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Advection, diffusion, and delivery over a network
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Many biological, geophysical, and technological systems involve the transport of a resource over a network.
In this paper, we present an efficient method for calculating the exact quantity of the resource in each part of
an arbitrary network, where the resource is lost or delivered out of the network at a given rate, while being
subject to advection and diffusion. The key conceptual step is to partition the resource into material that does
or does not reach a node over a given time step. As an example application, we consider resource allocation
within fungal networks, and analyze the spatial distribution of the resource that emerges as such networks grow
over time. Fungal growth involves the expansion of fluid filled vessels, and such growth necessarily involves
the movement of fluid. We develop a model of delivery in growing fungal networks, and find good empirical
agreement between our model and experimental data gathered using radio-labeled tracers. Our results lead us to
suggest that in foraging fungi, growth-induced mass flow is sufficient to account for long-distance transport, if
the system is well insulated. We conclude that active transport mechanisms may only be required at the very end
of the transport pathway, near the growing tips.
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I. INTRODUCTION

Many biological, geophysical, and technological systems
involve the transport of material over a network by advection
and diffusion [1–5]. Indeed, fluid transport systems are
found in the vast majority of multicellular organisms, as
the component cells of such organisms require resources for
metabolism and growth, and diffusion alone is only an effective
means of exchange at microscopic length scales [6]. Molecules
of interest are carried by advection and diffusion through the
mycelial networks of fungi [7,8], the cardiovascular networks
of animals [5,9–16], the xylem and phloem elements of
tracheophytes (vascular plants) [17–21], and various body
cavities of many different animals. Advection and diffusion are
also fundamental to transport in geological and technological
systems, such as rivers and drainage networks [22], gas
pipelines, sewer systems, and ventilation systems [9,23].

In all of these cases, the particles of interest diffuse
within a moving fluid, which is constrained to flow within
a given network. The bulk movement of fluid is referred to
as advection, convection, or mass flow, and in general the
fluid in question travels with a mean velocity that varies
significantly from one part of the network to another. For
example, the velocity of human blood drops from 1 m s−1 in
the aorta to around 1 mm s−1 in the capillaries [24,25]. Digital
imaging technologies have enabled scientists to obtain detailed
knowledge of the structure of vascular networks [26], and
given a network and a distribution of velocities, we may wish
to calculate how an initial distribution of a resource changes
over time. That is the general problem that our method is
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designed to solve, whether we are considering nutrients in a
fungal network [7,8], pollutants in a drainage network [2–4],
or drugs in the cardiovascular system [9–15].

The translocation of a resource within fungal networks
is much less well studied than transport in the other major
multicellular kingdoms of life, but the ability of fungal colonies
to translocate resources is a critical feature of many ecosystems
[27–29]. The relative roles of mass flow (advection), diffusion,
and active transport are very poorly understood. Fungal
systems have the benefit that the network is accessible, so
development can be readily followed through a time series of
images [30–32] and resource distribution can be mapped using
scintillation imaging techniques [32–35]. In this paper, we
consider the particular case of modeling the translocation of the
14C-labeled amino-acid analog, α aminoisobutyric acid (AIB),
in a fungal network, where new edges in the network grow
over time, edges disappear through a process of autophagy
(self-eating), and edges thicken or thin over time.

Our modeling approach is to suppose that resources are
consumed or delivered out of the network at a given local
rate, while the resource that remains in the network moves
by advection and diffusion. In the general case, we suppose
that there is perfect mixing at the nodes, and each edge ij in a
network has a local delivery rate Rij , a cross-sectional area Sij ,
a length lij , a mean velocity of fluid flow uij , and a dispersion
coefficient Dij . The local delivery rate Rij represents the
probability per unit time that any given unit of resource will
be consumed, lost, or delivered out of the network. Koplik
et al. [36] describe an effective method for calculating the
exact moments of the transit times for a neutral tracer across
an arbitrary network that contains a flowing medium, but which
initially contains no tracer. We have advanced their methods
to handle arbitrary initial conditions, noting that over any time
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step, the resource in a given edge either reaches one of the
nodes at either end of the edge, or it remains within the given
edge. Fick’s law and the conservation of resources relates the
quantity of material passing through each of the nodes, and
these principles have enabled us to formulate a mixed method
that couples a network-based method with a partial differential
equation (PDE) for each individual edge.

The outline of this paper is as follows: Preliminary assump-
tions and the fundamental equations governing advection,
diffusion, and delivery are discussed (Secs. II A and II B).
We then outline possible methods for numerically solving
such a system of equations (Sec. II C), before describing our
preferred approach. By applying the Laplace transform, we
identify the solution of the fundamental equation governing a
single edge in the case of zero initial conditions (Sec. III A),
and this method of solution is then applied to a network
with multiple edges (Sec. III B). We then consider the case
of nonzero initial conditions (Secs. IV A and IV B), and use
that analysis to develop an algorithm for updating the exact
quantity of the resource in each segment of a network as these
quantities vary over time, subject to advection, diffusion, and
local resource delivery (see Sec. V). A more detailed analysis
of this method of solution is presented in the Supplemental
Material [37], where we also describe the Gaver-Stehfest
algorithm for inverting our solutions from Laplace space into
the time domain.

