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Biopolymer hairpin loops sustained by polarons
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We show that polarons can sustain looplike configurations in flexible biopolymers and that the size of the loops
depend on both the flexural rigidity of the polymer and the electron-phonon coupling constant. In particular we
show that for single stranded DNA (ssDNA) and polyacetylene such loops can have as few as seven monomers.
We also show that these configurations are very stable under thermal fluctuations and so could facilitate the
formation of hairpin loops of ssDNA.

DOI: 10.1103/PhysRevE.86.021910 PACS number(s): 87.15.hm, 71.38.−k, 87.14.gk

I. INTRODUCTION

Conformational transitions of biopolymers as a result of the
coupling between the electronic and elastic degrees of freedom
are important for understanding native states of globular
proteins and secondary structures of biopolymers such as
DNA and RNA. In an attempt to understand toroidal states
of DNA the globule-coil transition for semiflexible poly-
mers in poor solvents has been explored using Brownian
dynamics simulations [1,2]. The intermediate states arising
in these systems have also been classified [1,2]. However,
the collapse transition in polymers induced by polarons has
been less explored [3]. Though there is a clear separation
of energy scales between electronic phenomena occurring in
the eV range and conformational elasticity of biopolymers
operative in the kBT range, a comparison of the individual
contributions of these terms to the total energy indicates
that their interplay can lead to novel phenomena hitherto
unexplored.

Polarons are the result on the interaction between a
free electron in the conducting band of a polymer chain
and the phonons of that chain. They were discovered by
Davydov [4–6], who proposed them as a mechanism to explain
how energy can be transported along α helices in living
cells.

In this paper we explore the possibility of polaron induced
polymer-loop formation and stabilization arising in semiflex-
ible chains. Our model is similar to the model proposed by
Mingaleev et al. [3], who generalized the original model of
Davydov [4,5] by incorporating long ranged electron-phonon
interactions. In their work Mingaleev et al. showed that at
zero temperature polarons can induce a spontaneous bend in
a straight chain if the bending modulus is less than a critical
threshold. Hence the bending can have many origins, and it
is important to see whether its origin is electric in nature
(i.e., induced by polarons) or due to some other (classical)
interactions. A careful examination of the model, however,
reveals that realistic polymers, e.g., DNA and polyacetylene,
are more rigid, having their bending modulus 2 and 20 times
above the threshold value, respectively. Therefore, although
interesting from a theoretical point of view, the spontaneous
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bending on polymers induced by polarons is limited in scope
when applied to physical systems. This does not imply that the
polaron induced bending is irrelevant and so can be neglected.
In fact it will always make a contribution, but for many
physical systems this contribution may not be dominant. The
folding free energies of single stranded DNA (ssDNA) hairpins
have been measured in single molecule experiments using the
optical traps [7,8]. The mechanism proposed here would alter
these free energies, accounting for extra stability. In other
words, the polaron is not a substitute for the binding between
nucleic acids, but rather a stable state that can facilitate the
formation of a hairpin when the nucleic acids are aligning
optimally.

However, in a recent paper [9] we showed that the
Mingaleev et al. model can explain spontaneous polaron
transport on a chain having a bending gradient, e.g., α helices
of light harvesting proteins. In this case, the bending of the
chain is generated by the natural folding of the protein, which
can induce a spontaneous polaron displacement. We showed
that for a polymer configuration with a preferred bend, the
polaron spontaneously accelerates along the bending gradient
and gets reflected across sharply kinked junctions. Further we
showed that at finite temperatures the polaron undergoes a
biased random walk to a region of high curvature.

While polarons are not able to induce spontaneous con-
formational transitions in DNA and polyacetylene, because
of their rigidity, they might sustain a folded configuration
that might have been formed by other means, e.g., thermal
fluctuations or mechanical stress. This is particularly true for
ssDNA, whose bending modulus is only twice as large as
the threshold value for spontaneous bending. This is what we
are investigating in detail in this paper, which is organized as
follows.

