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Mode-coupling theory of the glass transition for confined fluids
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We present a detailed derivation of a microscopic theory for the glass transition of a liquid enclosed between
two parallel walls relying on a mode-coupling approximation. This geometry lacks translational invariance
perpendicular to the walls, which implies that the density profile and the density-density correlation function
depends explicitly on the distances to the walls. We discuss the residual symmetry properties in slab geometry
and introduce a symmetry adapted complete set of two-point correlation functions. Since the currents naturally
split into components parallel and perpendicular to the walls the mathematical structure of the theory differs from
the established mode-coupling equations in bulk. We prove that the equations for the nonergodicity parameters
still display a covariance property similar to bulk liquids.
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I. INTRODUCTION

Cooling or compressing a liquid usually induces a freezing
transition towards a crystal, which then corresponds to the
lowest free energy state. However, in many systems the phase
transformation can be circumvented resulting in a supercooled
metastable liquid where the viscosity increases by many
orders of magnitude upon mild changes of temperature or
density. This slowing down of transport eventually leads to the
glass-transition phenomenon where structural arrest exceeds
macroscopic time scales. One of the grand challenges of
theoretical physics is to provide a framework that explains
the microscopic mechanism and the plethora of phenomena
related to the glass transition.

Significant progress in this direction has been achieved
within the mode-coupling theory of the glass transition (MCT),
which was developed by Götze and collaborators [1,2]. The
theory requires only the static structure as input parameter
and then provides a complete description of dynamic density
correlations. In particular, it yields a strong slowing down of
the structural relaxation upon gradual changes of the static
local order, eventually leading to a structural arrest. Thus
the essence of the glass transition is conceived as a dynamic
breaking of ergodicity driven by the strong correlations of
the constituent particles. In the vicinity of the transition MCT
makes a series of nontrivial predictions that characterize the
structural relaxation. The most prominent is the emergence of
two scaling laws in time, a phenomenon that does not appear
to have an analog in other fields of physics. The first scaling
law describes the dynamics close to a plateau value, also
referred to as nonergodicity parameter or glass form factor,
and a factorization property of the space and time dependence
is predicted. The decay from the plateau to zero obeys a
second scaling law (time-temperature superposition principle)
characterized by stretched relaxation functions.

Numerous aspects of MCT have been tested successfully
[3]; examples include depolarized-light scattering, which
nicely displays the enhancement of a minimum in the first
scaling regime [4–6], colloidal glass-forming systems [7,8]
exhibiting the wave-number-dependent structural relaxation,
and computer simulations on binary mixtures [9,10] revealing
scaling behavior in the vicinity of the plateau.

The success of the theory for simple one-component
systems or mixtures is encouraging to advance the mode-
coupling approach of the glass transition also to more complex
situations, adding new degrees of freedom, varying the
dimension or introducing confinement. The mode-coupling
theory has been applied successfully to two dimensions
[11–13]. Similarly, the properties of MCT in arbitrarily high
dimensions have been discussed [14–17] to infer if the theory
becomes of mean-field type in a well-defined manner. Whereas
these works describe simple liquids composed of structureless
particles, already rigid linear [18–22] and arbitrarily shaped
[23] molecules require the use of symmetry-adapted tensor
fluctuation densities to account for the orientational degrees
of freedom. Then, the intermediate scattering function gen-
eralizes to a matrix-valued correlation function accompanied
by a splitting of the currents, which introduces subtle new
mathematical properties [24].

A challenge for the theory is introduced by exposing
the glass-forming liquid to complex geometries or external
potentials [25] and walls. A mode-coupling theory combin-
ing aspects of quenched disorder and interaction induced
vitrification has been elaborated [26–29], which predicts an
intriguing interplay of the glass transition driven by the strong
mutual interactions of the fluid particles and the localization
transition induced by the obstruction by the frozen matrix.
However, there a divergent length scale with long-wavelength
anomalies [28,30] emerges and a refined description requires
concepts from critical phenomena as has been worked out for
the Lorentz problem [31–33].

The response of the time-dependent density correlation
function to small local perturbations requires one to consider
inhomogeneous mode-coupling equations [34], and the emer-
gence of a hidden divergent length scale has been predicted.