In Sec. VI, we note that fungal growth involves changes in
volume which requires the movement of fluid. For example,
the cytoplasm in a growing hyphal tube moves forward with
the growing tip [38], and as aqueous fluids are effectively
incompressible, growth requires the net movement of fluid
from the sites of water uptake to the sites of growth [30].
Moreover, given both the relative conductance and the volu-
metric rate of growth of different parts of a fungal network,
we can calculate a unique set of currents which are consistent
with the observed growth, and which also minimize the work
required to overcome viscous drag. Given this set of currents,
the molecular diffusion coefficient of the tracers, and the rate
at which they are delivered out of the transport pathway, we
can employ the algorithm described in Sec. V to calculate the
expected concentration of tracers in each part of the network
over time. We found good empirical agreement between our
model and experimental data gathered using radio-labeled
tracers, which suggests that in foraging fungi, growth-induced
mass flow is sufficient to account for most long-distance
transport.

II. FURTHER DETAILS

A. Preliminary assumptions

We are interested in calculating the distribution of a
resource across a network of tubes, where the resource in
question has a molecular diffusion coefficient Dm, and where
we are given four essential properties for each edge in the
network (see Fig. 1). The edge connecting nodes i and j has
the following:

(1) a cross-sectional area, denoted Sij .
(2) a length, denoted lij . As the location of the nodes does

not vary over time, lij is constant.

i j

uij S ij

lij

(t) 

ijR

FIG. 1. Properties of a single edge in a resource distribution
network. Sij denotes the cross-sectional area of edge ij at time t ,
lij denotes the length of the edge, the resource and medium flows
along the edge with a mean velocity uij , and the resource is delivered
out of the network at a rate Rij . Note that the resource travels along
each edge (and into other edges) by advection and diffusion, but the
total rate at which the resource in the edge is delivered out of the
network is simply Rij times the quantity of the resource present in
the edge. Also note that we do not need to assume that the edges in
our network are straight, but we do assume that a single length scale
lij captures the distance that the particles must travel to move from i

to j .

(3) a mean velocity, denoted uij . This represents the mean
velocity of the fluid in the edge, and we say that uij is positive
if and only if the current flows from node i to node j (so
uij = −uji).

(4) Finally, we suppose that the resource in edge ij is
delivered out of the network at a rate Rij , so if a particle
is in ij for a short period of time �t , then the probability that
it is delivered out of the network in that time is Rij�t .

As we are interested in quantifying motion along the length
of the edge ij , we represent each edge as a one-dimensional
object, while each node is represented as a point. The term
uij tells us the mean speed at which particles travel from node
i towards node j , but while there is a global value for the
molecular diffusion coefficient Dm, the dispersion coefficient
Dij may be different for each edge. That is because the value
of Dij captures the tendency of adjacent particles to spread out
along the length ij . This number may differ from the diffusion
coefficient in one dimension because particles not only diffuse
along the length of the transport vessels that comprise the
edge ij , but they also spread out because they can diffuse
between the slow moving fluid by the edge of the vessels and
the relatively fast moving fluid in the center of each vessel.

If we consider the case where each edge ij is composed of
some number of cylindrical tubes of radius rij (see Fig. 2), and
if the Reynold’s number is small, then we can calculate Dij

by using Taylor’s dispersion coefficient for laminar flow in a
cylindrical tube [39]. This formula tells us that

Dij = Dm + u2
ij

r2
ij

48Dm

. (1)

In the case of a mammalian vascular network, rij is simply
the lumen radius of the edge ij . In other networks, including
fungal networks, each edge can be modeled as a bundle of
cylindrical tubes, in which case rij is the characteristic radius
of the component transport vessels and Sij is the total cross-
sectional area of the transport vessels.
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FIG. 2. Properties of an arbitrary resource distribution network.
Each edge in the network is comprised of a single vessel or a bundle of
transport vessels, and each edge has a length lij , a total cross-sectional
area Sij , a mean velocity of flow uij , and a local delivery rate Rij .
Each edge also has a dispersion coefficient Dij , as described by
Eq. (1). Note that the values of Dij depend on the molecular diffusion
coefficient Dm, the velocities uij , and the radius of the transport
vessels within the edge ij . The nodes represent the point of contact
between the edges: we assume that there is perfect mixing at each
node, and we require a consistent concentration at node i, whether
we consider it to be one end of edge ij or one end of any other edge
connected to node i.

B. Fundamental equations

We suppose that the resource is delivered to cells while it
moves across the network by advection and diffusion, resulting
in changing concentrations at every point. We will only
consider longitudinal coordinates along the edge ij , using real
numbers x to denote distances from node i, where 0 � x � lij .
Each edge contains a quantity of resource, which must satisfy
the one-dimensional advection-diffusion-delivery equation

∂qij

∂t
+ Rijqij + uij

∂qij

∂x
− Dij

∂2qij

∂x2
= 0, (2)

where qij is the quantity of resource per unit length, uij

is the mean velocity, Dij is the dispersion coefficient, and Rij is
the rate at which a unit of resource is lost or delivered out of the
network. In other words, at time t and location x, the amount of
the resource in a �x long slice of the edge is qij (x,t)�x. The
distribution of the resource within each edge will vary over
space and time, but if there is no direct link between the nodes
i and j , then we let Sij = 0 and qij (x,t) = 0 to indicate the
absence of an edge. This ensures that the sums in the following
equations are properly defined for all pairs of nodes i and j .

Crucially, the concentration at node i must be consistent
across the edges ij , ik, etc., and we let ci(t) denote the
concentration at node i at time t (amount of resource per unit
volume). For each edge ij , node i is located at point x = 0
and node j is located at point x = lij , so where Sij denotes the
cross-sectional area of edge ij , we have

ci(t) = qij (0,t)

Sij

and cj (t) = qij (lij ,t)

Sij

. (3)

We also assume that there is perfect mixing at the nodes, and
that the nodes have an infinitesimal volume. In other words,
the edge ij is only affected by the rest of the network via the
concentrations at nodes i and j .

