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Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction
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For highly charged dielectric surfaces, the asymptotic structure underlying electrokinetic phenomena in the
thin-double-layer limit reshuffles. The large counterion concentration near the surface, associated with the
Boltzmann distribution in the diffuse layer, supports appreciable tangential fluxes appearing as effective surface
currents in a macroscale description. Their inevitable nonuniformity gives rise in turn to comparable transverse
currents, which, for logarithmically large zeta potentials, modify the electrokinetic transport in the electroneutral
bulk. To date, this mechanism has been studied only using a weak-field linearization. We present here a generic
thin-double-layer analysis of the electrokinetic transport about highly charged dielectric solids, which is not
restricted to weak fields. We identify the counterion concentration amplification with the emergence of an
internal boundary layer—within the diffuse part of the double layer—characterized by distinct scaling of ionic
concentrations and electric field. In this multiscale description, surface conduction is conveniently localized
within the internal layer. Our systematic scheme thus avoids the cumbersome procedure of retaining small
asymptotic terms which change their magnitude at large zeta potentials. The electrokinetic transport predicted
by the resulting macroscale model is inherently accompanied by bulk concentration polarization, which in turn
results in nonlinear bulk transport. A novel fundamental subtlety associated with this intrinsic feature, overlooked
in the weak-field approximation, has to do with the ambiguity of the “particle zeta potential” concept: In general,
even uniformly charged surfaces are characterized by a nonuniform zeta-potential distribution. This impairs the
need for a careful identification of the dimensionless number representing the transition to large zeta potentials.
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I. INTRODUCTION

A. Background

When a solid surface is brought into contact with a liquid
electrolyte, an electrical double layer instantaneously develops
about the solid-liquid interface, consisting of immobile surface
charge on the solid and a diffuse cloud (the “Debye layer”)
within the liquid wherein counterions are in excess and coions
in deficit. For realistic values of salt concentrations in aqueous
electrolytes, the Debye thickness 1/κ∗ of the diffuse layer
ranges between the nanometer and submicron range, typically
much smaller than the length scale a∗ characterizing both
natural colloidal systems and man-made microfluidic devices.

When the solid-liquid system is brought out of equilibrium,
as under the application of an external electric field, the
nonlinear governing equations become formidable, hindering
both mathematical and numerical solutions. Fortunately, the
scale disparity represented by the smallness of δ = 1/κ∗a∗

allows for an approximate mathematical analysis using a
boundary-layer paradigm, where the fluid domain is decom-
posed into a thin Debye layer in quasiequilibrium and an
electroneutral “bulk” surrounding it. The first analysis of this
limit was carried out by Smoluchowski [1], who calculated
the velocity of a spherical particle driven by a uniform electric
field, predicting an electrophoretic mobility proportional to the
particle zeta potential.

Another route which allows for approximate solutions of
out-of-equilibrium problems employs a weak-field approxima-
tion; it is not limited to thin double layers. Thus, Wiersema [2]
was able to solve the resulting linearized set of equations
for an electrophoresis problem in which δ appears as a
parameter. These calculations were significantly improved
by O’Brien and White [3], allowing to address considerably

larger values of ζ , the particle zeta potential normalized
with the thermal voltage. At small δ values, the numerically
calculated mobility increases linearly with ζ , in agreement
with Smoluchowski’s prediction. This agreement, however,
breaks down at moderately large ζ , where the numerical
solution exhibits a maxima at a zeta-potential value that
increases slowly with diminishing δ.

O’Brien and White [3] were apparently unaware of
Dukhin’s thin-double-layer analysis of weak-field elec-
trophoresis, which has actually predicted a mobility maxima
[4]. As observed by Dukhin, the exponential Boltzmann
distribution within the narrow diffuse layer gives rise to
large counterion concentrations near the solid surface even
at moderately-large zeta potentials. The associated counterion
fluxes parallel to the surface, normally negligible in the
thin-double-layer limit δ → 0, emerge at the leading-order
ionic conservation equation [5]. This “surface conduction”
mechanism was originally addressed by Bikerman [6]; among
other things, it results in a nonmonotonic variation of the
electrophoretic mobility with the particle zeta potential.

Three years after the publication of the seminal O’Brien and
White paper, O’Brien and Hunter [7] simplified and corrected
the derivation of Dukhin’s mobility formula. Later, O’Brien [8]
analyzed a generic problem, not restricted to any specific
geometry, using the same set of approximations (weak field
and thin double layer), thereby obtaining effective boundary
conditions. Formally, surface conduction becomes significant
in the thin-double-layer limit when the zeta potential is
“logarithmically large,”

e|ζ |/2 ∼ O(δ−1). (1.1)

Thus, the twofold limit of thin double layers and high surface
charge is represented by the limit process of δ → 0 with δe|ζ |/2
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fixed, the latter group motivating the definition of appropriate
Bikerman (and Dukhin) numbers [6].

While (1.1) formally entails |ζ | → ∞, it practically implies
that even moderately large ζ values may result in appreciable
deviations from Smoluchowski’s formula. Indeed, the thin-
double-layer mobility approximation of O’Brien and Hunter
[7] is in excellent agreement with the numerical results of
O’Brien and White [3] at small values of δ.

Following the work of O’Brien and coworkers, the role
of surface conduction was investigated in various contexts,
including electroviscous forces [9,10], Dielectric enhancement
[11,12], and diffusophoresis [13]. More recent analyses, moti-
vated by microfluidic applications, include surface conduction
effects on electrokinetic flows over patterned surfaces [14]
and, following Ref. [15], surface-charge discontinuities [16],
as well as the arrest [17] of flow amplification triggered by the
combination of hydrodynamic and electrokinetic slip.

B. Beyond the weak-field approximation

All of the above-mentioned bodies of work are based on the
weak-field linearized equation set, describing small departures
from equilibrium (both within and outside the double layer).
This assumption is unrealistic in many practical situations;
in the case of electrophoresis of a micron-size particle, for
instance, the application of rather moderate electric fields,
say, of magnitude 100 V cm−1, results in a voltage drop
across the particle which is several multiples of the thermal
voltage. Clearly, then, the artificial linearized model cannot
capture many of the rich nonlinear phenomena observed in
electrokinetic transport [18]. It is, therefore, desirable to derive
a macroscale model which, unlike that of O’Brien [8], is not
restricted to weak fields.

An attempt in that direction was carried out by Chu and
Bazant [19]. Their macroscale model is, however, focused on
conducting surfaces; while such surfaces may be common in
microfluidic applications, they are the exception rather than
the rule in colloidal systems. More importantly, the analysis
of Chu and Bazant [19] completely ignores the presence of
electrokinetic flow, which is an integral part of virtually any
nonequilibrium process. Since the appropriate Péclet number
is inherently O(1) for moderate fields [see (2.4) et seq.], this
flow significantly affects electrochemical transport; as a matter
of fact, ionic advection by electrokinetic flow may be neglected
only for weak fields, which is exactly the limitation Chu and
Bazant [19] have attempted to do away with.

Our goal is to derive a generic macroscale model in the thin-
double-layer limit, not restricted to weak fields. We begin by
formulating the exactly posed electrokinetic problem; in doing
so, we do not commit to a specific geometry or problem type
and, accordingly, leave open the specific form of any possible
far-field conditions or integral constraints. We then exploit the
thin-double-layer limit in a twofold procedure, where we first
obtain an approximate description in the electroneutral region
and then derive effective “boundary conditions” representing
asymptotic matching with the Debye layer. This is essentially
the paradigm used by O’Brien [8], who, however, started with
the linearized version of the exact problem.

With the Debye layer appearing only implicitly, the
resulting macroscale model—albeit still nonlinear—is

tremendously simpler than the original exact description. This
allows for analytic progress beyond the familiar linear regime.
Perhaps more importantly, the absence of scale disparity in
this model is appealing to numerical analyses, which would
not be required to deal with the resolution of two length scales.

C. Moderate- versus high-charge density

In deriving the proposed macroscale model, we take a
step backward, considering first the thin-double-layer limit
δ → 0 associated with moderate charge density on the solid
surface, where surface conduction does not affect leading-
order transport, and only then study the comparable limit of
highly charged surfaces, defined by the limit process δ → 0
with a fixed Bikerman (or Dukhin) number, the latter properly
defined to represent (1.1). The presentation accompanying
this progressive approach serves to elucidate the modifications
introduced by the transition to the high-charge regime.

As a matter of fact, a systematic derivation of a macroscale
model for moderate surface charges is important on its own
right, in view of the common misconceptions in the community
regarding the proper description of electrokinetic phenomena
in the thin-double-layer limit. The de facto standard employed
in the literature [20] actually represents a degenerate linear
form of the true description, valid only in the absence of
concentration gradients. This form, consisting of Laplace’s
equation governing the electric potential and homogeneous
Stokes equations governing the fluid flow, has been obviously
attractive to both analytic [21–24] and numerical [25] inves-
tigations. Notwithstanding its importance, that linear model
cannot be used to analyze problems where concentration
polarization plays a major role. For example, it is well known
[26] that the generation of direct current by reactive electrodes
is naturally accompanied by such polarization.

The derivation of the macroscale model for moderate sur-
face charge follows the standard boundary-layer methodology,
wherein the fluid domain is decomposed into two asymptotic
regions—charged Debye layer and electroneutral bulk. In
the thin-double-layer limit we obtain simplified differential
equations within the latter region. The electric potential is
not harmonic, whereby Coulomb body forces remain in the
Stokes equations. These attributes, foreign to the familiar
linear model, are associated with a nonuniform concentration,
governed by an advection–diffusion equation.

In deriving a comparable model for highly charged surfaces,
we seek to retain the systematic approach implicit by the use of
separate asymptotic expansions in different regions of space.
This is not a trivial task, since the key feature in the high-charge
limit is a scale transition of the Debye-layer variables near the
surface. In the intuitive approach of O’Brien and Hunter [7] and
O’Brien [8], surface conduction is accounted for by retaining
formally small terms that change their relative asymptotic
order at large zeta potentials. This raises conceptual questions
regarding the proper order of the three limit processes implicit
in this scheme—weak field, thin double layer, and high surface
charge. In deriving a systematic model not limited to weak
fields, we are reluctant to employ this procedure.