In Sec. II we review the Mingaleev et al. [3] model. In
Sec. III we study loop configurations in which the last two
nodes of the chains are held together by a polaron. We extend
this analysis in Sec. IV to study hairpin-loop configurations
for which the two opposite ends of the chain run parallel to
each other, while the loop links the parallel strands together.
Finally, we show that one can estimate analytically the value
of the parameters for which loops can be formed in Sec. V.
In Secs. VI and VII we look in some detail at loop and
hairpin-loop configurations for both single stranded DNA
and polyacetylene, and we show that the polarons in these
two systems are very stable and that they can facilitate the
formation of hairpin loops.
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II. MODEL

The model proposed by Mingaleev et al. [3] is described
by the Hamiltonian

H =
∑

n

[
M̂

2

(
d �Rn

dτ

)2

+ Ûn( �R) − 1

2
�|φn|4

+W

(
2|φn|2 −

∑
m�=n

Jnmφ∗
nφm

)]
, (1)

where �Rn describes the position of each chain node, M̂ is the
node mass, W is the linear excitation transfer energy, and � is
the nonlinear self-trapping interaction. The excitation transfer
coefficients Jn,m are of the form

Jn,m = J (| �Rn − �Rm|) = (eα − 1) e−α| �Rn− �Rm|/â, (2)

where α−1 sets the relative length scale over which the
interaction decreases, in units of â, where â is the rest distance
between two adjacent sites. The function Jn,m describes the
long range interaction between the electron field at different
lattice sites n and m; its value decreases exponentially with
the distance between them. Notice that when α is large
and | �Rn − �Rm| ≈ â, this corresponds to a nearest neighbor

interaction with Jn,m ≈ δn,m±1[1 + α(1 − | �Rn− �Rm|
â

)].
In our formulation of the model, the normalization of the

electron field is preserved, i.e.,∑
n

|φn|2 = 1. (3)

The phonon potential Ûn consists of three terms:

Ûn( �R) = σ̂

2
(| �Rn − �Rn−1| − â)2 + k̂

2

θ2
n

[1 − (θn/θmax)2]

+ δ̂

2

∑
m�=n

(d̂ − | �Rn − �Rm|)2	(d̂ − | �Rn − �Rm|), (4)

where the Heaviside function is defined as 	(x) = 1 for x > 1
and 	(x) = 0 for x < 1.

The first two terms in Ûn describe the elastic and the
bending energy of the chain, respectively. â is the equilibrium
separation between nodes, and θn is the angle between
�Rn − �Rn−1 and �Rn+1 − �Rn. Finally, θmax is the largest angle

allowed between adjacent links.
The term proportional to δ̂ in Ûn models hard-core repulsion

between the atoms of the chain. δ̂ should always be larger than
σ̂ , and d̂ will correspond to the minimum distance allowed
between nodes.

For convenience, the symbols denoted with a hat, e.g.,
M̂ , σ̂ , etc., correspond to physical variables carrying units
and dimensions, while those without it correspond to dimen-
sionless variables and parameters described below, except H ,
�, and W , which are dimensional quantities. We also use
the symbol �R for position of the nodes in physical units
and �r in dimensionless units. First, we define the time scale
τ0 = h̄�/W 2 and use the lattice spacing â as the length scale.
We can then define the dimensionless time t , position r , and

coupling constant g as

t = τ

τ0
, g = �

W
, �r =

�R
â

. (5)

In terms of these variables the Hamiltonian takes the form

H = W 2

�

∑
n

[
M

2

(
d�rn

dt

)2

+ Un(�r)

+ g

(
2|φn|2 −

∑
m�=n

Jnmφ∗
nφm

)
− g2

2
|φn|4

]
, (6)

where

Un(�r) = σ

2
(|�rn − �rn−1| − a)2 + k

2

θ2
n

[1 − (θn/θmax)2]

+ δ

2

∑
m�=n

(d − |�rn − �rm|)2	(d − |�rn − �rm|), (7)

with

M = M̂
â2W 2

h̄2�
, σ = σ̂

â2�

W 2
, δ = δ̂

â2�

W 2
,

k = k̂
�

W 2
, a = 1, d = d̂

â
. (8)

We emphasize that we are dealing with a coarse-grained model
of a polymer or biopolymer. Our model thus glosses over
details such as the exact chemical nature of the molecules in
question. However, as explained later, the parameter values
used in our study correspond to synthetic and biological
molecules and therefore should be amenable to detailed
atomistic simulations and experiments.