It follows from our assumptions that the concentration
profile in edge ij is completely determined by Eq. (2) together
with the initial condition qij (x,0) and the boundary conditions
Sij ci(t) and Sij cj (t). By Fick’s law, the rate at which a resource

leaves node i along edge ij is given by

Jij (t) =
[
uijqij (x,t) − Dij

∂qij (x,t)

∂x

]
x=0

. (4)

Our framework can accommodate the case where a resource
is introduced at node i at some given rate Ii(t) > 0. If node i

is not an inlet node (that is, a point where the resource enters
the network), then the quantity of the resource entering node
i is equal to the quantity of the resource leaving node i, so we
have Ii(t) = 0. In either case, Eq. (4) implies that the net rate
at which the resource leaves node i is

Ii(t) =
∑

j

[
uijqij (x,t) − Dij

∂qij (x,t)

∂x

]
x=0

. (5)

Note that we may be concerned with both the quantity of the
resource and the quantity of fluid that passes a given point per
unit of time. Henceforth the term current is reserved for the
quantity of a resource that passes a given point per unit of time,
while medium current refers to the volume of the advecting
medium that passes a given point per unit of time: a quantity
described by the term Sijuij .

C. Alternative methods

Given a network and a system of equations of the form
of Eq. (2), there are several methods that could be used
to find the solution. We could generate an estimate of the
solution by taking a particle-based approach, where a large
number of particles move across the network and the path
taken by each particle is determined probabilistically, as is
the time taken to travel from one node to the next [4]. The
problem with such particle-based approaches is the challenge
of avoiding undersampling in the regions of the network that
contain a low concentration of a resource. This problem occurs
because, in a finite simulation, the low probability paths are
of course less well sampled, but the fact that such regions
are part of the network may exert a significant effect on the
movement of the resource, particularly on the higher moments
of the transit times for particles moving across the network
[36,40,41]. Indeed, that is why the dispersion of tracers can
be used to probe the structure of networks, and why tracer
dispersion plays such a critical role in geophysical surveying
techniques [3,4].

Another possible approach is to employ a finite difference
scheme. However, in a network where the transport velocities
vary over several orders of magnitude, the straightforward
applications of such an approach are not efficient. The problem
is that the time scale for updating the concentrations is
essentially determined by the fastest edge; for stability, the
distance traveled by advection per time step must be smaller
than the spatial resolution (i.e., the Courant number must be
less than one). Using such a small time step may be very
inefficient in the slower moving regions of the network [42,43].

III. ADVECTION, DIFFUSION, AND DELIVERY
IN LAPLACE SPACE

Given our system of fundamental equations, we want to find
the quantity of the resource throughout the network, which
may vary over time. It is convenient to follow the approach
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of [36], which entails the application of the Laplace transform.
This operation convolves the different time scales over which
the resource may move from one node to another, so it is
an efficient way to handle the wide range of velocities our
network may contain. In particular, we take advantage of the
following properties of the Laplace transform L(qij (x,t)) =∫ ∞

0 qij (x,t)e−st dt = Qij (x,s):

L
(

∂qij (x,t)

∂t

)
= sQij (x,s) − qij (x,0), (6)

L
(

∂qij (x,t)

∂x

)
= ∂

∂x
Qij (x,s). (7)

If uij and Dij are constant over time, then it follows from
Eq. (2) that

(s + Rij )Qij + uij

∂Qij

∂x
− Dij

∂2Qij

∂x2
= qij (x,0). (8)

Furthermore, Eqs. (5)–(7) imply that

ϒi(s) =
∑

j

[
uijQij (x,s) − Dij

∂

∂x
Qij (x,s)

]
x=0

, (9)

where ϒi(s) denotes the Laplace transform of Ii(t), the net
current flowing out of node i.

A. Zero initial conditions in an edge

We begin by considering an initially empty edge, before
extending our results to the more complex case of nonzero
initial conditions. We let qij (x,0) = 0, and consider the
homogeneous case for Eq. (8):

(s + Rij )Qij + uij

∂Qij

∂x
− Dij

∂2Qij

∂x2
= 0. (10)

By solving this ordinary differential equation (ODE) in the
usual manner, we find that for some pair of constants A and B,

Qij (x,s) = Ae
uij +αij (s)

2Dij
x + Be

uij −αij (s)

2Dij
x
, (11)

where

αij (s) =
√

u2
ij + 4Dij (s + Rij ). (12)

Note that the Laplace variable s represents a rate, and that
αij (s) = αji(s) is positive, and dimensionally equivalent to
speed. Roughly speaking, αij (s) represents the speed at which
a resource travels over the time scale 1/s, with a correction
term to account for delivery.

Equation (11) tells us that for any positive number s, we
can find A and B and express Qij (x,s) in terms of the quantity
of the resource at either end of the edge. For any given s, we
denote the quantity of the resource at the ends of each edge by

Xij (s) ≡ Qij (0,s),
(13)

Xji(s) ≡ Qji(0,s) = Qij (lij ,s).

For each edge ij , it is convenient to define two, dimensionless
ratios between time scales:

gij = uij lij

2Dij

and hij (s) = αij (s)lij
2Dij

. (14)

Setting x = 0 and x = lij tells us that

Xij = A + B,
(15)

Xji = Ae(gij +hij ) + Be(gij −hij ).