We surmount the difficulty associated with scale transition
near the surface by conceptually decomposing the fluid
domain into three, rather than two, asymptotic regions. It was
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recognized by Hinch et al. [12] that the high-charge limit is
associated with the emergence of an internal boundary layer,
within the Debye layer, where the scaling of the pertinent
variables differs (see also Ref. [18]). As a matter of fact, the
weak-field analysis of O’Brien [8] makes use of the simplified
structure of the governing equations near the surface in calcu-
lating the electric potential there (see appendix 1 in that paper).

We here make this idea explicit by treating the internal
layer as a separate region in our matched asymptotic analysis.
The Debye layer is, consequently, rendered an intermediate
asymptotic region. In this scheme, no scale transition occurs
within the newly defined Debye layer. The literal boundary
conditions on the solid surface are now applied to the internal-
layer variables, rather than the Debye-layer variables, as is
the common practice. The derivation of a macroscale model
in the high-charge limit therefore requires separate analysis
(and concomitant asymptotic matching) in the electroneutral
bulk, the Debye layer, and the internal boundary layer.
Formally speaking, the approach of O’Brien and coworkers
is tantamount to the use of composite asymptotic expansions
[27]; our scheme abandons this rather intuitive method in favor
of more systematic Poincaré-type expansions.

The differential equations governing the electro-neutral
bulk are the same in both the moderate- and high-charge
macroscale models. The difference appears in the effective
boundary conditions governing the electrochemical variables.
Thus, the homogenous Neumann conditions in the moderate-
charge case, which reflect zero ionic fluxes emanating from the
Debye layer, are modified to account for counterion fluxes in
the high-charge limit. This transformation imparts a dramatic
consequence, as it implies concentration polarization even
in the absence of an externally applied salt-concentration
gradient. The slip condition is also modified.

Since the local Boltzmann distributions within the diffuse
part of the double layer depend on the “bulk” salt concentration
just outside it, concentration gradients in the electro-neutral
bulk naturally imply a nonuniform distribution of the zeta
potential along the solid surface—even when it is uniformly
charged. (As would become evident, such gradients are
inevitable in any nonequilibrium transport process at the high-
charge limit.) Thus, the commonly used concept of “particle
zeta potential” becomes ambiguous at nonequilibrium. (This
ambiguity was overlooked in previous analyses, fixated on
the linear regime in the weak-field limit.) With the intrinsic
vagueness in the particle-zeta-potential concept, care must be
exercised when attempting to define a dimensionless group
which would properly represent the transition to large zeta
potentials on a global level. The Bikerman number defined
here for that purpose is more primitive than the familiar Dukhin
number, whose definition is oriented to the weak-field regime.

The structure of this paper is as follows. In the next section
we formulate the exactly posed generic electrokinetic problem.
The thin-double-layer limit is addressed in Sec. III, where
we obtain the approximate differential equations governing
transport in the electroneutral bulk. The derivation of the
effective boundary conditions in the moderate-charge limit is
performed in Sec. IV, while its breakup at large zeta potentials
is discussed in Sec. V. A comparable derivation of the effective
boundary conditions for highly charged surfaces is detailed
in Sec. VI. The neglect of nondilute effects is addressed in

Sec. VII. The two macroscale models are recapitulated in
Sec. VIII; both are illustrated in Sec. IX via the prototypic
problem of particle electrophoresis. We discuss our results
and suggest future research directions in Sec. X.

Readers who are interested in the final outcome of the paper,
namely the macroscale model, can skip directly from Sec. II
to Sec. VIII.

II. FORMULATION OF THE GENERIC PROBLEM

We consider a generic electrokinetic problem wherein a
dielectric chemically inert solid is in contact with a symmetric
electrolyte solution (valencies ±Z) whose two ionic species
are characterized by their diffusivities D∗± (dimensional
quantities being hereafter decorated by an asterisk). This
solution is treated as a dielectric Newtonian liquid (permittivity
ε∗, viscosity μ∗).

A Debye double layer is instantaneously formed at the
solid-electrolyte interface. It comprises an immobile layer
of surface charge on the solid surface S, whose density is
assumed uniform, together with an oppositely charged diffuse
layer within the liquid phase, of characteristic width 1/κ∗. In
addition to this Debye width, the system is also characterized
by a geometric scale a∗, usually a typical linear dimension
(e.g., radius of curvature) of the solid surface.

When this system is subjected to an external “force”
(an imposed electric field, concentration gradients, etc.) it
cannot remain in equilibrium. This results in various transport
phenomena and, specifically, relative fluid motion between
the solid and the electrolyte. We consider the large class of
problems where these phenomena appear steady at a reference
frame attached to the solid surface.

We employ a dimensionless formulation, normalizing
length variable by a∗, ionic concentrations by a reference
concentration c∗ [see (2.18)], and electric potentials by the
thermal scale (≈26 mV for univalent solutions at room
temperature),

ϕ∗ = k∗T ∗

Ze∗ , (2.1)

in which k∗T ∗ is the Boltzmann temperature and e∗ the
elementary charge. Stress variables are normalized by the
Maxwell scale M∗ = ε∗ϕ∗2/a∗2 and velocity variables by
a∗M∗/μ∗.

A. Governing equations

The electrokinetic transport is described in terms of the two
ionic concentrations c±, the electric potential ϕ, the velocity
field u, and the pressure p. Within the fluid, these variables
satisfy the following:

(1) Ionic conservation equations,

∇ · j± + α±u · ∇c± = 0. (2.2)

Here, the molecular ionic fluxes j± (respectively normalized
by D∗±c∗/a∗) are provided by the Nernst-Planck expressions

j± = ∓c±∇ϕ − ∇c± (2.3)
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describing transport due to the combined action of electromi-
gration and diffusion. The dimensionless groups

α± = ε∗ϕ∗2

μ∗D∗± , (2.4)

multiplying the advection terms represent the drag coefficients
of the two types of ions. These groups are independent of
both system dimension a∗ and electrolyte concentration c∗;
for typical diffusivities (≈10−9 m2 s−1) in univalent aqueous
solutions (μ∗ ≈ 10−3 kg m−1 s−1) they are ≈0.5 [28].

(2) Poisson’s equation,

−2δ2∇2ϕ = c+ − c−. (2.5)

Here

δ = 1

κ∗a∗ . (2.6)

is the dimensionless Debye thickness, wherein

κ∗2 = 2Ze∗c∗

ε∗ϕ∗ . (2.7)

(3) The continuity

∇ · u = 0 (2.8)

and inhomogeneous Stokes equations

∇p = ∇2u + ∇2ϕ∇ϕ, (2.9)

governing the motion of the fluid subject to Coulomb body
forces. The latter can be alternatively written

∇ · (N + M) = 0 (2.10)

in which N is the Newtonian stress

N = −p I + (∇u) + (∇u)† (2.11)

(with † denoting dyadic transposition and I denoting the
idemfactor) and M the Maxwell stress

M = ∇ϕ∇ϕ − 1
2∇ϕ · ∇ϕ I. (2.12)

The boundary conditions on the stationary solid surface S

are specified in terms of the unit normal n̂ pointing into the
fluid. They consist of the following:

(1) Impermeability and no-slip conditions,

u = 0 on S. (2.13)

(2) No-flux conditions

n̂ · j± = 0 on S, (2.14)

representing the inability of the solution ions to discharge on
the chemically inert solid surface.

(3) Gauss’s boundary condition, relating the electric dis-
placements in both the liquid and solid media to σ , the uniform
surface-charge density (normalized by ε∗κ∗ϕ∗) on S,

∂ϕ

∂n
= −δ−1σ + γ

∂ϕs

∂n
on S. (2.15)

Here ∂/∂n = n̂ ·∇, ϕs is the electric potential in the solid wall,
and γ is the ratio of the respective dielectric constants in the
solid and liquid phases. In principle, this condition introduces
a coupling to ϕs , itself governed by Laplace’s equation within
the solid wall and the continuity condition ϕs = ϕ on S.

Other conditions necessary to fully specify the problem
depend on the specific scenario considered. An important class
of problems involves particulate motion in an unbounded fluid
domain, where an additional set of condition is required “at
infinity.” These consist of a “driving” condition, representing
the driver of the electrokinetic transport (e.g., an imposed
electric field or concentration gradient) together with the
specification of the far-field velocity profile [see (2.19)],
reflecting the result of electrokinetic transport.

B. Prototypic example: electrophoresis

A prototypic example is the electrophoresis of a spherical
particle (dimensional radius a∗) driven by a uniformly applied
external field of dimensional magnitude E∗. The driving
condition is

∇ϕ → −ı̂β as |x| → ∞. (2.16)

Here ı̂ a unit vector in the applied-field direction and

β = a∗E∗

ϕ∗ (2.17)

is the dimensionless field magnitude. In the absence of an
imposed concentration gradient, both ionic concentrations
approach a uniform concentration at large distances,

c± → 1 as |x| → ∞. (2.18)

(This condition effectively defines c∗.) Finally, the velocity
must approach the uniform incidence profile

u → −U ı̂ as |x| → ∞, (2.19)

wherein U is the magnitude of the particle electrophoretic
velocity. This scalar quantity is to be found from the condition
that the freely suspended particle is force free,∮

S

dA n̂ · (N + M) = 0. (2.20)

In view of Eq. (2.10), the integration domain may be chosen
as any closed surface encapsulating the particle.

C. Weak fields

The classical analysis of O’Brien and White [7] entails an
electrophoresis problem. While O’Brien and White formulated
their problem using dimensional variables, inspection reveals
that their weak-field approximation is tantamount to the
assumption β 	 1 in the present description; see (2.16)–
(2.17). This issue deserves a clarification.