A great deal of experimental work and computer simula-
tions has been devoted to confine the liquid [35] to a narrow
slab to investigate the role of cooperativity and dynamic
heterogeneities for the slowing down of transport processes.
The interaction of the liquid with the walls has a crucial
influence on the glass transition, e.g., for rough walls an
increase of the critical temperature in comparison to bulk
liquids has been reported [36–39]. For smooth repulsive walls
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an increase, e.g., for soft sphere mixtures [40], was found
as well, whereas the opposite was identified for polymers
[41–43]. Experimental results using confocal microscopy on
colloidal hard-sphere suspensions between two smooth walls
reveal a decrease of the critical packing fraction and a slower
dynamics at the walls in lateral direction [44–46]. Recently,
an additional slowing down of motion has been reported
due to an enhancement of effective surface roughness by
immobilized particles [47]. Computer simulations for the
diffusive dynamics of hard spheres found that the diffusivity
displays peculiar behavior as the distance of the plates is
varied [48], oscillating similarly to static quantities like the
excess entropy obtained by density-functional theory [49].
Molecular-dynamics simulations for water confined to silica
pores have been analyzed in terms of the universal aspects of
MCT for bulk liquids close to the glass transition [50–52].

Recently, we have introduced a mode-coupling theory for
the glass transition in slab geometry based on symmetry-
adapted density fluctuation modes. For the case of a hard-
sphere liquid a nontrivial interplay between the length scale
of confinement and the average distance between the particles
has been predicted [53]. Thereby a facilitation of the glass
transition close to half integer values of the distance with
respect to the hard-sphere diameter was found in the theory.
In contrast, at distances near integer multiples of the particle
diameter the liquid phase remains favored for higher packing
fractions, which allows us to be interpreted as a manifestation
of commensurability effects.

In this article we provide a detailed derivation of the
mode-coupling theory for confined fluids. The theory describes
the dynamics of simple fluids confined by two parallel
flat hard walls. We discuss the residual symmetries and
design a symmetry-adapted complete set of Fourier modes
to decompose the density fluctuations in real space. Then
the density-density correlation function is expanded in terms
of a matrix-valued intermediate scattering function and exact
equations of motion are derived using the Zwanzig-Mori pro-
jection formalism. The currents naturally split into components
parallel and perpendicular to the surfaces. The mode-coupling
approximation is applied for the force kernel leading to a set
of closed equations of motion for the generalized intermediate
scattering function. The theory requires as input the density
profiles and the static structure factors of the confined
liquid.

The MCT equations of the glass transition for simple
one-component liquids are covariant under a linear trans-
formation of the time-dependent density correlator [2,54].
This covariance, which has been proven to be valid for
multicomponent systems as well [55], has strong implications
for the properties of the solutions of the MCT equations
[2,54,55]. The decomposition of the current density for
confined liquids into a parallel and a perpendicular component
leads to MCT equations of a different mathematical structure
than for one- or multicomponent liquids. Here we provide a
first step to demonstrate that some of these properties hold
also within the mode-coupling theory for confined liquids
by showing the covariance property of the MCT equations
for the nonergodicity parameters. In particular, we prove the
existence of one of its solutions distinguished by a maximum
principle.

II. MODEL AND INVARIANCE PROPERTIES

We consider a simple liquid comprised of N identical
particles of mass m without inner degrees of freedom enclosed
between two flat, hard, and parallel walls, which are separated
by a distance L. The area of the wall surfaces is denoted by A,
and a thermodynamic limit A → ∞,N → ∞ is anticipated,
such that the area density n0 := N/A and the wall separation
L remain constant. Adapted to the geometrical constraints
a coordinate system is introduced such that the z axis is
perpendicular to the hard surfaces located at z = ±L/2. Here
we adopt the convention that the location of the surfaces are
taken to confine the centers of the particles to |z| � L/2. In a
real experiment the particles cannot approach the plates further
than a hard core radius σ/2, e.g., for hard spheres the effective
distance of plates is then H = L + σ . For the development of
the theory it is convenient to use L as the relevant confinement
length.