A, B, Xij , Xji , αij , and hij are all functions of the Laplace
variable s, but this dependence is omitted for the sake of clarity,
and we omit the subscript ij from the terms gij , hij , and lij .
Equation (15) tells us that

Ae(g+h) + (Xij − A)e(g−h) = Xji,

so

A = Xjie
−g − Xij e

−h

2 sinh(h)
, (16)

and likewise

B = Xij e
h − Xjie

−g

2 sinh(h)
. (17)

Assuming that edge ij is initially empty, we can find
Qij (x,s) by substituting Eqs. (14), (16), and (17) into Eq. (11),
giving us

Qij (x,s) = Xij

sinh
(

l−x
l

h
)

sinh(h)
e

x
l
g

+Xji

sinh
(

x
l
h
)

sinh(h)
e

x−l
l

g. (18)

B. Advection, diffusion, and delivery in an
initially empty, static network

Having examined the case of a single edge, we now turn to
the problem of coupling the edges of a network such that the
concentrations vary continuously as we move from one edge
to another. For each node i, we have Ci(s) = ∫ ∞

0 ci(t)e−st dt .
Assuming that the cross-sectional areas Sij are constant,
Eqs. (3) and (13) imply that for all edges ij we have

Ci(s) = Xij (s)

Sij

and Cj (s) = Xji(s)

Sij

. (19)

The enforcement of this equation ensures that the Laplace
transform of the concentration at node i is consistent for
all edges ij , ik, and so on. In general, we may not
know the Laplace transform of the node concentrations
C̄(s) = {C1(s), . . . ,Cm(s)}, where m is the number of nodes.
However, given Ī (t) = {I1(t), . . . ,Im(t)} (the net current of
the resource leaving each node), we can calculate ϒ̄(s) =
{ϒ1(s), . . . ,ϒm(s)} (the Laplace transform of Ī ), and, in the
following manner, calculate C̄(s). Substituting Eq. (11) into
Eq. (9) tells us that

ϒi(s) =
∑

j

αij (s)

2
(B − A) + uij

2
(A + B).

Equations (14) and (15) imply that A + B = Xij , and

B − A = 1

2 sinh[hij (s)]
[Xij e

hij (s) − Xjie
−gij

−Xjie
−gij + Xij e

−hij (s)],
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so we have

ϒi(s) =
∑

j

(
αij (s)

2 sinh[hij (s)]
{Xij cosh[hij (s)]

−Xjie
−gij } + uij

2
Xij

)
. (20)

Equations (19) and (20) imply that

ϒi(s) =
∑

j

(
Ci(s)Sij

{
uij

2
+ αij (s)

2 tanh[hij (s)]

}

−Cj (s)Sij

{
αij (s)e−gij

2 sinh[hij (s)]

})
. (21)

In other words, for each node i, we have a linear equation
in C1(s),C2(s), . . . ,Cm(s). Hence where C̄(s) and ϒ̄(s) are
column vectors, we have

M(s)C̄(s) = ϒ̄(s), (22)

where

Mij (s) =

⎧⎪⎨
⎪⎩

∑
k Sik

{
uik

2 + αik (s)
2 tanh[hik (s)]

}
if i = j,

−Sij αij (s)e−gij

2 sinh[hij (s)]
otherwise.

(23)

We refer to the matrix M(s) as the propagation matrix,
and it contains a row and column for each node in the
given network. Given M(s) and ϒ̄(s), we can calculate C̄(s)
using various efficient algorithms, including the stabilized
biconjugate gradient method (BiCGStab). In most cases, this
is the most efficient algorithm to use, as our matrix M(s) is
nonsymmetric and sparse [44].

Equation (12) implies that the diagonal elements M(s) are
all positive. Furthermore, Mij (s) = 0 if and only if there is
no edge between i and j , and the other off-diagonal elements
are negative. We note that if there is a resource at node j ,
then it may be transported along ij , bringing the resource
to i and reducing ϒi(s) (the Laplace transform of the net
current flowing out of node i). The resource can only reach
node i along the edges ij , ik, etc., so ϒi(s) is completely
determined by the concentration at i and the concentrations
that flow through the nodes adjacent to i. As ϒi(s) is the
Laplace transform of the net current flowing out of node i,
and the resource at nodes j �= i can flow into node i, the
off-diagonal elements of M(s) are negative, and zero if i and
j are not directly connected.

Multiplying |Mij (s)| by Cj (s) gives us the Laplace trans-
form of the current of the resource flowing from j to i, so,
roughly speaking, |Mij (s)| represents the size of the volumetric
current from j to i, over the time scale 1/s. Note that if
uij is positive, then the medium current flows from i to j ,
|Mij (s)| < |Mji(s)|, and there is a greater flow from i to j

than the other way around. That is to say, when the medium
current is from i to j , the value of Ci(s) has a greater influence
on the value of ϒj (s) than the influence of Cj (s) on the
value of ϒi(s). Also note that the ratio of Mij (s) to Mji(s)
depends on the Péclet number of the edge, uij lij

Dij
= 2gij [9,36],

as Mij (s) : Mji(s) is equal to 1 : e2gij .
For very short time scales, we have a very large s, and

by Eq. (12), αij � uij and αij ≈ √
4Dij s. In this case,

the off-diagonal elements of M are very small, and Mii ≈∑
k Sik

αik

2 ≈ ∑
k Sik

√
Diks. In other words, over very short

time scales, the resource is lost from the nodes by a process of
diffusion, but it does not have time to reach the other nodes.
Over longer time scales, the difference between uij and αij

is smaller, the off-diagonal elements of M are larger, and the
effect of advection is greater.

IV. NONZERO INITIAL CONDITIONS

A. Nonzero initial conditions in a single edge

We now consider advection, diffusion, and delivery along a
single edge ij , where the initial condition qij (x,0) is nonzero.
We let the length of ij equal l, the longitudinal dispersion
coefficient is D, the local delivery rate is R, and the mean
velocity is u.