In section 3 of Ref. [7], O’Brien and White write “The
difficulties involved in solving this set of coupled non-linear
partial differential equations are formidable, but fortunately
we are only concerned with the solution of these equations
in the case when the applied field E is small compared with
the fields that occur in the double layer.” Since the Debye-
layer voltage (the zeta potential) is comparable in magnitude
to the thermal voltage ϕ∗, this implies fields that are small
compared with κ∗ϕ∗. In the present dimensionless notation,
this assumption reads δβ 	 1. Since Ref. [7] consider Debye
thicknesses comparable to particle size, where δ ∼ O(1), this
is equivalent to β 	 1.
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When the Debye layer is thin, as in the follow-up analysis
of O’Brien and Hunter [7], the two limits δβ 	 1 and β 	 1
differ. It is, therefore, important to understand which of the
two corresponds to the linearized equations in that paper. It is
readily verified that the underlying limit is the more restrictive
one, β 	 1. For instance, the linearized equation set leaves
out the (clearly nonlinear) term representing advection of
ionic perturbations. Neglecting this term in the bulk region
surrounding the double layer, where the relevant length scale
is particle size rather than Debye thickness, is equivalent to
assuming small β.

Our goal is to remove the restriction β 	 1. In what follows,
we generally allow for β ∼ O(1).

III. THIN-DOUBLE-LAYER LIMIT

We consider the thin-double-layer limit δ → 0. Poisson’s
equation (2.5) yields electro-neutrality

c+ = c− = c, (3.1)

whereby the ionic fluxes (2.3) become

j± = ∓c∇ϕ − ∇c. (3.2)

Addition and subtraction of the Nersnt-Planck equations (2.2)
respectively provide the salt concentration balance

∇2c = α+ + α−

2
u · ∇c (3.3)

and charge balance

∇ · (c∇ϕ) = α+ − α−

2
u · ∇c. (3.4)

Equations (2.8) and (2.9) are unaffected by the limit δ → 0;
the Coulomb body forces in Eq. (2.9) originate from O(δ2)
volumetric charge density that is in general nonzero.

Note that the system (3.1)–(3.4) constitutes a leading-
order description in a formal asymptotic expansion in δ 	 1.
Moreover, this system is incompatible with the boundary
conditions (2.14) and (2.15). This reflects the singular nature of
the thin-double-layer limit, associated with the multiplication
of the small expansion parameter by the highest derivative in
Poisson’s equation (2.5). Consequently, a boundary layer of
O(δ) width develops about S, constituting the diffuse part of
the double layer. In principle, asymptotic matching between
the separate expansions in the electroneutral domain and the
boundary layer provides effective boundary conditions for the
former, resulting in a useful macroscale model. We denote
the resulting “effective boundary” by s, to distinguish it from
the literal interface S.

In the following section we will derive the effective
boundary conditions for the classical case of moderate surface
charge, where σ ∼ O(1).

IV. EFFECTIVE BOUNDARY CONDITIONS FOR
MODERATELY CHARGED SURFACES

A. Boundary-layer formulation

In describing the diffuse layer we employ the method of Cox
[29] (see also Ref. [50]), whereby points on S are identified
by locally orthogonal curvilinear coordinates (ξ,η) possessing

unity metric coefficients. Position normal to S is measured by
a Cartesian coordinate z in the direction êξ×êη, pointing into
the liquid, such that z = 0 on S. The boundary-layer scaling
is implicit in the stretched normal coordinate

Z = z/δ. (4.1)

In the boundary-layer coordinates, the velocity field adopts the
following Cartesian representation:

u = êξu + êηv + êzw. (4.2)

Since both the ionic concentrations and electric potential are
expected to be O(1) within the boundary layer, we postulate
the asymptotic expansions

c±(x; δ) = C±
0 (ξ,η,Z) + · · · , (4.3a)

ϕ(x; δ) = �0(ξ,η,Z) + · · · , (4.3b)

together with similar scaling for the tangential components
(u,v) of u

u(x; δ) = U0(ξ,η,Z) + · · · , (4.4a)

v(x; δ) = V0(ξ,η,Z) + · · · . (4.4b)

From the continuity equation (2.8) and the impermeability con-
dition (2.13) we then find that the normal velocity component
is O(δ)

w(x; δ) = δW1(ξ,η,Z) + · · · . (4.5)

Balancing the large Coulomb body forces in Eq. (2.9) then
necessitates O(δ−2) pressure

p(x; δ) = δ−2P−2(ξ,η,Z) + · · · . (4.6)

In addition to Eqs. (4.3)–(4.6) we also introduce an
asymptotic expansion for ionic fluxes in the z direction,

êz · j± = δ−1J±
−1(ξ,η,Z) + J±

0 (ξ,η,Z) + · · · . (4.7)

Note that [see (2.3)]

J±
−1 = −∂C±

0

∂Z
∓ C±

0

∂�0

∂Z
. (4.8)

At large Z the boundary-layer variables must match the
corresponding ones in the electro-neutral domain,

C±
0 → c, �0 → ϕ, V0 → v as Z → ∞. (4.9)

Hereafter, bulk-scale variables appearing in boundary-layer
equations are understood to be evaluated on the effective
boundary s and are, accordingly, functions of ξ and η alone.
The matching requirement also implies that the following
variables must vanish at large Z:

J±
−1,P−2 → 0 as Z → ∞, (4.10)

as, too, must the following derivatives:

∂�0

∂Z
,
∂U0

∂Z
,
∂V0

∂Z
→ 0 as Z → ∞. (4.11)

The boundary conditions (2.13)–(2.15) applying on S

must be rewritten in terms of the boundary-layer variables.
Thus, the impermeability and no-slip condition (2.13) now
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reads

U0 = 0, V0 = 0, W1 = 0 at Z = 0, (4.12)

the no-flux condition (2.14) implies

J±
−1 = 0, J±

0 = 0, . . . at Z = 0, (4.13)

and Gauss’s condition (2.15) becomes

∂�0

∂Z
= −σ at Z = 0, (4.14)

where the electric displacement in the solid phase (within
which no boundary layer develops) is relegated to a higher-
order balance.

B. Boundary-layer analysis

At O(δ−2) the ionic balances (2.2) yield

∂J±
−1

∂Z
= 0, (4.15)

which, together with Eq. (4.10), imply J±
−1 ≡ 0. Use of

Eq. (4.8) in conjunction with Eq. (4.9) provides the Boltzmann
distributions

C±
0 = c e∓� (4.16)

wherein

� = �0 − ϕ (4.17)

is the “excess” boundary-layer potential. Substitution into
Poisson’s equation (2.5) yields, at leading order,

∂2�

∂Z2
= c sinh �. (4.18)

Integration in conjunction with Eq. (4.11) yields

∂�

∂Z
= −2

√
c sinh

�

2
. (4.19)

A subsequent integration furnishes the Gouy-Chapman distri-
bution

tanh
�

4
= e−Z

√
c tanh

ζ

4
, (4.20)

where the dimensionless “zeta potential”

ζ (ξ,η) = �(ξ,η,0) (4.21)

is the boundary-layer voltage. In view of Eqs. (4.14) and
(4.19), the zeta potential depends on the prescribed surface
charge density through the relation

σ = 2
√

c sinh
ζ

2
. (4.22)

While σ is uniform, ζ is generally not so.
In calculating the flow we follow Rubinstein and Zaltzman

[30]. With � known, the pressure field P−2 is obtained
from the leading-order momentum balance in the z direction
[see (2.9)],

∂P−2

∂Z
= ∂2�0

∂Z2

∂�0

∂Z
. (4.23)

Integration in conjunction with Eq. (4.10) readily yields

P−2 = 1

2

(
∂�

∂Z

)2

. (4.24)

The leading-order momentum balance in the ξ direction
[see (2.9)] reads

∂P−2

∂ξ
= ∂2U0

∂Z2
+ ∂2�0

∂Z2

∂�0

∂ξ
. (4.25)

Substitution of Eq. (4.24) in conjunction with the defini-
tion (4.17) yields

∂2U0

∂Z2
= ∂�

∂Z

∂2�

∂Z ∂ξ
− ∂2�

∂Z2

(
∂�

∂ξ
+ ∂ϕ

∂ξ

)
. (4.26)

Use of Eq. (4.19) allows one integration of this differential
equation,

∂U0

∂Z
= −∂�

∂Z

∂ϕ

∂ξ
− 4√

c

∂c

∂ξ
sinh2 �

4
, (4.27)

where the constant of integration must vanish in view of
Eq. (4.11). Substitution of Eq. (4.20) allows for yet another
integration, which, in conjunction with the no-slip condition
(4.12) and definition (4.21), yields

U0 = (ζ − �)
∂ϕ

∂ξ
+ 2 ln

1 − tanh2 ζ

4

1 − e−2Z
√

c tanh2 ζ

4

∂ ln c

∂ξ
. (4.28)

A similar expression, involving derivatives with respect to η,
holds for V0. The first term in Eq. (4.28) originates from the
action of Coulomb body forces on the charged fluid elements
within the diffuse layer, while the second term stems from
nonequlibrium tangential pressure variations (in the ξ and η

directions) associated with concentration gradients.
Finally, we consider the O(δ−1) balance of the ionic

conservation equations (2.2). At this asymptotic order the
advection term still does not contribute, and we get

∂J±
0

∂Z
+ (∇ · n̂)J±

−1 = 0, (4.29)

where the second term, proportional to the local curvature
of S, is associated with the curvilinear nature of the (ξ,η)
coordinates (see Ref. [29]). Given the vanishing of J±

−1 this
term disappears as well, eventually giving

∂J±
0

∂Z
= 0. (4.30)

The no-flux condition (4.13) then implies that

J±
0 ≡ 0. (4.31)