Writing �rn = (x1,n,x2,n,x3,n,), we can derive the equation
of motion for xi,n from the Hamiltonian (6):

M
d2xi,n

dt2
+ 


dxi,n

dt
+ F (t) +

∑
m

dUm

dxi,n

− g
∑

k

∑
m<k

dJkm

dxi,n

(φ∗
k φm + φ∗

mφk) = 0, (9)

i
dφn

dt
− 2φn +

∑
m�=n

Jnmφm + g|φn|2φn = 0,

where the force F (t) and the friction term 
 dxi,n/dt were
added by hand to incorporate thermal fluctuations and F (t)
was chosen as a δ correlated white noise satisfying

〈F (0)F (s)〉 = 2
kBT δ(s), (10)

where

kBT = k̂B T̂
Ŵ 2

�̂
= k̂B T̂ Ŵg. (11)

As the equation for xi is expressed in units of Ŵ 2/(�̂â), we
have 
 = 
̂â2/h̄. The friction coefficient 
̂ can be evaluated
from 
̂ ≈ 6πμR0, where μ = 0.001 Pa s for water and is up
to 4 times that value for the cytoplasm and R0 is the average
radius of a single molecule of the lattice. Notice also that the
electron field φn is coupled to the phonon field xi,n through the
function Jnm.
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In what follows we are primarily interested in stationary
configurations. To compute such solutions numerically we
chose an initial lattice configuration with a loop structure and
localized the electron so that it overlapped with both tails of
the loop. We achieved this by using an approximation for the
polaron electron field and distributing it over a few nodes
spread between the two ends of chain. In this way the polaron
was able to bind the loop extremities together. We then relaxed
the electron field, keeping the lattice configuration unchanged,
and then evolved the entire system with an absorption term
until it relaxed to a static configuration. This was achieved by
solving Eq. (9) without thermal noise.

In all our simulations we started from a very small value
of k, typically, k = 0.005, so that the lattice offered very
little resistance to bending. We then increased the value of
k in small increments using the relaxed conformation obtained
for the previous k value as the initial configuration. We then
equilibrated the system for the new value of k. By repeating
the procedure for each value of g we have determined the
critical value kcrit(g) up to which the given configuration can
be sustained by the polaron.

Unless otherwise stated, we have used the following
parameter values: δ = 10000, σ = 1000, and M = 0.5. For
stationary solutions the mass term does not affect the results,
and δ was chosen so that the repulsion potential is close to that
of a hard shell. Finally, for all the computed configurations,
nothing prevents the nodes from being very close to their
equilibrium distance, and hence we have selected a relatively
large value for σ to approximate stiff cross-node links.
Following Mingaleev et al., we have also considered mainly
the case α = 2 and d = 0.6. Finally, we have also considered
the effect of varying the values of these two parameters.

To solve Eq. (9) we used a fourth-order Runge-Kutta
method with a time step dt = 0.0001 in dimensionless units.
To compute static configurations, we took T = 0, i.e., no
thermal noise, setting 
 = 1 and then integrating Eq. (9) until
the system relaxed to a stationary solution.

To study the thermal stability of the configurations for DNA
and polyacetylene, we solved Eq. (9), taking T = 300 K and
estimated 
 from the radius of the molecules as described
above. For those simulations we started from the static
configuration for which we wanted to evaluate the stability
and let the system thermalize itself. The time needed for this
thermalization was always orders of magnitude smaller than
the average lifetime of the configurations we considered, and
so we did not need to resort to a sophisticated thermalization
procedure as we did in [9].

III. PLAIN-LOOP CONFIGURATIONS

Our first investigation involved considering simple-loop
configurations for which all the nodes lie more or less on a
circle with the two end points close to each other (separated by
a distance d). When k is very small, the favored configuration
is one similar to the one presented in Fig. 1(a). In Fig. 1(a), the
electron probability density is represented by the color of the
node. A dark color corresponds to a null value, while a light
color corresponds to a higher probability density. The node at
which the polaron field has its maximum value is close to the
last two points at the opposite ends of the chain. This allows
the electron field to be distributed on two nearby nodes rather
than a single one, and as k is small, the deformation of the
chain does not prevent this from taking place. As k increases,
such a localization becomes energetically expensive, and the
configuration assumes the shape of a horseshoe, as presented
in Figs. 1(b) and 1(c). As one increases k further, there is
a point at which the stretching energy is too large, and the
polaron is not able to sustain the loop anymore.