We have seen that for any positive Laplace constant s,
Q1(x,s) = e(g+h) x

l and Q2(x,s) = e(g−h) x
l satisfy the homoge-

neous analog, given by Eq. (10). Furthermore, the Wronskian

Wij (x,s) = Q1(x,s)
∂Q2(x,s)

∂x
− ∂Q1(x,s)

∂x
Q2(x,s)

= −αe2g x
l

D
.

By the method of variation of parameters, for any given s

and any given initial condition qij (y,0), the following function
f (x,s,qij (y,0)) is a particular solution to the fundamental
Eq. (8):

f (x,s,qij (y,0)) = e(g−h) x
l

α

∫ x

0
e(h−g) y

l qij (y,0)dy

− e(g+h) x
l

α

∫ x

0
e−(g+h) y

l qij (y,0)dy. (24)

Note that f (0,s,q) = 0 for all initial conditions q. Also note
that if q = q1 + q2, then f (x,s,q) = f (x,s,q1) + f (x,s,q2).
Since f (x,s,qij (y,0)) is a particular solution of Eq. (8), for
each edge ij , there is a pair of constants A and B such that

Qij (x,s) = Ae(g+h) x
l + Be(g−h) x

l + f (x,s,qij (y,0)). (25)

Because f (0,s,q) = 0 for all initial conditions q, Eqs. (14)
and (25) imply that

Xij ≡ Qij (0,s) = A + B, (26)

Xji ≡ Qij (lij ,s) = Ae(g+h) + Be(g−h) + f (l,s,qij (y,0)). (27)

We can therefore express A and B in terms of Xij and Xji .
Indeed, substituting Eq. (26) into Eq. (27) and multiplying
both sides by e−g tells us that

Xjie
−g = A(eh − e−h) + Xij e

−h + e−gf (l,s,qij (y,0)). (28)

For any edge ij , we let

βij (s) ≡ −αij (s)e−gij

2 sinh[hij (s)]
f (l,s,qij (y,0)), (29)

and explain its physical significance in Sec. IV B.
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In the case of our single edge, Eqs. (26) and (28) imply that

A = Xjie
−g − Xij e

−h

2 sinh(h)
+ βij (s)

α
,

(30)

B = Xij e
h − Xjie

−g

2 sinh(h)
− βij (s)

α
.

The substitution of these results into Eq. (25) tells us that for
any initial condition qij (y,0),

Qij (x,s) =
[
Xjie

−g − Xij e
−h

2 sinh(h)
+ βij (s)

α

]
e(g+h) x

l

+
[
Xij e

h − Xjie
−g

2 sinh(h)
− βij (s)

α

]
e(g−h) x

l

+ f (x,s,qij (y,0)). (31)

B. Nonzero initial conditions over a network

Having analyzed the case of a single edge with a nonzero
initial condition, we now consider an entire network and find an
exact solution that ensures that for all t > 0, the concentration
varies continuously as we move from one edge to another. The
first step in finding this solution is to note that Eq. (24) implies
that

∂f (x,s,qij )

∂x
= − (u + α)

2Dα
e(g+h) x

l

∫ x

0
e−(g+h) y

l qij (y,0)dy

+ (u − α)

2Dα
e(g−h) x

l

∫ x

0
e(h−g) y

l qij (y,0)dy,

where for the sake of clarity we drop the subscript ij from uij ,
αij , lij , gij , hij , and Dij , and ignore the dependence on s of the
terms αij and hij . Note that for any initial condition qij (y,0),
we have ∂f (x,s,qij (y,0))

∂x
|x=0 = 0. It follows that

∂Qij (x,s)

∂x

∣∣∣∣
x=0

= βij (s)

D
+ u + α

2D

[
Xjie

−g − Xij e
−h

2 sinh(h)

]

+ u − α

2D

[
Xij e

h − Xjie
−g

2 sinh(h)

]
. (32)

Now, recall that ϒi(s) denotes the Laplace transform of the
net current of resource flowing away from node i, and that
ϒi(s) = 0 unless i is an inlet node. Substituting Eq. (32) into
Eq. (9) gives us

ϒi(s) =
∑

j

Xij

{
uij

2
+ αij (s)

2 tanh[hij (s)]

}

−
∑

j

Xji

αij (s)e−gij

2 sinh[hij (s)]
−

∑
j

βij (s). (33)

As we assume that the cross-sectional areas Sij are constant,
Eqs. (19) and (33) imply that

ϒi(s) = Ci(s)
∑

j

Sij

{
uij

2
+ αij (s)

2 tanh[hij (s)]

}

−
∑

j

Cj (s)Sij

αij (s)e−gij

2 sinh[hij (s)]
−

∑
j

βij (s). (34)

In matrix form, we have

M(s)C̄(s) = p̄(s), (35)

where

C̄(s) = {C1(s),C2(s), . . . ,Cm(s)}T,

pi(s) = ϒi(s) +
∑

j

βij (s), (36)

and M(s) is the propagation matrix as in Eq. (23). Note that
the effect of the initial conditions on the concentration at the
nodes is completely captured by the terms βij (s), and that, as
before, the propagation matrix M(s) relates the concentrations
at the nodes to the net currents flowing out of the nodes.
Furthermore, by comparison with Eq. (23), we can see that
the concentration at the nodes is the same as would be the
case if the network were initially empty, and the Laplace
transform of the net current leaving node i were pi(s) rather
than ϒi(s).