C. Effective boundary conditions

We can now obtain effective boundary conditions using
asymptotic matching between the boundary-layer fields and
their counterparts in the electroneutral domain. Consider, first,
the velocity field. The 1–1 van Dyke matching rule [27] in
conjunction with the inner scaling (4.5) of the normal velocity
readily yields

w = 0 on s. (4.32)
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The boundary conditions governing the tangential components
are obtained from Eq. (4.9). Evaluation of Eq. (4.28) at the
outer edge of the boundary layer, Z → ∞, yields the familiar
Dukhin-Derjaguin slip condition,

u = ζ
∂ϕ

∂ξ
+ 2 ln

(
1 − tanh2 ζ

4

)
∂ ln c

∂ξ
on s. (4.33)

A similar condition applies for v.
Consider now the ionic fluxes normal to s in the electroneu-

tral domain, n̂ · j±, which adopt the respective forms [see (3.2)]

−c
∂ϕ

∂n
− ∂c

∂n
, c

∂ϕ

∂n
− ∂c

∂n
. (4.34)

Asymptotic matching with the null O(1) ionic fluxes (4.31)
readily yields the homogenous Neumann conditions

∂ϕ

∂n
= 0,

∂c

∂n
= 0 on s. (4.35)

V. BREAKUP FOR HIGHLY CHARGED SURFACES

A. Large zeta potentials: The emergence of
an internal boundary layer

The preceding macroscale model breaks up for highly
charged surfaces when ζ is large [see (4.22)]. Indeed, consider
(with no loss of generality) the case of positive σ . Because
of the Boltzmann distribution (4.16) the anion concentration
near the surface is O(eζ ) large. It follows that, at sufficiently
large zeta potentials, tangential ionic fluxes emerge at the ionic
transport balance (4.29), resulting in a significant transverse
flux normal to the surface.

These tangential fluxes are essentially confined to a small
portion of the Debye-layer cross section, adjacent to the
charged surface. In this region, where the charge density
is large, Poisson’s equation (2.5) implies steep transverse
gradients in the electric potential, above and beyond the
O(δ−1) values appropriate to moderate zeta potentials. Indeed,
with the surface-charge density σ being O(eζ/2) [see (4.22)],
Gauss’s condition implies transverse electric fields of order
δ−1eζ/2 near the surface. As the (counterion dominated)
volumetric charge density is O(eζ ) in this region, Poisson’s
equation then provides the transverse length scale

δe−ζ/2 (5.1)

(much smaller than the Debye thickness δ) on which the
electric field must vary so as to account for the high charge
density.

With the length scale (5.1) available, we can now estimate
the asymptotic magnitude of the transverse anionic flux. Due
to the large anionic concentration, the ionic fluxes in the
tangential (ξ,η) directions are of order eζ . The net fluxes
through an O(δe−ζ/2)-wide cross section are, therefore, of
order δeζ/2 and so are their respective surface derivatives. The
ionic transport balance (4.29) then necessitates a transverse
flux of the same asymptotic magnitude. The moderate-surface-
charge model will accordingly break down when the zeta
potential is “logarithmically large,”

δeζ/2 ∼ O(1). (5.2)

At these moderately large ζ values the transverse flux becomes
O(1), negating the nil result (4.31) which has been obtained
for moderate zeta potentials

From Eqs. (5.1) and (5.2) it then follows that the surface
conduction region is of O(δ2) thickness. This motivates the
introduction, at highly charged surfaces (σ � 1), of an internal
boundary layer of that thickness near the solid surface. We refer
to this newly defined asymptotic region—originally mentioned
by Hinch et al. [12]—as the “Dukhin layer.” We hereafter
refer to the “Debye layer” as the diffuse layer after the Dukhin
sublayer has been conceptually removed. In the limit of highly
charged surface the counterion concentration thus shifts from
O(1) values at the Debye layer to O(δ−2) values in the Dukhin
layer. This corresponds to a comparable transition of the
tangential counterion flux.

In deriving the macroscale model appropriate for the limit
process (5.4) we accordingly analyze these asymptotic regions
separately. This eliminates the nonrigorous procedure where
formally asymptotically small terms are retained at the leading-
order balances. Note that the excess potential is moderate
in the Debye layer and is O(ln δ) in the Dukhin sublayer.
Following the conventional asymptotic methodology [31],
these asymptotic orders are considered on the same par.

B. Dimensionless number

When defining a dimensionless number representing the
transition to the high-charge limit, Eq. (5.2) naturally suggest
it as the product δeζ/2 (related to the familiar definition of
the Dukhin number). In that limit, however, the zeta potential
is inherently nonuniform, exactly because of the transverse
ionic flux animated by surface conduction: This flux gives rise
to salt concentration polarization, rendering the zeta potential
nonuniform even when the surface charge density is uniform
(as we assume here for simplicity)—see (4.22). To define a
global parameter, we need to identify a constant quantity that
scales essentially as eζ/2; equivalently [see (5.2)], it should be
O(1) for moderately charged surfaces but become O(δ−1) for
highly charged surfaces.

This quantity is simply given by the surface charge σ , as
is evident from Eqs. (2.15) and (5.2). We therefore define the
Bikerman number as

Bi = δσ. (5.3)

The high-charge limit is, therefore, described by the limit
process

δ → 0 with Bi ∼ O(1). (5.4)

The moderate-charge limit, derived in Sec. IV assuming
σ ∼ O(1), corresponds to Bi ∼ O(δ). The asymptotic regimes
associated with different values of the zeta potential are
depicted in Fig. 1. The critical Bikerman number Bicr, and
the appearance of nondilute effects at Bi � Bicr, are discussed
in Sec. VII.

In deriving the high-charge limit, it is actually convenient
to employ a characteristic zeta potential ζ̄ , defined via the
relation [see (4.22)]

σ = eζ̄/2. (5.5)
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0.1 1 10 ζ

ζ 1 ζ ∼ O(1) ζ ∼ O(ln δ)

Bi 1

σ 1 σ ∼ O(1) σ ∼ O(δ−1)

Bi ∼ O(δ) Bi ∼ O(1) Bi Bicr

Debye-Hückel 
limit

moderate 
surface charge

high surface 
charge

nondilute 
effects

FIG. 1. A schematic decomposition of the various asymptotic
regimes associated with different values of ζ .

The Bikerman number is given by the more “familiar” notation

Bi = δeζ̄/2. (5.6)

In view of Eq. (4.22), ζ̄ represents the zeta-potential values
attained over highly charged surface.

We conclude that at O(1) Bikerman numbers, one needs to
separately solve the governing equations in three asymptotic
domains: the electroneutral domain, the O(δ)-wide Debye
layer, and the O(δ2)-wide Dukhin layer. The spatial decompo-
sition into these three regions in the limit (5.4) is schematically
portrayed in Fig. 2. The electroneutral description, provided
by (2.8) and (2.9), and (3.3) and (3.4), is unaffected by the
transition to the limit process (5.4). On the other hand, part of
the boundary-layer analysis in Sec. IV has used the boundary
conditions on S, which now do not apply to the Debye-layer
fields but rather to those of the Dukhin sublayer. Thus, Debye-
layer fields must now be determined via asymptotic matching
with the corresponding variables in both the electroneutral
domain and the Dukhin sublayer, while the latter must be
solved separately using the condition on S. This procedure,
eventually leading to a different set of effective conditions on
s replacing (4.33)–(4.35) is performed in the next section.

       Debye layer

sublayer

electro-neutral bulk

concetration gradients

counter-ion flux 

dielectric 

applied field  
(or other driver)

1
κ∗ e−ζ̄/2

1
κ∗

a∗

FIG. 2. (Color online) Asymptotic decomposition of the fluid
domain in the limit δ → 0 for Bi ∼ O(1). Nonuniformities in the
tangential counterion fluxes within the Dukhin layer result in O(1)
normal fluxes which cross the Debye layer into the electroneutral
bulk.

VI. DEBYE-LAYER AND DUKHIN-LAYER ANALYSES
FOR HIGHLY CHARGED SURFACES

A. Debye-layer analysis

In the present context, the Debye-layer formulation is still
provided by Eq. (4.1)–(4.11), but (4.12)–(4.14), derived from
the microscale conditions on S, no longer apply. Consequently,
the analysis (4.15)–(4.19) remains valid, whereby (4.20) is
replaced by

tanh
�

4
= A(ξ,η)e−Z

√
c (6.1)

in which the integration constant A is to be obtained from
asymptotic matching with the Dukhin sublayer. Similarly,
the momentum analysis (4.23)–(4.27) remains valid, but it
no longer leads to Eq. (4.28), which hinges upon the no-slip
condition. Rather, integration of Eq. (4.27) from Z to ∞ yields

u − U = �
∂ϕ

∂ξ
− 4√

c

∂c

∂ξ

∫ ∞

Z

sinh2 �(t)

4
dt. (6.2)

The integral in this expression is readily evaluated using (4.19).
This provides the present counterpart of Eq. (4.28)

u − U = �
∂ϕ

∂ξ
− 4

c

∂c

∂ξ
ln cosh

�

4
, (6.3)

where the “integration constant” u—the electro-neutral slip on
s—is to be found from asymptotic matching with the sublayer.

Finally, Eqs. (4.29)–(4.30) also retain their validity, whence
J±

0 is a constant (i.e., a function of ξ and η alone), but (4.31)
is not necessarily valid; J±

0 may be nonzero. Clearly, with
the no-flux condition on the solid wall and the constancy of
J±

0 in the Debye layer, any such nonzero transverse flux must
originate in the Dukhin layer.