In the following the in-plane coordinates are abbreviated
by �r = (x,y). The positions of the centers and momenta of
the N -particle system are specified by {�xn} = {(�rn,zn)} =
(�x1, . . . ,�xN ) and { �pn} = {( �Pn,P

z
n )} = ( �p1, . . . , �pN ) with the

in-plane momenta { �Pn}. The positions and momenta of the
particles evolve according to Newton’s equations of motion
and the corresponding Hamilton function is given by

H ({�xn},{ �pn}) =
N∑

n=1

�p2
n

2m
+ V ({�xn}) + U ({zn}). (1)

For simplicity the mutual interaction between the particles is
assumed to be pairwise additive,

V ({�xn}) =
N∑

n<m

V(|�xn − �xm|), (2)

such that the two-particle interaction preserves linear momen-
tum and angular momentum. The walls confine the particles
between the flat surfaces. Additionally, a specific particle-wall
interaction such as adsorption induced by hydrophilic or
adhesive attractions, respectively, hydrophobic or cohesive
forces, can be included,

U ({zn}) =
N∑

n=1

U(zn), (3)

where

U(z) =
{
UW (z) for |z| � L/2,

∞ for |z| > L/2.
(4)

For the case of identical walls, the specific interaction displays
the additional symmetry UW (−z) = UW (z).

Note that the wall constraint drastically changes the struc-
ture and dynamics of the liquid, which cannot be treated within
perturbation theory. Therefore, a linear response approach as
suggested in Ref. [34] is not suitable to capture the induced
changes.

The physical quantities characterizing the dynamics of
the confined liquid reflect the symmetries of the equilibrium
distribution and the corresponding time evolution. Whereas
a bulk system is on average isotropic and translationally
invariant, and displays space- and time-inversion symmetry,
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the walls reduce the number of symmetry transformations.
These residual symmetries are determined by investigating the
invariance properties of the Hamilton function. A phase-space
transformation O is called a symmetry of the system if it
leaves the Hamilton function invariant H ({O�xn},{O �pn}) =
H ({�xn},{ �pn}), at least in the limit of large system sizes. The
set of all space-time symmetries compatible with the constraint
is generated by the elementary transformations

O = {T �d,Rz(α),Pxz,Pyz,{�},Tt ,T±}, (5)

where T �d are arbitrary in-plane translations by a vector �d =
(dx,dy,0),Rz(α) are rotations around the z axis by an angle α ∈
[0,2π ). The elements Pxz and Pyz correspond to reflections at
the x-z and the y-z plane, respectively. A permutation � of the
particle labels 1,2, . . . ,N also leaves the statistical properties
as well as the dynamics unchanged. Furthermore, shifts Tt by
a time t or time reversal T± leave the dynamical laws invariant,
thus do not change correlation functions.

For identical walls the symmetry group is larger and is
generated by

Osym = O ∪ {R�n(π ),I,Pxy}, (6)

where R�n(π ) are rotations by an angle π around an axis
�n = (nx,ny,0) in the x-y plane. A space inversion is gen-
erated by I, and Pxy indicates a reflection at the dividing
x-y plane.

III. CORRELATION FUNCTIONS IN REAL
AND WAVE-NUMBER SPACE

In this section we present the correlation functions in real
space adapted to the confined geometry. We start with the most
basic quantity describing a liquid, the microscopic particle
density,

ρ(�r,z,t) =
N∑

n=1

δ[�r − �rn(t)]δ[z − zn(t)], (7)

where the dependence on the initial position in phase space is
omitted for simplicity. Due to translational symmetry parallel
to the surfaces, T �d , the equilibrium density varies only in the
z direction,

n(z) = 〈ρ(�r,z,t)〉. (8)

Here the angle brackets 〈·〉 indicate canonical averaging over
the initial conditions in phase space. We then introduce
the fluctuations δρ(�r,z,t) := ρ(�r,z,t) − n(z) and define the
density-density correlation function, which corresponds to the
Van Hove function [56],

G(|�r − �r ′|,z,z′,t) := 1

n0
〈δρ(�r,z,t)δρ(�r ′,z′,0)〉. (9)

By translational and rotational symmetry in plane, T �d and
Rz(α), the Van Hove function only depends on the modulus of
the in-plane distance |�r − �r ′|. Furthermore, by time-reversal
symmetry, T±, it is an even function of time,

G(|�r − �r ′|,z,z′,t) = G(|�r − �r ′|,z,z′, −t), (10)

and by time-translational symmetry, Tt , it is symmetric with
respect to interchanging the positions,

G(|�r − �r ′|,z,z′,t) = G(|�r ′ − �r|,z′,z,t). (11)

For the case of identical walls, the density profile is symmetric,
n(z) = n(−z), and the Van Hove function is invariant under
simultaneous reflection of z and z′,