In effect, the formalism of the propagation matrix enables
us to substitute an initial condition in the edges around node
i for a boundary condition at node i. For each node i and
each Laplace variable s, this boundary condition is of the
form

∑
j βij (s). Intuitively speaking, the term βij (s) represents

the Laplace transform of the quantity of the resource that
first leaves edge ij by arriving at node i. Note that we have
not calculated the impact of the initial condition qij (x,0) on
the future concentration profile qij (x,t) for t > 0: we have
simply calculated the impact of the initial conditions on the
concentrations at the nodes (see Sec. V).

V. EFFICIENT CALCULATION OF
RESOURCE DISTRIBUTION

If we wish to find the concentration at various points in
the network other than the nodes, there are two ways we
can proceed. The first method is to suppose that each edge
contains several nodes in addition to its terminal points. The
problem with this approach is that introducing additional nodes
increases the size of the propagation matrix, and finding C̄(s)
by inverting the matrices M(s) is the major computational cost
of the propagation matrix algorithm. Furthermore, although
this approach can be used to find the concentration at each of
a given set of points, it does not provide a means of finding the
quantity of a resource between a given pair of points. We could
approximate the total quantity of a resource between two points
by assuming that the concentration varies in a linear manner
from one point to the next, but as the exact solution may
contain boundary layer effects, we might require a very high
spatial resolution to ensure that such a linear approximation is
accurate.

A different approach, which we take, calculates the total
quantity of the resource within each section of the network,
regardless of the spatial resolution. The key conceptual step
involves partitioning the resource into two parts. We can
imagine that the resource is composed of a large number of
particles, and over a given time scale, each particle in edge
ij either reaches node i or j , or it does not. We let q̂ij (x,t)
denote the quantity of the resource per unit length at the point
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0 � x � lij in edge ij and time t , where a given particle only
contributes to q̂ij (x,t) if it has passed through a node (any
node) by time t after initialization. More precisely, we work
in Laplace space and let L(q̂ij (x,t)) = Q̂ij (x,s). This term
denotes the Laplace transformed concentration profile that
would occur if the network was initially empty, and if the
Laplace transform of the net current leaving each node was
pi(s) = ϒi(s) + ∑

j βij (s), rather than ϒi(s).
As we have seen, the impact of the initial condition on the

concentration at the nodes is completely captured by the terms
βij (s). However, Q̂ij (x,s) and q̂ij (x,t) do not fully capture the
influence of the initial condition qij (x,0) on the concentration
profile qij (x,t) for t > 0. In addition to q̂ij (x,t) (the quantity
of resource that has reached a node over the time scale t),
we must also consider the resource that starts in edge ij , and
which does not reach node i or j over the time scale t . We
let q̃ij (x,t) denote the quantity of such a resource at the point
0 � x � lij in edge ij and time t , where by definition

q̃ij (x,t) = qij (x,t) − q̂ij (x,t). (37)

We can calculate the concentration at each node by calcu-
lating βij (s) for every i and j , and by using the propagation
matrix. Furthermore, because at time 0 none of the resource in
edge ij has had time to reach a node, we can apply Eq. (18),
and find Q̂ij (x,s) in terms of the boundary conditions Xij (s)
and Xji(s). Given Q̂ij (x,s) for s = ln 2

t
, . . . ,n ln 2

t
, we can apply

the Gaver-Stehfest algorithm [37], which inverts our solution
from Laplace space into the time domain. In addition to finding
q̂ij (x,t) (the quantity of the resource at each point that has
passed through any of the nodes), we also solve a separate
PDE for each edge, which tells us how the resource that stays
within each edge has evolved over a given time step t . That is
to say, for each edge ij , we find q̃ij (x,t), given that q̃ij (x,t)
satisfies the fundamental advection-diffusion-delivery Eq. (2),
q̃ij (x,0) = qij (x,0), q̃ij (0,t) = 0, and q̃ij (lij ,t) = 0. Finally,
Eq. (37) tells us that qij (x,t) = q̃ij (x,t) + q̂ij (x,t).

In particular, we consider the case where the initial
condition is stepwise constant, and edge ij is divided into
Nij sections of equal length. That is to say, we suppose that
for all 1 � n � N , we have

qij (x,0) = k
(n)
ij for all xn−1 < x < xn. (38)

As we wish to update these quantities over time, we let k
(n)
ij (t)

denote the mean quantity of a resource per unit length in the
nth section at the given time t . For any t > 0, we can find an
exact solution for the updated mean quantities per unit length,

k
(n)
ij (t) = Nij

lij

∫ n
Nij

lij

n−1
Nij

lij

qij (x,t)dx. (39)

Finally, we note that this algorithm can be adapted for the
case where the cross-sectional areas and other parameters vary
over time, though our method requires that the lengths lij ,
mean velocities uij , decay rates Rij , and dispersion coefficients
Dij are either constant or vary in a stepwise manner. In the
case where we wish to find the concentration of resource in a
growing fungal network (see Sec. VI), we simply vary all of
the parameters in a stepwise manner, finding the distribution
of the resource at the end of each time step, and treating

that distribution as an initial condition for the following time
step.

VI. CONCENTRATION IN A GROWING
FUNGAL NETWORK

Multicellular organisms need to supply individual cells
with the resources necessary for survival, but while transport
in animals and plants is relatively well studied, surprisingly
little is known about transport in the third major kingdom
of multicellular life. The fungal body or mycelium can be
understood as a network of fluid filled tubes or hyphae, which
grow by osmotically drawing water from their surroundings
while adding material to the cell wall specifically at the tips
of the growing hyphae [45–48]. Diffusion may be sufficient to
sustain short-range local growth when resources are abundant,
but foraging fungi such as Phanerochaete velutina can grow
hundreds of millimeters away from a food source over
metabolically inert surfaces [7,49,50]. Together with other
experimental evidence, this observation strongly suggests that
long-distance transport mechanisms are required to deliver
nutrients to the growing tips at a sufficient rate, though there
are many open questions concerning the mechanism(s) of
transport [7,8,30,50,55,56]. Vesicles moved by motor pro-
teins, contractile elements, diffusion, and carefully regulated
osmotic gradients have all been proposed as mechanisms for
driving long-range transport in fungi [7,8,50–54]. Though a
fundamental physiological question, the issue of which (if
any) of these mechanisms is important continues to remain
a subject for debate. Our model suggests that the minimum
currents consistent with the observed growth can account for
much of the observed movement of the radio tracers. We also
note that the movement of fluid towards the growing margin
does not require the coordination of concentration gradients
across the mycelium.