B. Dukhin-layer formulation

Following the scaling analysis of Sec. V we define the
Dukhin-layer coordinate [cf. (4.1)]

Z̃ = z/δ2 = Z/δ. (6.4)

In view of the Boltzmann distributions (4.16) and the scal-
ing (5.2), it is anticipated that the anionic concentration in the
sublayer is O(δ−2)

c−(x; δ) = δ−2C̃−
−2(ξ,η,Z̃) + · · · , (6.5)

while the cation concentration is O(δ2).
When dealing with asymptotic expansions in algebraic

powers of a small parameter, logarithmic terms are considered
O(1) [31]. We therefore postulate for the electric potential,

ϕ(x; δ) = �̃0(ξ,η,Z̃) + · · · . (6.6)

Similarly to Eq. (4.17), we define the excess potential �̃ via
the relation

�̃0 = ϕ + �̃, (6.7)

where, in the usual manner, ϕ denotes the value of the
bulk potential just outside the Debye layer. In addition, we
decompose �̃ in the form

�̃ = ζ + � (6.8)
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wherein ζ (a function of ξ of η alone) is defined such that

�(Z̃ = 0) = 0. (6.9)

Thus, ζ retains the interpretation of the leading-order voltage
drop on the entire Debye layer (including the sublayer). As
will become evident, the voltage �, as defined in Eq. (6.8), is
a function of Z̃ alone, independent of ξ of η.

In view of the momentum balance (2.9) in the normal
direction we anticipate an O(δ−4) large pressure in the
sublayer,

p = δ−4P̃−4 + · · · . (6.10)

We still postulate O(1) tangential velocities

u = Ũ0 + · · · , v = Ṽ0 + · · · , (6.11)

whereby the continuity equation (2.8) and the impermeability
condition (2.13) in conjunction with the scaling (6.4) suggest
an O(δ2) normal velocity,

w = δ2W̃2 + · · · . (6.12)

The required matching of the normal anionic flux in the
sublayer with that in the Debye layer in conjunction with
Eq. (4.30) implies that this flux must actually match the
corresponding one in the electroneutral region. We, therefore,
anticipate an O(1) anionic flux,

êz · j− = J̃−
0 + · · · . (6.13)

On the other hand, the large anionic concentration suggests
large anionic fluxes in the tangential directions,

(I − êzêz) · j− = δ−2J̃−
−2 + · · · ; (6.14)

here substitution of Eq. (2.3) yields

J̃−
−2 = −∇‖C̃−

−2 + C̃−
−2∇‖�̃0 (6.15)

in which

∇‖ = êξ

∂

∂ξ
+ êη

∂

∂η
(6.16)

is the projection of the gradient operator in the tangential
direction.

At large Z̃ the sublayer fields must match the small-Z
expansions of the corresponding Debye fields. In addition,
they must satisfy at Z̃ = 0 the appropriate boundary condition
on S. The impermeability and no-slip condition (2.13) now
reads

Ũ0 = Ṽ0 = W̃2 = 0 at Z̃ = 0. (6.17)

In view of the no-flux condition (2.14), the O(1) anionic flux
normal to S must vanish,

J̃−
0 = 0 at Z̃ = 0. (6.18)

Finally, using (6.6)–(6.8) together with Eqs. (5.5) and (5.6),
we obtain from Gauss’s law (2.15) in terms of the stretched
variable (6.4),

∂�

∂Z̃
= −Bi at Z̃ = 0. (6.19)

C. Dukhin-layer analysis

Since the anionic flux in the z direction begins at O(1) [see
Eq. (6.13)] the term

−∂C̃−
−2

∂Z̃
+ C̃−

−2

∂�

∂Z̃
, (6.20)

representing O(δ−4) flux, must vanish; this, in conjunction
with Eq. (5.6), results in the Boltzmann distribution

C̃−
−2 = c Bi2eζ−ζ̄ e�, (6.21)

wherein matching between Dukhin-layer and Debye-layer
fields is already accounted for.

Consider now Poisson’s equation (2.5) at O(δ−2),

2
∂2�

∂Z̃2
= C̃−

−2. (6.22)

Substitution of Eq. (6.21), multiplication by ∂�/∂Z̃, and
integration yields(

∂�

∂Z̃

)2

= c Bi2eζ−ζ̄ e� + B(ξ,η). (6.23)

Since ∂�/∂Z̃ and e� are respectively proportional to the
O(δ−2) transverse electric field and anionic concentration
within the Dukhin layer, they must vanish at large Z̃ due to
the different scaling of these fields in the Debye layer. Thus,
B = 0:

∂�

∂Z̃
= −Bi

√
c eζ−ζ̄ e�. (6.24)

Application of Eq. (6.19) then reveals the following relation
between ζ − ζ̄ and the bulk concentration c,

c eζ−ζ̄ = 1, (6.25)

resulting in the simplified first-order equation

∂�

∂Z̃
= −Bi e�/2. (6.26)

Integration of Eq. (6.26) in conjunction with Eq. (6.9) yields
(cf. Ref. [8])

� = 2 ln
2

2 + BiZ̃
; (6.27)

note that � is a function of Z̃ alone. Matching with Eq. (6.1)
then reveals that A = 1, providing the excess-potential distri-
bution in the Debye layer

� = 2 ln
1 + e−Z

√
c

1 − e−Z
√

c
. (6.28)

Unsurprisingly, this distribution represents the large-ζ limit of
the Gouy-Chapman distribution (4.20).

We note that (6.25) implies the following ζ distribution:

ζ = ζ̄ − ln c (6.29)

or, using (5.6),

ζ = 2 ln
Bi

δ
√

c
; (6.30)

in addition, it simplifies (6.21) to

C̃−
−2 = Bi2e�. (6.31)
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Remarkably, C̃−
−2 is independent of ξ and η. Substitution of

(6.7) and (6.8) together with Eqs. (6.29) and (6.31) into (6.15)
yields,

J̃−
−2 = Bi2e�∇‖(ϕ − ln c). (6.32)

Since the anions do not satisfy a Boltzmann distribution in the
electroneutral region, the gradient of their chemical potential
ϕ − ln c does not necessarily vanish; hence, J̃−

−2 is generally
nonzero.

Consider now the momentum balance (2.9). In the normal
direction at O(δ−5) we find the equation [cf. (4.23)]

∂P̃−4

∂Z̃
= ∂2�

∂Z̃2

∂�

∂Z̃
, (6.33)

whose solution is

P̃−4 = 1

2

(
∂�

∂Z̃

)2

, (6.34)

where the constant of integration vanishes due to asymptotic
matching with the O(δ−2) Debye-layer pressure, when use is
made of the large-Z̃ decay of ∂�/∂Z̃.

In the ξ direction, at O(δ−4), the momentum balance (2.9)
yields [cf. (4.25)]

∂P̃−4

∂ξ
= ∂2Ũ0

∂Z̃2
+ ∂2�̃0

∂Z̃2

∂�̃0

∂ξ
. (6.35)

Substitution of Eq. (6.34) in conjunction with the defini-
tions (6.7) and (6.8) yields

∂2Ũ0

∂Z̃2
= ∂�

∂Z̃

∂2�

∂ξ∂Z̃
− ∂2�

∂Z̃2

∂

∂ξ
(ϕ + ζ + �) . (6.36)

Since � is independent of ξ , integration yields

∂Ũ0

∂Z̃
= − ∂�

∂Z̃

∂

∂ξ
(ϕ + ζ ). (6.37)

where the constant of integration vanishes due to asymptotic
matching with the Debye-scale velocity. One more integration,
in conjunction with Eq. (6.9) and the no-slip condition (6.17),
furnishes the velocity profile

Ũ0 = −�
∂

∂ξ
(ϕ + ζ ). (6.38)

A similar expression holds for Ṽ0. In vector notation,

Ũ0 = −�∇‖(ϕ + ζ ), (6.39)

wherein Ũ0 is the tangential projection of the velocity vector
[cf. (6.14)]

Ũ0 = êξ Ũ0 + êηṼ0. (6.40)

Finally, consider the anionic balance (2.2) at O(δ−2):

∂J̃−
0

∂Z̃
+ ∇‖ · J̃−

−2 + α−
(

Ũ0 · ∇‖C̃−
−2 + W̃2

∂C̃−
−2

∂Z̃

)
= 0.

(6.41)

Integration over Z̃ in conjunction with Eq. (6.18) yields

−J̃−
0 (Z̃ → ∞)=∇‖ ·

∫ ∞

0
J̃−

−2 dZ̃

+α−
∫ ∞

0

(
Ũ0 · ∇‖C̃−

−2 + W̃2
∂C̃−

−2

∂Z̃

)
dZ̃,

(6.42)

where in the first term on the right-hand side we have
interchanged the order of transverse integration and tangential
differentiation. Substitution of Eq. (6.27) into (6.32) followed
by integration yields for this term

2Bi∇2
s (ϕ − ln c). (6.43)

Consider now the second term on the right-hand side. Making
use of the leading-order continuity equation

∇‖ · Ũ0 + ∂W̃2

∂Z̃
= 0, (6.44)

yields, via integration by parts,∫ ∞

0
W̃2

∂C̃−
−2

∂Z̃
dZ̃ = [W̃2C̃

−
−2]∞

Z̃=0 +
∫ ∞

0
C̃−

−2∇‖ · Ũ0 dZ̃.

(6.45)

The boundary terms vanish at both Z̃ = 0 [due to (6.17)] and
Z̃ → ∞ (since the decay of C̃−

−2 as Z̃−2 dominates over the
∼Z̃ ln Z̃ divergence of W̃2). It follows that the second term on
the right-hand side of Eq. (6.42) is

α−
∫ ∞

0
∇‖ · (C̃−

−2Ũ0) dZ̃ = α−∇‖ ·
∫ ∞

0
C̃−

−2Ũ0 dZ̃.

Substitution of Eqs. (6.31) and (6.39) followed by integration
using (6.27) finally yields for this term

4α−Bi∇2
s (ϕ − ln c). (6.46)

Using (6.43) and (6.46) we conclude that

J̃−
0 (Z̃ → ∞) = −2Bi(1 + 2α−)∇2

s (ϕ − ln c). (6.47)

Because of the low cationic concentration, it readily follows
that the cationic flux at this order vanishes identically (as in
the case of moderate surface charge).

D. A posteriori verification

In defining the Bikerman number, we have sought a constant
quantity which scales as exp(ζ/2). Scaling arguments have
suggested the use of σ , the dimensionless surface-charge
density. The “characteristic” zeta potential ζ̄ was accordingly
defined through σ = exp(ζ̄ /2). Indeed, in the following analy-
sis we have tacitly assumed that a term like eζ−ζ̄ , which appears
throughout the Dukhin-layer analysis [see, e.g., (6.21)], is
of order unity even though each of the exponents alone is
asymptotically large.

