff two vK kxkv
= = , A96
N ) > (A96)
and for © of the iff cascade we obtain
2 2
(kxkv)2 £ B + <Ss> (1)2
o = CRP L) + i) o]

(k)2 (In012) 4 (@? + 12)(In.1?)

Compared to ® of a two-step cascade, for small w ® of the iff
is smaller due to the negative interference in the iff, while for
large w this is larger than ® of a two-step cascade due to the

direct pathway. |

nZkSZ(n—I)aZnyUZ
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TABLE VI. Summary of the results for the comparison between
the iff and the two-step cascade.

Constraint w—0 w — 00
Equal total production o <@ e @
Equal production of x Parameter dependent CLPNCN

In the other scenario we only require pff = p™° to obtain

2 s 2
(kxkv)2[(K-1+—((s)) + ((K-"-<(S>))Mu) wz]
2(%)20[(5‘) =+ ((,()2 + M%)(lﬂx|2)

Due to the direct pathway the gain-to-noise ratio for the iff is
larger for w — o0. For @ = 0 we obtain

O(w) = (A98)

0w = 0) > O%(w = 0), (A99)
(ko) (5) (ko)
(5o s) + 2im ) 20kls) +m{n?)’
(A100)
K \? 1
<K + <s>> 2(1)(5) + g (Insl?)
> ! (A101)

28(5) + g5 (Inel?)

where the above inequality is valid in the following two
scenarios. (1) If k, < «, the iff motif has a larger ©®, since
the signal is transmitted to v with larger gain than in the
two-step cascade. (2) If K > (s), the negative feedback is
greatly suppressed and we observe a general two-step cascade
instead of an iff motif. If the first condition is not satisfied, the
two-step simple cascade has a larger ® for @ = 0. The second
condition is required if the difference in the gain due to the
first condition is not large enough (see Table VI).

8. Multimerization

The network for multimerization is described by

dv

= — v+ 1y (1), (A102)
dx "
— =YV — paex + 0 (1), (A103)

dt

where n is the number of proteins that jointly activate X. The
gain, noise, and gain-to-noise are

2

Pl ’ ’ (A104)

120020 (@2 4 p2) (02 + p2)
N(w) 3 n2ky2(nfl)a2(n71)y112<|nvl2> + llLsz(nfl)M%(ﬂfl) (wZ + /'le;) (|nx|2> (Alos)

= 20—, 20D (2 (2 2 ’
u2r D" (02 4+ 12) (0 + 12)
n2kv2(n71)a2nyv2

o) : (A106)

2(n—1 _ _
n2k.v(n )aZ(n 1)V3(|77v|2>+lis2(” D/va

(@ 2) (e
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For equal production of x (v is by construction in all cascades equal), we have

_ W !
Yon = )’v,n:lm, (A107)
which after we substitute this in Eq. (A106), results in Eq. (30) (main text).
The diamond motif is described by
du dw
i os (1) — pytt () + 14 (1), o = Bs (1) — pww (1) + my (1),
d (A108)
x

= = Yt (0 F 7w () + 2y (Y w (1) = pex (0 + 0 (1)

For wy = w, = py, « = C; B, and y, = yyy = Cryw, where we have introduced the coefficients C; and Cy; to study the
form of the gain, noise, and © for differences between the intermediates U and W in a general context, the expressions for the
gain, noise, and gain-to-noise are

AR (142C, + CIC)’

2

(w) = (A109)

8 M%I’L%)H (/’Lw’w)H (me)

4k222A2 u2 1 C2 w2 22H ws x2

N () = BV (A~ (I, >+2( 2+ D (Inwl) + pusy, H (o, ) (0] )’ (A110)

st H (e, @) H (p, @)

4284 (1 +2C; + C2Chp)* 92

@(Q))I le( ! 1 ”) Vi (Alll)

4k2B2y2(AX (I, ) + (1 + C)* (1w l?)) + 1262 H (o, @) (10

where A = (1 + C;Cy;) and H(x,y) = x2 + y2.