A. Measuring networks and predicting currents

To obtain a sequence of digitized fungal networks, we
placed a wood block inoculated with P. velutina in a microcosm
of compacted sand [see Fig. 3(a)]. The growing mycelium was
photographed every three days, and the sequence of images
was manually marked to record the location of nodes or
junctions, as well as the presence or absence of edges in
the fungal network. These edges were not sufficiently well
resolved to make direct measurements of their diameter from
the digitized images. However, the reflected intensity, averaged
over a small user-defined kernel at either end of the edge,
correlated well with microscope-based measurements of edge
thickness. The observed relationship between image intensity
and thickness was therefore used to estimate edge thickness
across the whole network [49].

After the final photograph of the network was taken, we
assessed the pattern of nutrient transport by adding 14C-AIB
to the inoculum. A semitranslucent scintillation screen was
gently placed onto the fungal network and imaged using a
photon-counting camera [32–35]. As AIB is not metabolized,
the 14C label faithfully reports the distribution of the amino-
acid analog, and so the density of photons arriving from
each region of the network can be used to estimate the
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HEATON, LÓPEZ, MAINI, FRICKER, AND JONES PHYSICAL REVIEW E 86, 021905 (2012)

distribution of AIB [see Fig. 3(b)]. To obtain intensity values
for each edge, the digitized network was aligned with the image
from the photon-counting camera. The empirically determined
intensities could then be compared with the predictions
of an advection-diffusion-delivery (ADD) model, which we
describe in this section.

The edges in the fungal networks are composed of bundles
of hyphae and transport vessels bounded by an outer rind [57].
Unlike individual hyphae, the cords (or edges) in a fungal
network have hydrophobic coatings, which insulate them from
the environment [7,8]. Since the mycelium is composed of
incompressible material, the rate of increase in the volume of
each edge must equal the volumetric rate of flow into that edge
minus the volumetric rate of flow out of that edge. In order to
model the movement of radio-labeled AIB in a growing fungal
network, we make the following assumptions:

(1) We assume that all of the water and other materials
which form the mycelium ultimately originate from the
inoculum [see Fig. 3(a)].

(2) Mass flows are assumed to occur in transport vessels
of radius 6 μm, which occupy some fraction λ of the cross-
sectional area of each edge. Note that this assumption implies
that the hydraulic conductance of each edge is proportional to
its cross-sectional area, as the number of transport vessels in
each edge is proportional to its cross-sectional area.

(3) Growing edges are sinks for fluid, while shrinking edges
and the inoculum are sources. It is assumed that each edge
continues to grow or shrink at the rate that was measured over
the final time step. Given the distribution of sources and sinks,
and given the relative hydraulic conductance of each edge, we
can use basic circuit theory to calculate the currents across the
mycelium.

(4) We let the molecular diffusion coefficient Dm = 3.5 ×
10−6 cm2 s−1, which is the diffusion coefficient of AIB in
water [9], and we use Eq. (1) to calculate the dispersion
coefficient Dij for each edge.

(5) We assume that radio-labeled AIB enters the network at
the inoculum at a constant rate, and as AIB is not metabolized
(and there is negligible decay of 14C), we let the local delivery
rate R = 0.05 day−1, though very similar results are obtained
for any small value of R. The rate of AIB uptake at the
inoculum does not affect the relative concentration of points
in the network, and we assume that the number of photons
leaving node i between times T and T + τ is proportional to∫ T +τ

T
ci(t)dt , where ci(t) denotes the concentration at node i

at time t .
We let c′

i(t) = ci(T + t), and note that by definition,∫ T +τ

T
ci(t)dt is equivalent to the convolution of c′

i(t) with the
unit function. The convolution theorem [58] therefore implies
that

L
( ∫ τ

0
ci(t)dt

)
= 1

s
L(c′

i(τ )). (40)

The method described in Sec. V enables us to find Ci(s) =
L(c′

i(τ )) for s = ln 2
τ

, . . . ,n ln 2
τ

, and so, by Eq. (40), we can

find L(
∫ T +τ

T
ci(t)dt) for s = ln 2

τ
, . . . ,n ln 2

τ
. We can therefore

use the Gaver-Stehfest algorithm to calculate
∫ T +τ

T
ci(t)dt , and

we assume that the mean concentration in edge ij is halfway
between the mean concentrations at nodes i and j .

(e) (e) (d) (d) (c(c) ) 

(a) (a) (b) 

Inoculum 

Cord 

Sand 

FIG. 3. Measured and predicted intensities. (a) Microcosm and
mycelium of Phanerochaete velutina, photographed just before radio-
labeled AIB was dripped onto the inoculum. (b) Data from the photon-
counting camera. The brightness of the image reflects the total number
of photons emitted from each region over the period of time starting
5.6 hours after the AIB was added, and finishing 37.6 hours after the
AIB was added. (c) Digitized network, colored to indicate the density
of photons reaching the camera from each region of the network.
Luminosity is measured in arbitrary units, and the edges inside the
dotted line were not covered by the scintillation screen. (d) Predicted
intensity measured in arbitrary units, under the assumptions that AIB
enters the network at the inoculum at a constant rate, each edge in
the final network continues to grow (or shrink) at the same rate that
was observed over the final time step, and λ = 0.1 (so we assume
that 10% of each edge is occupied by transport vessels). (e) Predicted
intensity in arbitrary units under the same assumptions as diagram
(d), except that in this case we let λ = 0.2.