Our analysis provides an a posteriori verification to
this underlying assumption. Indeed, it eventually leads to
relation (6.25) which alternatively reads

eζ̄/2 = c1/2eζ/2. (6.48)

Since c is O(1), this relation justifies our scaling procedure.
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FIG. 3. (Color online) Relative potential ζ − � as a function of
Z for Bi = 0.4, δ = 0.01, and the indicated values of c. The dashed
curve represents the Dukhin-layer approximation, obtained from
Eq. (6.27). The solid lines represent the Debye-layer approximation,
obtained from Eq. (6.28). The thin lines represent the uniform
approximation, where � is provided by Eq. (6.49). The inset is a
zoom of the matching region, marked by the dashed box.

E. Universal structure

A peculiar feature of the Dukhin layer is the independence
of � on the concentration value c at the outer edge of the Debye
layer; see (6.27). Recalling that � represents the potential
relative to the wall [see (6.8)], it corresponds to the potential
difference � − ζ in the Debye layer. In that region, this
potential difference does depend on c; see (6.28).

The universal structure of the relative potential in the
Dukhin layer is illustrated in Fig. 3, where ζ − � is plotted
against the Debye-scale coordinate Z for Bi = 0.4 and δ =
0.01 [corresponding to ζ̄ ≈ 7.4; see (5.6)]. Three values for
c (0.2, 1, and 3) are chosen for the illustration, conceptu-
ally corresponding to different points (ξ,η) on the highly
charged surface (with c = 1 representing the entire surface
in the absence of salt polarization); these local concentra-
tions correspond to ζ ≈ 9, ζ = ζ̄ , and ζ ≈ 6.3; see (6.29).
The dashed line delineates the Dukhin-layer approximation
−�, obtained from Eq. (6.27). The solid curves represent
the respective Debye-layer approximations, obtained from
Eq. (6.28). Also shown (thin lines) are the corresponding
uniform approximations, in which � is approximated in the
usual fashion [32] by adding the respective Dukhin- and
Debye-layer approximations and subtracting their common
part, 2 ln(2/Z

√
c). Using (5.3) and (6.30), this approximation

reads

� ≈ 2 ln
BiZ̃

2 + BiZ̃
+ 2 ln

1 + e−Z
√

c

1 − e−Z
√

c
. (6.49)

Even more remarkable is the c-independent structure of the
counterion concentration in the Dukhin layer; see (6.27). This
is in sharp contrast with the counterion concentration in the
Debye layer, which clearly depends on the bulk concentration
c [see (4.9) and (4.16)]. The universal Dukhin-layer structure
is illustrated in Fig. 4, again using the values Bi = 0.4 and
δ = 0.01 and the bulk-concentration values 0.2, 1, and 3.
The dashed curve represents the leading-order Dukhin-layer
approximation [see (6.5), (6.27), and (6.31)]

δ−2Bi2
(

2

2 + BiZ̃

)2

, (6.50)
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FIG. 4. (Color online) Counterion concentration c− as a function
of Z for Bi = 0.4, δ = 0.01, and the indicated values of c. The dashed
curve represents the Dukhin-layer approximation (6.50), the solid
lines represent the Debye-layer approximation (6.51), and the thin
lines represent the uniform approximation. The inset is a zoom of the
matching region, marked by the dashed box.

the solid curves describe the leading-order Debye-layer ap-
proximation [see (4.16) and (6.28)]

c

(
1 + e−Z

√
c

1 − e−Z
√

c

)2

, (6.51)

and the thin curves delineate the corresponding uniform
approximation, evaluated via addition of Eqs. (6.50) and (6.51)
and subtraction of the common part, 4/Z2.

F. Effective boundary conditions

In deriving effective boundary conditions we consider, first,
the velocity field. Condition (4.32), based on the scaling of
the normal velocity within the Debye layer, is unaffected
by the presence of the Dukhin sublayer. The slip condi-
tion (4.33), however, is modified. Thus, asymptotic matching
between (6.38) and the Debye-scale profile (6.3) yields here

u = 4 ln 2
∂

∂ξ
ln c + ζ

∂

∂ξ
(ϕ − ln c); (6.52)

a similar expression holds for the velocity component v in the
η direction.

Consider now the O(1) ionic fluxes normal to the surface. In
view of Eq. (4.30), the fluxes in the Dukhin layer must directly
match the electroneutral fluxes (4.34). The nil cationic flux in
the sublayer readily yields the homogeneous condition

∂c

∂n
+ c

∂ϕ

∂n
= 0, (6.53)

which also applies at moderate surface charge; see (4.34). On
the other hand, matching of the anionic flux (6.47) provides
the inhomogeneous condition

∂c

∂n
= Bi(1 + 2α−)∇2

s (ϕ − ln c), (6.54)

which constitutes the main macroscale manifestation of
surface conduction.
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VII. SURFACE CONDUCTION VERSUS NONDILUTE
EFFECTS: DOMINANT MECHANISM

AT LARGE ZETA POTENTIALS?

Surface conduction emerges at large zeta potentials due
to the intense counterion concentration near the charge solid-
liquid interface. As the counterion concentration is intensified
in that region, ion-ion interactions may become appreciable
as well. Just as surface conduction, these interactions modify
the classical electrokinetic description. The latter modification,
however, takes place at a more fundamental level, implying the
eventual breakdown of the underlying Poisson-Nernst-Planck
description.

Two nondilute mechanisms are discussed in the elec-
trokinetic literature, namely electrostatic correlations [33]
and steric effects [33–36]. In particular, Khair and Squires
[37] calculated the weak-field electrophoretic mobility of a
spherical particle, including both steric effects and surface
conduction, showing that steric effects can, in principle, reduce
the effect of surface conduction.

The mean-field description of Poisson’s equation breaks
down because of electrostatic correlations, appearing when
the characteristic distance between neighboring ions becomes
comparable to the Bjerrum length

l∗ = Z2e∗2

4πε∗k∗T ∗ , (7.1)

about 0.7 nm for monovalent aqueous solutions at room
temperature. Steric effects, which modify the Nernst-Planck
equations, are associated with the ionic diameter d∗, typically
smaller than l∗, and are, hence, expected to appear at larger
concentrations.

It is desirable to inspect the relative role of these mecha-
nisms compared to surface conduction. Ion correlations appear
when the characteristic zeta potential ζ̄ is large enough so that
the typical separation associated with counterion concentration
near the interface is comparable with the Bjerrum length. This
concentration is estimated using the Boltzmann distribution
of counterions; see (4.16). Since the (dimensional) value of
the bulk salt is comparable to the ambient value c∗, the
(much larger) counterion concentration near the interface
is of order c∗eζ̄ . We accordingly find that ion correlations
appear at such (large enough) zeta potentials for which,
roughly,

c∗eζ̄ ∼ 1

l∗3 . (7.2)

The appearance of steric effects is characterized by a similar
estimate, wherein l∗ is replaced by d∗; this suggests that they
are introduced at larger zeta potentials.

Unsurprisingly, both (7.2) and the criteria (5.2) for the
appearance of surface conduction are expressed in terms of
zeta-potential exponents. Substitution from Eq. (7.2) into (5.6)
yields the critical Bikerman number Bicr = δ/(c∗l∗3)1/2. Thus,
when

O(1) � Bi � Bicr (7.3)

surface conduction plays a dominant role yet nondilute effects
can be safely neglected (see Fig. 1). This is the regime in which
our macroscale model for highly charged surfaces applies. It

is useful to express the critical Bikerman number in terms of
dimensional quantities. Thus, substitution of Eqs. (2.6) and
(2.7) in conjunction with Eq. (2.1) yields

Bicr = 1

NA

(
ε∗k∗T ∗

2Z2e∗2l∗3

)1/2 1

m∗a∗ . (7.4)

This expression is written in terms of the ambient molar con-
centration m∗ = c∗/NA, in which NA is Avogadro’s number.

Expression (7.4) implies that the distinction between differ-
ent systems essentially enters through the molar concentration
m∗, the length scale a∗, and the ionic valency Z . This
suggests using (7.3) to identify those regions in the (m∗,a∗,Z)
parameter-space where surface conduction appears at large
zeta potentials before nondilute effects become appreciable.
Since surface conduction is introduced at Bi ∼ O(1), these
regions are identified by the asymptotic inequality Bicr � 1.
Using (7.1) and (7.4) for aqueous solutions at room tempera-
ture this inequality yields the restriction

m∗a∗Z4 � 6.80 × 10−4, (7.5)

wherein m∗ is measured in molars and a∗ in microns. For
given linear dimensions a∗ of system, the concentration m∗
must be lower than the value predicted by Eq. (7.5) for surface
conduction to appear before nondilute effects.

Of course, for given a∗, the concentration must also be large
enough so the Debye thickness is small compared with a∗, as
stipulated. Considering, say, δ = 0.1 as the upper bound for
the thin-double-layer limit to practically apply, we obtain [see
Eqs. (2.6) and (2.7)] the additional restriction

m∗a∗2Z2 � 9.55 × 10−6. (7.6)

Thus, for given a linear dimension a∗, the concentration m∗
must be higher than the value predicted by Eq. (7.6) for the
thin-double-layer limit to practically apply. Note, however,
that for very large concentrations the Debye thickness is so
small that the continuum description itself breaks down within
the double layer. Roughly estimating the associated threshold
value for the Debye thickness 1/κ∗ as 10 Bjerram lengths, (2.7)
and (7.1) then imply the additional constraint

m∗Z6 � 1.95 × 10−3. (7.7)

For univalent systems, the decomposition of the (m∗,a∗)
plane by the limiting curves corresponding to Eqs. (7.5)–(7.7)
is depicted in Fig. 5. These curves delineate the region where
(i) surface conduction precedes nondilute effects at large zeta
potentials, (ii) the Debye layer is relatively thin, and (iii) the
absolute Debye thickness is not too small. The corresponding
regions for multivalent electrolytes are readily obtained from
Eqs. (7.5)–(7.7).