The difference between Figs. 1(b) and 1(c) is that in the
former the electron is localized equally on the two end nodes,
while in the latter it is localized mostly on a single node. The
difference is dictated by the value of g: for small g, the polaron
is wide, and the electron spreads itself nearly equally between
the two end points of the chain [Fig 1(b)]. As g increases,
the polaron becomes more localized and the electron becomes
localized, more asymmetrically, on a single node [Fig. 1(c)].

The critical value of k as a function of g is presented in
Fig. 2(a) for loops consisting of 9 to 14 nodes. It is interesting
to note that when g is small, the critical value of k is small.
This can be explained by the fact that the coupling parameter
g is small and also by the fact that the polaron is delocalized
and hence the fraction of the electron close to the end point is
smaller than for larger values of g. The maximum value of kcrit

is reached for g ≈ 5. For very large values of g, the electron is
nearly fully localized on a single lattice point, but the attraction
exerted by the polaron surprisingly decreases very slowly.

Having followed [3] and taken the values α = 2 and d = 0.6
for the results presented so far, it is worth checking how these
two parameters affect the results that we have obtained. We
started by varying α, which controls, through Jn,m, how fast the
coupling between nodes decreases with the distance separating
them. The results are presented in Fig. 2(b), where we see that
kcrit, contrary to what one might expect, increases with α. This
is easily explained: having chosen d = 0.6, increasing α not
only reduces the long distance interaction between nodes but

(a) (b) (c)

FIG. 1. (Color online) Loop configuration for N = 9 nodes for (a) g = 2.5, k = 0.5, |φ0|2 = 0.407, |φ8|2 = 0.221, |φ7|2 = 0.249,
(b) g = 2.5 k = 4, |φ0|2 = |φ8|2 = 0.397, and (c) g = 5 k = 5, |φ0|2 = 0.642, |φ8|2 = 0.272.
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FIG. 2. (Color online) Critical value of k for the existence of a loop configuration. (a) α = 2 and N = 9 to 14 nodes. (b) N = 9 nodes,
α = 1,1.5,2,25,3, and d = 0.6. (c) N = 11 nodes, d = 0.6,0.75,1, and α = 2.

also increases exponentially the binding energy of nodes that
are very close to each other. The binding energy of the end
nodes, which are separated by a distance d < 1, thus increases
with α. For this reason, we have decided to take d = a = 1
when we consider single stranded DNA and polyacetylene
later in the paper.

In Fig. 2(c) we show how the critical value of k varies
with d. As the parameter d sets the minimal distance allowed
between two nodes and given that Jn,m decreases with the
distance between nodes, it is not surprising that kcrit decreases
when d becomes larger, but loop configurations can still be
held by the polaron.

IV. HAIRPIN-LOOP CONFIGURATIONS

Now we consider a hairpin-loop configuration as presented
in Fig. 3, which is similar to the structure that single stranded
DNA can form and which is potentially more relevant to
long chains. As for the plain loops, we generated these
configurations for a small k and then slowly increased its
value until the number of links L making the loop increased
by one unit. This gave us the critical value kcrit for which the
hairpin-loop configuration of a given size can be sustained by
the polaron.

The results are presented in Fig. 4, where we can see a sharp
transition around g = 10. Below this value the hairpin loops
are only viable for relatively small values of k, but above it,
they are sustainable for much more rigid chains. This is due
to the fact that for small values of g, the polaron is always
distributed over the handle of the hairpin loop, while when
g > 10, it is localized mostly on one lattice site, at the base of
the loop. In that case the interaction is stronger and supports
loops for larger values of k.

To make sure this was not an artifact of our procedure,
we have tried to construct solutions using various initial

(a) (b)

FIG. 3. (Color online) Hairpin-loop configuration for N = 18
nodes. The brightness of the nodes is proportional to |φ|2. (a) g = 1.5
and k = 0.5 (max |φ|2 = 0.188) and (b) g = 11 and k = 10 (max
|φ|2 = 0.887).

conditions. We also used solutions obtained for g > 10 as
initial conditions and then slowly decreased the value of g.
Regardless of the procedure we used, we always obtained the
curve of Fig. 3(a). As expected, the configurations of Fig. 3
are harder to sustain than a simple loop as the chain needs to
be bent near the stem of the hairpin loop.