We take C;; = 1 and compare this cascade to a cascade with only homodimerization of the component U (8 = y,, = y,u = 0).
For readability, we refer to this cascade as if it has an intermediate component V and, if required, subscripts denote U, V, and W.
Equal production at the intermediate level py = py + pw and at the level of X ( pf(m = p})‘("m") gives

(1+CpB=ay, (A112)

~ (v)? B )+ )P (@t B
~ U 20wy + w2 U+ 2wy + (W2 a2 + 20, B + B2

Inserting these equalities in Eq. (A109), we observe that the gain is equal to Eq. (A104) forn = 2,
Ay,

2
(w) = , (Al14)
SO L@ ) @ 1 )
41+ Cp)* iy (2eebet i)ty
= 2.2(2 2% ) (AL15)
2l (02 + p2) (@ + p2)
4k (14 C)* By
= U CD Pty (A116)
i (0 + ud) (@* + 13)
and the noise is
4k21+c222 u2+ w2+2«2w2+2 x2
N (@)= 2( D7 BEy2EImal?) + (Inwl®) + pn2ul (0 + 12) (x| >’ AL

1202 (@? + p2) (? + 1)

where Eq. (A117) is exactly Eq. (A110). Therefore, unequal We constrain the individual production of each step in the

production of # and w is not important, as long as the sum is cascade:

constrained (and all y’s are equal). pYO = pIm 4 pdm s &, =20, (A118)
Next we compare to a two-step cascade. We first assume the

diamond motif to be completely symmetric for the intermedi- two a’(s)

Py = pi™ — kek, = 4y (A119)

ate components U, W, o = B, w,, = wy, and y, = Yy = Vuw-

v
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o PXX

o Re[Py]

o Im[P_]
|

log; [Py Psx [s]]
S

-1 0 1 2
logolw/pg [-1]

FIG. 8. (Color online) The results (symbols) of the Gillespie
simulations for the ocff. Since this motif is linear, we do not expect
any deviations between the numerical simulations and the analytical
results. We only show the result for one set of parameters: k; = 100,
a=11,8=1,y =10.1, u, = 10, u, = 10. u; sets the time scale.

In the limit w — oo the diamond motif has a larger ®
independent of any kinetic rates, since

@dm 4 2
o = “2 — 4. (A120)
) LW /'Lv
In the opposite limit, @ — 0, we have
@dm 8 o + 413
_ BGlayi Fdu, (A121)
QW (8(s)aYuw + (s)u2)

Thus, the symmetric diamond motif has a larger ® for w — 0
and w — oo. For equal u, = m,, ® of the diamond motif is
larger for all frequencies.

The above case is for « = 8. Here we use o = C; 3, but
Uy = Uy = my. The ratio of ®’s for w — oo is simply 4
[Eq. (A120)]. For the limit @ — 0 we have

@dm B 4 ((1 + Cp) (s)ayuw + Mzw)
@two 41+ Cp) (s)oYuw + M%z

We do observe that the more asymmetric the diamond motif
becomes, the ratio of ®’s decreases. The performance of the

> 1. (Al122)
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For high frequencies the ratio of the ® of the two-step and
diamond motif is

@dm

o

Clzlllui)
(14 Cyp)*m?’

(A124)

which does not lead to a unique conclusion whether which of
the two is larger. For @ = 0, we have

O™ 21+ Cip)? ()Y +2C514%
O 4 (14 Cpy) )etvuw + Ciypil,

(A125)

Again, the ratio of ® depends on the kinetic rates.

9. Influence of the phase

In this section we provide more detail on the effect of the
phase difference on the gain [Eq. (9), main text]. For this reason
we rewrite Eq. (9) in the main text, while keeping explicitly the
phase dependence in the Fourier Transforms of § (¢) and ¥ (¢).
To make the analysis intuitive, we take an example system:
the cff with OR logic [Eq. (17), main text, and Egs. (A39)
and (A40)]. In the general form of the Fourier transform, the
expressions for § and ¥ are

r .