VIII. RECAPITULATION

In this section we summarize the macroscale model derived
in the preceding sections at the limit δ → 0. The differen-
tial equations governing electrokinetic transport within the
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FIG. 5. Schematic decomposition of the (m∗,a∗) plane for univa-
lent solutions, with m∗ measured in molars and a∗ in microns. The
solid line depicts the limiting curve corresponding to Eq. (7.5): Above
this line nondilute effects precede surface conduction at large zeta
potentials. The dashed line depicts the limiting curve corresponding
to Eq. (7.6): Below this line the thin-double-layer limit is inapplicable.
The vertical thin line depicts the limiting curve corresponding to
Eq. (7.7): To the right of this line the Debye layer is too thin for a
continuum description to apply.

electroneutral bulk are as follows:

∇2c = α+ + α−

2
u · ∇c, (8.1)

∇ · (c∇ϕ) = α+ − α−

2
u · ∇c, (8.2)

∇ · u = 0, (8.3)

∇p = ∇2u + ∇2ϕ∇ϕ. (8.4)

The last equation represents the nill divergence of the sum of
Newtonian

N = −pI + (∇u) + (∇u)† (8.5)

and Maxwell

M = ∇ϕ∇ϕ − 1
2∇ϕ · ∇ϕ I (8.6)

stresses.
The effective boundary conditions specified on the asymp-

totic boundary s depend on the surface-charge scaling.

A. Moderately charged surfaces

In this classical limit of the boundary conditions consist of
the homogenous Neumann conditions

∂ϕ

∂n
= 0,

∂c

∂n
= 0, (8.7)

together with the Dukhin-Derjaguin slip condition

u = ζ∇sϕ + 2 ln

(
1 − tanh2 ζ

4

)
∇s ln c, (8.8)

obtained from Eqs. (4.32)–(4.33). In this condition the operator

∇s = (I − n̂n̂) · ∇ (8.9)

is the surface gradient; it may, however, be replaced by ∇ in
view of Eq. (8.7). The zeta potential ζ appearing in Eq. (8.8)
is related to the O(1) charge density σ through the relation

σ = 2
√

c sinh
ζ

2
. (8.10)

B. Highly charged surfaces

For highly charged surfaces, where σ ∼ O(δ−1), the effec-
tive boundary conditions are modified. Consider, first, the case
σ > 0. Conditions (8.7) are replaced by the inhomogeneous
conditions

∂c

∂n
+ c

∂ϕ

∂n
= 0, (8.11a)

∂c

∂n
= Bi(1 + 2α−)∇2

s (ϕ − ln c), (8.11b)

wherein the Bikerman number is defined as Bi = δσ . The
dimensionless group

Du = Bi(1 + 2α−) (8.12)

superficially resembles the Dukhin number employed in the
literature; note, however, that it is not defined here in terms
of a “zeta potential.” In the prevailing weak-field description,
where ionic advection is negligible outside the double layer,
α− appears in the macroscale model only through this
combination; it is then useful to employ Du instead of Bi
throughout. In the present macroscale description, which is
not limited to weak fields, advection appears also in the
leading-order bulk transport [see (8.1) and (8.2)], and it is
advantageous to use the more fundamental Bikerman number.

The slip condition (8.8) is also modified. Use of Eq. (4.32)
and (6.52) yields, in an invariant notation,

u = 4 ln 2∇s ln c + ζ∇s(ϕ − ln c) (8.13)

wherein

ζ = 2 ln σ − ln c. (8.14)

Here, the surface-gradient operator ∇s appearing in Eq. (8.13)
cannot be replaced by ∇. Note that the second term in
Eq. (8.13) is logarithmically large in δ; its appearance in our
leading order description is consistent with our asymptotic
methodology. A uniform approximation valid for both small
and moderate Bikerman numbers is simply provided by the
moderate-charge model, when (8.7) are replaced by Eq. (8.11).

For σ < 0 it is readily verified that (8.11)–(8.14) remain
valid provided we replace α− with α+ in Eq. (8.12), ϕ with −ϕ

in Eqs. (8.11) and (8.13), ζ with−ζ in Eq. (8.13). In Eq. (8.14),
2 ln σ and ln c are respectively replaced with −2 ln(−σ ) and
− ln c. The Bikerman number is now defined as Bi = −δσ

[cf. (5.3)].
Note that a weak-field linearization of the preceding

equations furnishes the classical model of O’Brien [8].

IX. ELECTROPHORESIS OF A SPHERICAL PARTICLE

Consider now the thin-double-layer limit of the elec-
trophoresis problem defined at the end of Sec. II. We employ
spherical polar coordinates (r,θ ) with r = 0 coinciding with
the particle center and θ = 0 in the applied field direction.
Thus, the far-field conditions read

c → 1, ϕ ∼ −βr cos θ, u → −U ı̂. (9.1)

In applying the force-free condition we note that by symmetry
there can be no force in a direction perpendicular to ı̂ and,
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hence, replace (2.20) with the scalar constraint∮
dA n̂ · (N + M) · ı̂ = 0, (9.2)

wherein the integration domain may be chosen as any closed
surface within the bulk that encloses the particle.

A. Moderately charged particle

For a moderately charged particle it is readily verified
that the solution of equations (8.1) and (8.7) is the uniform
concentration

c ≡ 1. (9.3)

Thus, (8.2)–(8.4) degenerate to a linear system consisting of
Laplace’s equation

∇2ϕ = 0 (9.4)

and the homogeneous Stokes equations

∇p = ∇2u (9.5)

while the slip condition (8.8) degenerates to the linear
Helmholtz–Smoluchowski form,

u = ζ∇ϕ on s. (9.6)

In view of Eq. (9.3), the zeta potential distribution [see (8.10)]
becomes a uniform one, defined by σ = 2 sinh(ζ/2).

It is well known from the properties of the harmonic
problem defined by Eqs. (8.7), (9.1), and (9.5) that the electric
field decays at most like r−3 to its uniform value at infinity
[38]. For this dipole decay, the Maxwell stresses result in a
zero resultant force [39,40]. The electrokinetic problem has
therefore become linear. As observed by Morrison [41], the
solution to this problem is provided by the potential flow

u = ζ∇ϕ (9.7)

with zero pressure: (i) As with any irrotational flow, it
identically satisfies the Stokes equation (8.4), (ii) because ϕ is
harmonic it clearly satisfies the continuity equation (8.3), (iii)
it evidently satisfies the slip condition Eq. (9.6), and (iv) by
extending the integration surface in Eq. (9.2) to infinity, where
the Newtonian stress is O(r−4), it is readily verified that the
force-free constraint is satisfied.

Solution Eq. (9.7) together with Eq. (9.1) therefore provides
the Smoluchowski formula

U = βζ. (9.8)

While linear in β, the present analysis clearly reveals that it
is not limited to small β and should not be interpreted as a
weak-field approximation—a common misconception in the
literature. (As a matter of fact, a moderate-surface-charge
analysis for large β values, scaling as δ−1, reveals that
Smoluchowski’s formula approximately holds even then; see
Ref. [42].)

While the present electrophoretic problem has been formu-
lated for a spherical particle, its results equally hold for any
particle shape [41]. In that general case, one only needs to
prove that the particle is also torque free, which again readily
follows from the decay properties of the electric field and
presumed potential flow Eq. (9.7).

B. Highly charged particle

For a highly charged surface the uniform concentra-
tion (9.3) is incompatible with Eq. (8.11); the electrophoretic
problem is inherently nonlinear, whereby particle motion is
additionally affected by diffuso-osmotic slip and Maxwell
stresses, the latter playing a role both locally, through Coulomb
body forces, and globally, contributing to the resultant force on
the particle. In general, these mechanisms are of comparable
magnitude to electro-osmotic slip, which is the only mech-
anism acting under conditions of uniform concentration. In
contrast to the case of moderately charged particle, an analytic
solution for arbitrary β values is unavailable. (Clearly, one
should not expect a linear variation with β.)

A solution can be obtained for weakly applied fields,

β 	 1. (9.9)

In this limit, we employ the rescaling

c = 1 + βc̀, ϕ = βϕ̀, u = βù, p = βp̀ (9.10)

and

U = βÙ . (9.11)

At leading order (8.1)–(8.4) yield the linearized equations

∇2c̀ = 0, ∇2ϕ̀ = 0, ∇ · ù = 0, ∇p̀ = ∇2ù; (9.12)

conditions (8.11) become [see (8.12)]

∂c̀

∂n
+ ∂ϕ̀

∂n
= 0,

∂c̀

∂n
= Du∇2

s (ϕ̀ − c̀), (9.13)

and the slip condition (8.13) yields

ù = 4 ln 2∇s c̀ + ζ̄∇s(ϕ̀ − c̀), (9.14)

where ζ̄ = 2 ln σ is the uniform zeta potential of the unper-
turbed solution. In terms of the scaled variables, the far-field
conditions (9.1) read

c̀ → 0, ϕ̀ ∼ −r cos θ, ù → −Ù ı̂, (9.15)

while the Maxwell stresses disappear from the force-free
constraint (9.2):∮

dA n̂ · {−p̀I + ∇ù + (∇ù)†} · ı̂ = 0. (9.16)

The preceding linear problem is semicoupled. The salt
concentration and electric potential are independent of the
flow and are given by

c̀ = − 3Du

1 + 2Du

cos θ

2r2
, ϕ̀ = −

{
r + 1

2r2

1 − Du

1 + 2Du

}
cos θ.