V. ANALYTIC APPROXIMATION

Having computed numerically the critical value kcrit(g) for
which the polaron is able to sustain a loop of a given size,
we now try to estimate this value analytically. To do this, we
consider a circular configuration of radius R made out of N

segments, with one segment of length b and N − 1 segments
of length a, as depicted in Fig. 5. Note that the two nodes
separated by the distance b are not linked to each other. If ξ

and μ are the angles opposite a and b, respectively, we have

(n − 1)ξ + μ = 2π, sin

(
ξ

2

)
= a

2R
, sin

(
μ

2

)
= b

2R
,

(12)

so

sin

(
ξ

2

)
= a

b
sin

(μ

2

)
= a

b
sin

(
(n − 1)ξ

2

)
. (13)

Choosing specific values a = 1, b = b0, this transcendental
equation can be solved numerically to obtain the corresponding
value ξ = ξ0. We can then perform a first order expansions
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FIG. 4. (Color online) Critical value of k for the existence of a
hairpin-loop configuration. (a) α = 2 and N = 7 to 11 node loops.
(b) N = 9 nodes and α = 1,1.5,2,2.5,3.
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a

R

μ

b

ξ

FIG. 5. Schematic representation of a polymer loop with N nodes.
N − 1 bonds with rest distance a subtend an angle ξ at the center.
The two end nodes, on which the electron is localized, are separated
by a distance b and span an angle μ at the center.

around this solution, b = b0 + δb,ξ = ξ0 + δξ , and we obtain

δξ = sin
(

ξ

2

)
N−1

4 cos
[
(N − 1) ξ

2

] − b0
4 cos

(
ξ

2

)δb. (14)

To determine the critical values of g and k for which a loop
configuration can exist, we have to minimize the Hamiltonian
and, for each value of g and b, determine the value of k for
which this Hamiltonian has a minimum. For each g, we then
select the value of b for which k is the largest.

Let us assume that the loop is symmetric, so that the N − 2
bending terms are all identical and are functions of ξ . The
elastic terms are then also equal, but as they do not depend on ξ ,
they are constant and can thus be ignored for the minimization.
The repulsion term proportional to δ can also be ignored if
b > d. When b < d, the repulsion term leads to a very large
energy increase, and we can thus consider that b = d is the
smallest value we should consider.

To evaluate the electron field, we take the continuum limit
of Eq. (9) for stationary solutions:

d2φc

dx2
+ ĝ|φc|2φc − λφc = 0, (15)

which is the well-known nonlinear Schrödinger equation,
where ĝ = g/(1 − e−α) and which admits the following
solution:

φc(x) =
√

ĝ

8
cosh

(
ĝx

4

)
. (16)

Note that
∫ |φ(x)|2dx = 1 and λ = −ĝ2/16. From the numer-

ical solutions, we know that the wave function is centered
on one of the two end lattice points, and we can thus take
φ0 = φc(0) and φN−1 = φc(b0).

The Hamiltonian can then be approximated by the following
function of b0 and ξ0:

H ≈ −2 g (eα − 1)e−αb0/aφ0φN−1 + k

2

(N − 2)ξ 2
0[

1 − (
ξ0

θmax

)2] .

(17)
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FIG. 6. (Color online) Theoretical estimation of the critical value
of k for the existence of a loop configuration as a function of α

and N . (a) α = 2 and N = 9 to 14 nodes. (b) N = 9 nodes and
α = 1,1.5,2,25,3.

Next we compute the variation of H with respect to b and
ξ :

δH = 2gαφ0φN−1(eα − 1)e−αb0δb

+ k(N − 2)ξ0[
1 − (

ξ0

θmax

)2]
[

1 − ξ 2
0

(
1 − 1

θ2
max

)]
δξ. (18)

Using Eq. (14) and imposing δH = 0, we get the condition

kcrit = g

D
φ0φN−1, (19)

where

D = 1

2α(eα − 1)e−αb0

(N − 2)ξ0[
1 − (

ξ0

θmax

)2]
[

1 − ξ 2
0

(
1 − 1

θ2
max

)]

× −4 sin
(

ξ0

2

)
(N − 1) cos

[
(N − 1) ξ0

2

] − b0 cos
(

ξ0

2

) , (20)

which depends on g but not on k. From Eqs. (19) and (20) it
is clear that kcrit increases as b0 decreases, and so we have to
choose the smallest possible value for b0, i.e., b0 = d.