$(w) = = A, (w) >, (A126)
i+

b = 5@ 4 et @ (a127)
o+ iy

where the subscript d indicates we only take the deterministic

part, since the noise term 7, does not appear in the gain g2 (),
but only in the noise N (w) (note that I' is the stochastic
driving force which generates an ensemble of trajectories).
The coefficients are defined as

2
diamond motif then becomes more similar to the two-step A% (w) = ﬂ, (A128)
cascade. ’ w+ o
More interesting is to have different degradation rates (TP
Wy = Crpty, where Cyy is an arbitrary constant. The equal A%d (w) = > 5 > O (A129)
production constraints then result in the following two expres- (“s +o ) (“) + Mv)
sions: )
o T L ) ¢, (w) = —arctan [M_] , (A130)
= — = Z0, s
Lo U >(s) (A129 (s + 1)
a“(s
PO = PO > kiky = myy o ¢, () = arctan [M} . (A131)
11y, W= — Uy s
(a) Z (b) = () Z
Y o | o
= &% o Im[Py] &
2 2 I ! 2
-1 0 1 2

logyolw/pus [-1]

logyglw/ps [-1]

logyglw/ g [-1]

FIG. 9. (Color online) The results (symbols) of the Gillespie simulations for the acff. Although this motif is nonlinear, the results of the
simulations are in good agreement with those of the linear analysis (lines). In P,, and Re [Py, ] the symbols of the simulations results are on
top of the lines in the analytical results. Parameters: (a) as in Fig. 3(c), red solid line; (b) Fig. 3(c), red dashed line; (c) Fig. 3(c), red dotted line.
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(a)

= b) = 4L (€ %7 2p
y N ppwo— . 0
o S %
£ et o2k = P et -2 X
=X & WL oo Relry] & 4L o Relpy
& & - o Tm[P,] & o Im[P]
=2 2 6 L e L
-1 0 1 2 -1 0 1 2
logyolw/ g [-1] logyolw/pg [-1] logyolw/pg [-1]

FIG. 10. (Color online) The results (symbols) of the Gillespie simulations for the iff motif. Although this motif is nonlinear, the results of
the simulations are in good agreement with those of the linear analysis (lines). In P,, and Re [ P;, ] the symbols of the simulations results are on
top of the lines in the analytical results. Parameters: (a) as in Fig. 4(c), red solid line; (b) Fig. 4(c), red dashed line; (c) Fig. 4(c), red dotted line.

The Fourier transform of X (¢) is (again ignoring 7,)

R B8 () + y b (w)
fa(w)= —— 7"

: (A132)
Tw + [y
Using Eqgs. (A126) and (A127) we write the gain as
2 Ba@Ra(-w) _ @B +y? (1] + @) +20By /1] + @ cos [§, (@) — ¢y ()]
(@) = _ (A133)
Pss () (1 + @) (w3 +@?)
Coherence effect: Acon
B (a,3)2 y2 Zaﬂy\/;mcos [¢a (Cl)) - d)v (CI))] (A134)
S (Bt ) (24 e?)  uto? (1F +@?) (13 +@?) '

Now, the last term directly involves the phase difference [com- Interestingly, we have obtained a mathematical expression for
pare with Eq. (9) in the main text]. Using the trigonometric the effect of the phase difference on the coherent term. First
identities for the arctan, the phase difference itself is

—arctan [u] = arctan [—u], (A135)
u+v AP = ¢y — ¢, = arctan |:—a):| + arctan [M]
arctan [u] + arctan [v] = arctan |:1 :| . (A136) s W™ = Mo lls
—uv
| — arctan [3} . (A139)
cos [arctan [x]] = —— (A137) My

VT+x2
and the expressions in Eqs. (A130) and (A131), we can rewrite
the third term in Eq. (A134) (Acon) as a multiplication of two
effects, phase-difference (Apq) and time-averaging (Ay,):

For v « u, the phase difference A¢ ~ 0, while for v = u,,
A¢ = m /4 and for ® — 00, A¢p — /2. Note that the phase
difference, as expected, only depends on p, = —J,,,,. With the
time-averaging phase difference we obtain an expression for the amplitude

\/ﬁ phase difference Apd as
2 —_—
Acoh = ApApg = Py iy, T o cos[Ag (w)].

(15 +0?) (13 +e?)