(9.17)

The slip velocity (9.14) is, then,

ù = 3

2

ζ̄ + Du ln 16

1 + 2Du
êθ sin θ. (9.18)

The linearity of the flow problem allows us to decompose
it into two parts, both satisfying the continuity and Stokes
equations. The first part satisfies the slip condition (9.18)
together with zero velocity at infinity, while the second part
satisfies a no-slip condition on s together with the uniform
stream condition (9.15). Using a variant of the reciprocal
theorem [43], the hydrodynamic force on the particle (in the ı̂
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direction) associated with the first part given by

−3π

∫ π

0
ı̂ · ù sin θ dθ ; (9.19)

the force associated with the second problem is simply the
Stokes drag, −6πÙ . Thus, the velocity Ù is readily obtained
from Eq. (9.16) without the need to solve the flow problem.
Substitution of Eq. (9.18) into (9.19) furnishes the velocity

Ù = ζ̄ + Du ln 16

1 + 2Du
, (9.20)

in agreement with O’Brien and Hunter [7]. In the present
context, Morrison’s generalization does not hold, and (9.20)
strictly applies to a spherical shape.

The remarkable ease by which Dukhin’s mobility (9.20) is
obtained is to be contrasted with the mathematically involved
classical derivations of this result (cf. Ref. [7]). The difference
in the derivations has to do with with the order of the limit
processes involved. In the present scheme we first consider
the thin-double-layer limit and only then the weak-field
approximation; formally, this is the proper sequence since the
first (singular) limit is essentially associated with a geometric
decomposition of the fluid domain while the second limit
is a regular expansion in a small parameter. The reverse
order used in the existing literature entails first a weak-field
linearization; the breakdown of this approximation outside the
double layer, where the leading-order equilibrium variables
decay exponentially fast, becomes only more pronounced
when the double layer becomes narrow.

X. CONCLUDING REMARKS

We have developed a macroscale model for electroki-
netic flows at the thin-double-layer limit, addressing both
moderately charged and highly charged solid surfaces. This
model comprises approximate differential equations, describ-
ing transport in the essentially electroneutral bulk surrounding
the double layer, as well as effective boundary conditions
representing the double-layer physics. Not being restricted to
the weak-field regime, it may be useful for analyzing the rich
spectrum of nonlinear phenomena observed in practice [18],
which clearly reside outside the scope of classical weak-field
theories. Since the scale disparity associated with the thin-
double-layer limit has been effectively removed, our scheme
is natural for use in numerical simulations.

A novel feature in our analysis of highly charged surfaces
is the explicit decomposition of the diffuse part of the double
layer into an “outer” Debye layer and an “inner” Dukhin layer,
the latter characterized by an asymptotically large counterion
concentration. The high-charge limit is accordingly analyzed
via an appropriate double limit, of asymptotically small
Debye thickness and fixed Bikerman number, where separate
asymptotic expansions are introduced in the two layers. This
systematic approach is superior to the intuitive procedures
prevailing in weak-field investigations of this limit.

The set of bulk differential equations is identical in both the
moderate- and high-charge classes of problems. Although the
electrolyte is approximately electroneutral, its concentration
is generally nonuniform, governed by an advective-diffusive
equation governing this variable. Charge conservation

provides an elliptic differential equation governing the electric
potential, wherein the salt concentration constitutes an effec-
tive conductivity; in the case of a uniform salt distribution, this
equation degenerates to Laplace’s equation. Despite leading-
order electroneutrality, Coulomb body forces appear in the
leading-order momentum balance; these forces are relegated
to higher orders when the salt concentration is uniform.

The difference between the moderate- and high-charge
classes appears in the effective boundary conditions: thus, the
homogenous conditions in the moderate-charge limit are re-
placed by comparable inhomogeneous conditions, accounting
for the emergence of transverse counterion flux at leading
order. These conditions [see (8.11)] are expressed in terms of
the nonlinear chemical potentials of both ionic species. This
difference gives rise to a fundamental distinction between the
two classes. For moderate surface charge, salt polarization is
introduced only through externally imposed salt-concentration
gradients; at the high-charge limit, on the other hand, it is
inevitable at any out-of-equilibrium scenario. The latter limit
is, hence, intrinsically nonlinear.

With an ingrained inhomogeneous salt distribution, the
zeta potential is nonuniform even for uniformly charged solid
surfaces. The “particle zeta-potential” concept therefore loses
its usual interpretation. In defining an appropriate parameter
whose values reflects the specific limit at hand, we need to
identify a global quantity which scales essentially as exp(ζ/2)
but does not vary along the surface; this quantity is provided
by the (dimensionless) surface charge density. The resulting
dimensionless group, denoted here the Bikerman number Bi,
effectively entails the zeta-potential value corresponding to
equilibrium, where the bulk concentration is uniform. The
transition from asymptotically small Bi at moderate zeta
potentials to Bi ∼ O(1) at logarithmically large zeta potentials
reflects the appearance of surface conduction at the dominant
macroscale transport.

This need for a careful definition of a dimensionless number
was apparently overlooked in the literature, perhaps because
of the prevailing focus on weak-field linearization, where the
zeta-potential nonuniformity does not affect the leading-order
mobility calculations. Outside of that linear regime, however,
this nonuniformity cannot be neglected; the zeta-potential
polarization therefore plays a major role for Bi ∼ O(1), where
concentration variations are inevitable.

The inherent spatial variation of the zeta potential should
not be confused with zeta-potential variations associated with
the electric displacement induced within the dielectric solid
(colloquially associated with “induced-charge” mechanisms;
see Ref. [44]). Unless the ratio of solid-to-electrolyte per-
mittivities is O(1/δ) large [45,46], such variations enter the
leading-order description only in the presence of geometric
singularities, e.g., sharp corners [47,48]. In our analysis, where
we implicitly assume that this ratio is moderate, such variations
would only affect higher-order corrections. (In reality, this ratio
is actually quite small; see Ref. [28]).

To illustrate our macroscale model we apply it to the
prototypic problem of spherical particle electrophoresis, where
the differences between the moderate-charge and high-charge
limits are significant. At the moderate-charge limit the bulk
concentration turns out uniform, whereby the originally
nonlinear macroscale problem degenerates to a linear one. The
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particle accordingly moves with the Smoluchowski velocity at
all field strengths. At the high-charge limit the problem is
inherently nonlinear; solving it in the weak-field limit yields
the mobility expression of O’Brien and Hunter [7].

The derived macroscale model is reminiscent of that
appropriate to phoretic motion of ion-selective particles [49],
where the particle boundary allows for ion-exchange of one of
the ionic species. Both problems share an inherent asymmetry,
where one of the two ionic transverse fluxes within the Debye
layer is nonzero; in the present problem, it is the flux associated
with the counterions, while in the problem of ion-selective
surface it is the one associated with the “reactive” ionic
species. In both scenarios this flux inevitably results in bulk
concentration gradients.

In deriving our model, we have utilized a rather generic
problem formulation, not limited to any specific problem
or geometry. While illustrated here only for the prototypic
problem of sphere electrophoresis, it can be applied in other
situations as well. For brevity, however, we did not consider the
most general scenario. Thus, for instance, we have assumed
a steady-state transport. While this assumption is consistent
with a significant number of applications (electro-osmosis in
a channel, electrophoresis of axisymmetric particles, etc.) it
breaks down when considering the motion of several particles,
where unsteadiness is introduced through the motion of the
boundaries. Fortunately, our scheme is easily generalized to
unsteady processes; see Ref. [50].

Another limiting assumption is that of a uniform-surface
charge distribution on the solid boundary. This assumption
was deliberately introduced to emphasize the inherent nonuni-
formity in the zeta potential distribution; as a matter of fact, it
is readily verified that the macroscale model for the moderate-
charge limit remains valid even for a nonuniform distribution
of σ (still presumably prescribed). The generalization of
the high-charge limit to such nonuniform distributions is a
rather formal matter of proper definitions, where the Bikerman
number is defined through some characteristic value of σ . Of
course, one could envision a more fundamental model where
the physicochemical surface-charge regulation process itself
is accounted for; see, e.g., Ref. [51].

In the high-charge limit, the derived macroscale model
may stimulate numerous research directions, of which we
survey just a few. The weakly nonlinear analysis of weak-field
electrophoresis (β 	 1), constituting a natural extension of the

present illustration, will constitute the subject of a future pub-
lication. The related numerical simulations for moderate fields
[β ∼ O(1)] and asymptotic analysis of the strong-field limit
(β � 1) are currently in process. Similar nonlinear extensions
are also desirable in the modeling of particle diffuso-phoresis.
This problem was analyzed by Prieve et al. [52] for moderate
surface-charge density and by Pawar et al. [13] for high
charge density; both analyses are based on the assumption
of a weakly applied salt gradient. The situation here is more
complicated than that in the electrophoretic problem, since the
linear solution obtained for moderate surface charge density
only holds for weak fields. Moreover, when going beyond
linear response in diffuse-phoretic problems, the imposed-salt-
gradient condition, which constitutes a local approximation in
the particle vicinity, must be replaced by a realistic condition
representing the imposed salt nonuniformity; in a true non-
linear scheme, an artificial salt-gradient condition inevitably
leads to the nonphysical prediction of negative concentrations.
These issues are well known in the context of particle
thermophoresis by imposed temperature differences [53].

Other directions may involve nonspherical particles. In the
moderate-charge limit it is common knowledge [41] that any
particle would translate with Smoluchowski’s electrophoretic
velocity (and would not rotate); this is true regardless of its
size, shape, or orientation relative to the uniformly applied
field. This remarkable property is invalid in the high-charge
limit; indeed, the weak-field analysis of O’Brien and Hunter
[7] leads to a size-dependent electrophoretic mobility [see
Eq. (9.20)]. A comparable weak-field analysis for a spheroidal
particle was carried out by O’Brien and Ward [54]; while
their linearized calculation does not predict particle rotation,
they claim it should appear at O(β2). Our model provides the
framework for carrying out the requisite weakly nonlinear
analysis for calculating this rotation effect. Finally, since
Sellier’s extension [55] of Morrison’s single-particle analysis
to a cluster of particles does not hold in the high-charge limit,
it may be of interest to apply our model for analyzing the effect
of surface conduction on electrokinetic particle interactions.
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