Taking a = 1, b0 = d = 0.6, we can solve Eq. (13) to
obtain the values of ξ0 listed in Table I, which we can use to
estimate kcrit. The results are presented in Fig. 6, from which
we see that our evaluation reproduces the gross features of
the results obtained numerically (Fig. 4): kcrit is small when
g is very small and increases with g until a maximum is
reached. Then, as g increases further, kcrit slowly decreases.
The maximum value obtained for kcrit is slightly smaller than
the numerical value obtained before. The biggest discrepancy
between the numerical and analytic results is for large g, but
this is to be expected as this is the limit where the polaron
is strongly localized and so is less well approximated by
Eq. (16).

VI. SINGLE STRANDED DNA

Having considered the Mingaleev et al. polaron model
in general, we now consider two explicit cases: ssDNA and
polyacetylene, both of which have parameters allowing the
polaron to sustain loops. Hairpins structures and cruciforms
of ssDNA, as well as the similar RNA, play an important role
in biological processes such as regulation of transcription.
[10–12].
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TABLE I. Value of ξ0 for various numbers of nodes N .

N

9 10 11 12 13 14

ξ0 0.731341 0.654972 0.593071 0.541875 0.498824 0.462115

The parameters of our model were obtained from several
sources. First of all, k̂ can be determined from the flexural
rigidity, k̂ = λk̂BT̂ /R0, where R0 is the radius of the DNA
strand. We do not have experimental values of δ̂, but its actual
value does not play an important role except that it must be
large enough to mimic a hard-shell repulsion. In practice, we
chose a value larger than σ̂ .

For single stranded DNA we have R0 ≈ 0.33 nm [13], � ≈
0.4 eV, W ≈ 0.3 eV [3], k̂ ≈ 0.11 eV [13], and σ̂ ≈ 1.5 eV/A2

[14]. This leads to the following dimensionless values:

g ≈ 1.33, σ ≈ 72.51, k ≈ 0.487, M ≈ 2.5 × 105,

kBT = ˆkBT
�̂

Ŵ 2
≈ 0.115, 
 ≈ 3210, τ0 ≈ 2.92 × 10−15 s

We thus see that single stranded DNA sits at the bottom
left region of Figs. 2, 4, and 6. For our simulations, we have
chosen α = 2, δ = 100, and d = 1; the latter parameter was
taken as the worst case we could consider. We then found
that DNA can easily sustain loops of 10 segments and hairpin
loops with 11 segments. We then studied the thermal stability
of the configurations that we have obtained at T = 300 K. To
achieve this, we started from a static configuration that we had
obtained for DNA. The energies of the loop configurations
were as follows: E = −0.04 eV (N = 9), E = −0.225 eV
(N = 10), and E = −0.32 eV (N = 11). We thus see that the
binding energy of the N = 9 loops has a binding energy of the
order of kBT , and we thus expect it to be relatively unstable.
For N = 10 and 11, the binding energy is larger, and we thus
expect these configurations to be much more stable.

We then solved Eq. (9), including the thermal noise, and
ran 100 simulations for an extended period of time. We started
by running 100 simulations for a loop made out of 10 nodes,
and we measured an average unfolding time of 1 ns. We also
observed that a loop made out of 11 nodes is much more
stable and experiences a very slow unfolding of the loop with
an average decay time of approximately 1 μs, a time scale that
is relatively long from a biomolecular point of view.

We have also performed thermal simulations for a hairpin-
loop configuration of 18 nodes and L = 11 and did not observe
a single unfolding of the chain in 20 μs. As the integration time
step was approximately 3 × 10−17 s this required 100 simul-
taneous simulations each performing around 1010 integration
steps, and we decided not to run it any longer as the stability
of the loop was sufficiently well established.

Under thermal noise, the stem, made out of the two parallel
ends of the chain, deforms itself, and the chain takes the shape
of a loop where the polaron links the two opposite ends of the
chain around a couple of nodes, as presented in Fig. 7. In our
simulations we observed that as the polaron moves along the
chain, the size of the loop that it formed fluctuated constantly
in time but it never unfolded. We can thus conclude that the
DNA polarons loops are very stable.