Mo
A,y =COS[AP] = ———. A140
(A138) pd [Ad] e ( )
(@) Z (b) Z () Z
e B B
% & + Im[P] n
2 2 6 . L =
-1 0 1 2
logyolw/pus [-1] logyglw/ps [-1] logyglw/ g [-1]

FIG. 11. (Color online) The results (symbols) of the Gillespie simulations for the dimerization process. Here the motif is nonlinear.
We model the propensity function following a Hill function, k (V) = kmax V" / (V" + K™). Next, we take K > V, such that propensity is
approximately k (V) & knax (V/K)", as discussed in the main text. The results of the simulations are in good agreement with those of the
linear analysis (lines). In P,, and Re [P, ] the symbols of the simulations results are on top of the lines in the analytical results. Parameters:
(a) two-step process (n = 1), (b) dimer process (n = 2), (c¢) trimer process (n = 3). Parameters are as in Fig. 5(b).
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= 8 T T b) = = 8
(@5 8 (b) 5 ©z ¢
5 45 % 5 4
=78 2 F =78 =78 2 F
Q—? 0F o Py Q—; QF 0F o Py —
= 2 ° Re[Psx] 1 = = 2F ° Re[Psx] 7
g0 -4 - o Im[Pg] B 50 g0 -4 o Im[P] ° 4
2 6 L S 2 6 ]
-1 0 1 2 -1 0 1 2

10glo[W/Ns [-1

IOglo[W/Ms [-1

logo[w/p [-1]

FIG. 12. (Color online) The results (symbols) of the Gillespie simulations for the heterodimerization motif, with y, = y,, = 0. Although
this motif is nonlinear, the results of the simulations are in good agreement with the results of the linear analysis (lines). In P,, and Re [ P;,]
the symbols of the simulations results are on top of the lines in the analytical results. Parameters: (a) as in Fig. 5(c), red solid line; (b) Fig. 5(c),

red dashed line; (c) Fig. 5(c), red dotted line.

For w = 0, A,g = 1, since the two signals are in phase, but for
an increase in the frequency of the signal Apg — 0, due to the
increase in phase difference.

Next to the effect of the phase difference between the
pathways, also the effect of time averaging is important for
the amplitude of the coherence term. Indeed, A o, is greatly
reduced if the signal variations are much faster than the lifetime
of the components in the cascade. The effective amplitude of
the time-averaging Ay, can mathematically be expressed as
[see Eq. (A138)]

20By /i + @?
(13 + @) (13 +0?)
We first note that the decrease in the amplitude due to the
time averaging over the finite response time of V scales
only with the inverse square root of the response time of V,
(1% + w*)~1/2. Next, for signal oscillations that are much faster
than the response time of V (u;l) or X (1), the amplitude
Ay — 0, since then the individual components can not track
the variations and start to time-average the variations, thereby
losing the specific information in the high frequencies.

Combining A, and Apg we obtain for Acon

(A141)

ta =

208y po
(13 + ?) (13 +@?)
As required, Eq. (A142) is identical to the expression for the
coherence in Eq. (9).
In Fig. 7 we show in some more detail the precise influence

of the phase difference between two pathways that combine at
a downstream component.

Acon = AtaApd =

(A142)

10. Numerical validation

The linearization used in the derivation can change the
characteristics of the frequency response, since a linear(ized)
system does not change the frequency of the transmitted
signal. This may not be the case for a nonlinear system. In
this section we show the comparison between our analytical
results, following the linear noise approximation, for the power
spectrum and the result from numerical simulations of the
full nonlinear network. For the numerical simulations we use
the Gillespie algorithm. The negative regulation as present in
the iff motif, or the positive regulation as in the dimerization
process are calculated through Hill-like interactions between
the components. In the Gillespie simulation we calculated the
propensities for every reaction using the coarse-grained Hill
expressions for the propensities, such that

V- V4 X, (A143)
where r is
kK
[ (A144)
S+ K

where here the actual copy number of S is used, and not (s},
as in the linearized expressions [Eq. (A80)].

The power spectra are calculated using 2'° (1024) exponen-
tially distributed frequencies from w = 107! to w = 10% and
averaged over 16 neighboring frequencies to obtain a single
data point. In total we have 64 data points. Fourier transforms
and power spectra are directly integrated during run time. We
simulated a minimum of 27 blocks of 5000 s. The results are
shown in Figs. 8—12.
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