B. Results

The mycelium formed a branching network spanning most
of the microcosm. The distribution pattern for 14C-AIB was
remarkably asymmetric, with high levels in part of the network
growing in the lower left quadrant, lower levels in the lower
right quadrant, and almost none in the upper quadrants, apart
from one short section of cord. The explanation for this
behavior is not readily apparent from the static architecture
of the network, as regions with a low label still have
substantial cords. However, when the growth of the network
over the last time step is considered using the ADD model,
there is an impressive degree of congruency between the
model predictions for different values of λ and the empirical
determination of nutrient distribution (see Fig. 3).

We find that 29% of points emit photons at a rate greater than
the mean background intensity plus three standard deviations.
In the case of the ADD model, where we set λ = 0.1, 27%
of the points in the network are predicted to have a mean
intensity that is significantly greater than zero. That fraction
drops to 17% when we let λ = 0.2. In a duplicate experiment,
28% of points contain enough AIB to produce a significant
signal, compared to a prediction of 32% when λ = 0.1 and
18% when λ = 0.2. By setting λ such that our model predicts
the correct number of points with a significant amount of AIB,
we find that λ ≈ 0.1 in both replicates. Note that we can vary
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TABLE I. Pearson’s linear correlation coefficient ρ between the
predicted intensity and the empirical data. By way of comparison,
we can calculate the Euclidean distance from each point to the center
of the inoculum, and the value of ρ between those distances and the
empirical data was −0.27 in Experiment 1 and −0.28 in Experiment 2.

λ Experiment 1 Experiment 2

0.05 0.45 0.38
0.10 0.56 0.31
0.15 0.56 0.31
0.20 0.55 0.30

the number of points that are predicted to contain a significant
amount of the resource by varying the free parameter λ, but for
any reasonable value of λ, our model is successful at predicting
which points will contain a significant amount of resource (see
Fig. 3). To quantify the accuracy of our model predictions,
we can calculate the Pearson’s linear correlation coefficient ρ

between the measured intensity of each edge and the predicted
intensity. For comparison, we can also calculate the value of ρ

between the measured intensity of each edge and the distance
from that edge to the inoculum. We found that our model’s
predictions are more accurate than simply assuming that the
concentration at each point is a linear function of the distance
from the source. Furthermore, the best fit between our model’s
prediction and the empirical data arises when we let λ ≈ 0.1
(see Table I).

VII. CONCLUSION

In this paper, we have presented a method for calculating
the concentration of a resource that arises when a given
material is subject to advection, diffusion, and local delivery
out of the transport network (see Sec. V). Nature is full of
networks in which materials within a fluid are transported by
advection and diffusion while being consumed or delivered,
so these algorithms have many potential applications. As a
scientifically significant example, we employed our algorithm

to implement a model of transport in a growing fungal network
(see Sec. VI). The expansion of fluid filled vessels requires
the movement of fluid, and we have developed a model for
calculating the scale of growth-induced mass flows in each
edge of a given network. We found good empirical agreement
between experimental data and the concentrations predicted
by our model, and this agreement was best when we set the
free parameter λ ≈ 0.1.

The claim that 10% of each cord is occupied by transport
vessels is biologically plausible [57], and we suspect that
agreement between the ADD model and the empirical data was
better in the first experiment because in the second experiment
the mycelium had reached the edges of the microcosm by
the time the AIB was added, which made it more difficult to
accurately measure growth. We are not claiming that 10% of
each cord is occupied by transport vessels, or that growth-
induced mass flows are the only transport process occurring
within fungi. Our method of imaging only captures cords, and
not the growth of fine hyphae, so we expect that our model
underestimates the scale of growth and growth-induced mass
flows [30]. Furthermore, a more detailed analysis indicates that
active transport mechanisms may be needed near the growing
margin, where the mean velocity of the cytosol is similar to the
velocity of tip growth [59]. Nevertheless, our results suggest
that when water uptake and growth are spatially separated,
the mass flows that inevitably occur can make a dominating
contribution to long-range fungal transport (see Sec. VI).
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HEATON, LÓPEZ, MAINI, FRICKER, AND JONES PHYSICAL REVIEW E 86, 021905 (2012)

[22] J. Banavar, A. Maritan, and A. Rinaldo, Nature (London) 408,
159 (2000).

[23] G. West, J. Brown, and B. Enquist, Science 276, 122 (1997).
[24] P. J. Daley, K. B. Sagar, and L. S. Wann, Brit. Heart J. 54, 562

(1985).
[25] P. Butti, M. Intaglietta, H. Reimann, C. Holliger, A. Bollinger,

and M. Anliker, Microvasc. Res. 10, 220 (1975).
[26] E. Bullitt, K. Muller, I. Jung, W. Lin, and S. Aylward, Med.

Image Anal. 9, 39 (2005).
[27] J. Deacon, Fungal Biology, 2nd ed. (Blackwell, Oxford, 2005).
[28] G. M. Gadd, ed., Fungi in Biogeochemical Cycles (Cambridge

University Press, Cambridge, UK, 2006).
[29] O. B. Lindahl and A. F. S. Taylor, Plant Soil 242, 123 (2002).
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