This loop configuration could play an important role in the
formation of single stranded DNA hairpin loops in vivo. The
formation of such configurations depends on the likelihood
of complementary DNA bases to face each other before
they can bind by hydrogen bonding, and this likelihood
decreases rapidly as the length of the chain increases [15] and
partially matching DNA base sequences are less stable than
perfectly matched ones [16]. While homogeneous sequences
of DNA bases can bind quite rapidly, such as the one used
in [15] and [16], for example, irregular sequences, such as
ATGCAGTC. . .GACTGCAT are less likely to match purely
randomly. As the polaron folds the ssDNA into a loop and
moves along the chain, the DNA bases on the opposite
segments of the loop slide relative to each other, under the
action of thermal excitation, increasing the probability for a
complementary sequence of bases to face each other and bind.
In vitro, the reaction time of hairpin loops has been determined
to be several microseconds [15], a length of time that, as we
have shown, a DNA polaron can outlive easily. Hence, we can
conclude that DNA polarons can increase the rate of formation
of hairpin loops.

In our model, we have not taken into account the effect of
water on the polaron. Recent studies [17,18] have suggested
that its effect would be to reduce the polaron size, which, as
can be seen from Eq. (16), corresponds to increasing the value
of g. The net effect would thus be to move DNA to a parameter
region where the polaron is stronger, as can be seen in Figs. 2
and 4. As a result the polaron would then be able to sustain
smaller loops.

VII. POLYACETYLENE

For polyacetylene, the physical value of the parameters
are given by R0 ≈ 0.24 nm, W ≈ 2.5 eV, � ≈ 6.4 eV,

FIG. 7. (Color online) Thermalized, T = 300 K, hairpin-loop
DNA configuration for N = 18 nodes. The sizes of the disks are an
exaggerated indication of their depth in the direction transverse to the
plane of view. (The two nodes close to the crossing point are separated
by the same distance as two neighbor points.) The brightness of the
nodes is proportional to |φ|2.
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σ̂ ≈ 21 eV/A2 [19], and k̂ ≈ 3.7 eV [20], and so

g ≈ 2.56, σ ≈ 128, k ≈ 3.79, M ≈ 3.2 × 104,

kBT ≈ 0.026, 
 ≈ 1316, τ0 ≈ 6.74 × 10−16 s.

Once again, we took d = 1 and α = 2 to avoid the potentially
spurious effects induced at close distance by Jn,m. In this case,
we were able to make loops out of 12 nodes and hairpin loops
of 12 nodes too.

Under thermal fluctuation, both were very stable. In this
case, the integration time step was approximately 7 × 10−18 s,
and our attempt to evaluate the configuration average lifetime
was achieved by running 100 simultaneous each performing
over 1010 integration steps; we did not observe a single
unfolding of the chain in 13 μs. We also ran simulations for
a hairpin-loop configuration of N = 18 nodes and L = 12
and also did not observe a single unfolding of the chain in over
10 μs. This is not surprising as the energy of that configuration
was E = −2.53 eV.

VIII. CONCLUSIONS

In this paper we have studied the possibility of a polaron
to sustain loops and hairpin-loop configurations. In these
configurations the polaron was localized over lattice nodes that
were well separated along the chain backbone but spatially
close to each other because of the bending of the chain.
The polaron then acted as a linker between the two regions
of the chain and so could sustain the loop configuration if
the chain was not too rigid. The Mingaleev et al. model
we have used to describe this property takes into account

the long distance interactions between the electron and the
phonon field, with a strength decreasing with the distance.
For the configurations we have studied, the most important
contribution comes from lattice nodes that are spatially close to
each other, and the energy contribution from the next to nearest
neighbor is not essential, unlike in our study of spontaneous
polaron displacements [9], where the next to nearest neighbor
terms were essential for the polaron to move along the bending
gradient of the chain.

We have determined the critical value of the chain rigidity
kcrit as a function of the polaron coupling constant g, and we
have shown that polarons are able to sustain relatively small
loops for a wide range of parameters values. We have then
shown that both DNA and polyacetylene are flexible enough
for a polaron to sustain hairpin-loop configurations. Moreover,
we have also shown that these hairpin-loop configurations are
very stable under thermal excitations, with average lifetimes
exceeding 10 μs, and that they can facilitate the formation of
hairpin loops of single stranded DNA. At present we are not
aware of any experimental work in this direction and hope that
our work will spark some interest among experimentalists.
We believe that polaron formation and polaronic mode of
transport can be picked up by Raman spectroscopic studies.
Further, we hope that quantum mechanical calculations of
hairpin formation incorporating polarons might help narrow
down the parameter range where such phenomena might be
observed.
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