G(|�r − �r ′|,z,z′,t) = G(|�r − �r ′|, −z, −z′,t). (12)

We expand all quantities in terms of symmetry-
adapted Fourier modes. For the z direction we em-
ploy a discrete set of Fourier modes exp(−iQμz) with
wave numbers Qμ = 2πμ/L,μ ∈ Z. These constitute a
complete set

∑
μ exp(iQμz) exp(−iQμz′) = Lδ(z − z′) of

orthogonal functions in the finite interval [−L/2,L/2]:∫ L/2
−L/2 exp(iQμz) exp(−iQνz)dz = Lδμν . Hence the equilib-

rium density profile is expanded in discrete modes

n(z) = 1

L

∑
μ

nμ exp(−iQμz), (13)

where sums over greek subscript indices are to be taken over
all integer numbers Z. The corresponding Fourier coefficients
are obtained as

nμ =
∫ L/2

−L/2
dz n(z) exp(iQμz). (14)

Since n(z) is real, nμ = n∗
−μ. We shall also need the local

specific volume v(z) := 1/n(z). By the convolution theorem,
the Fourier coefficients fulfill∑

κ

nμ−κvκ−ν =
∑

κ

n∗
μ−κv

∗
κ−ν = L2δμν. (15)

For symmetric walls the coefficients are real,

nμ = n∗
μ, vμ = v∗

μ, (16)

and by the previous relation, they are also symmetric, nμ =
n−μ,vμ = v−μ.

We decompose the spatial dependence parallel to the
surfaces into ordinary plane waves, e−i �q·�r , where the wave
numbers �q = (qx,qy) are treated initially as discrete (qx,qy) ∈
(2π/

√
A)Z2. For example, the microscopic density is

ρ(�r,z,t) = 1

A

∑
�q

1

L

∑
μ

ρμ(�q,t) exp(−iQμz)e−i �q·�r . (17)

If one performs the thermodynamic limit, such that �q be-
comes a continuous variable, sums are replaced by integrals
(1/A)

∑
�q . . . → (2π )−2

∫
d2 �q . . . as usual. The fundamental

quantities of interest are the expansion coefficients ρμ(�q,t)
called density modes,

ρμ(�q,t) =
N∑

n=1

exp[iQμzn(t)] ei �q·�rn(t), (18)

with corresponding fluctuations δρμ(�q,t) = ρμ(�q,t) −
〈ρμ(�q,t)〉. Since 〈ρμ(�q,t)〉 = Anμδ�q,0 the correction is
relevant only for vanishing wave vector parallel to the
confinement.

Expressing the density fluctuations in real space ρ(�r,z,t)
by its Fourier decomposition yields an expansion of the
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corresponding Van Hove function,

G(|�r − �r ′|,z,z′,t)

= 1

A

∑
�q

1

L2

∑
μν

Sμν(�q,t) exp[i(Qμz − Qνz
′)]ei �q·(�r−�r ′),

(19)

in terms of an infinite matrix [S(q,t)]μν = Sμν(q,t), which
generalizes the intermediate scattering function,

Sμν(q,t) = 1

N
〈δρμ(�q,t)∗δρν(�q,0)〉. (20)

The translational invariance along the direction of the walls
manifests itself in the appearance of a single wave vector �q,
whereas perpendicularly two indices are required. Furthermore
it depends only on the magnitude q = |�q| due to rotational
invariance in the plane, Rz(α).

Reversely, the generalized intermediate scattering function
is obtained from the Van Hove function by Fourier transform,

Sμν(q,t) =
∫ L/2

−L/2
dz

∫ L/2

−L/2
dz′

∫
A

d(�r − �r ′)G(|�r − �r ′|,z,z′,t)

× exp[−i(Qμz − Qνz
′)]e−i �q·(�r−�r ′). (21)

The initial value Sμν(q) := Sμν(q,t = 0) characterizes the
equilibrium structure of the fluid in the slit and will be referred
to as generalized static structure factor. Note that the hermitian
matrix S(q) � 0 is non-negative, i.e., for any set of complex
numbers yν , the inequality

∑
μν y∗

μSμν(q)yν � 0 holds.
The space and time symmetries imply relations between

the matrix elements of Sμν(q,t). The translational T �d and
rotational symmetry Rz(α) have already been exploited. By
time reversal symmetry T± and time translation Tt , the
intermediate scattering function is even in time and the matrix
is hermitian,

Sμν(q,t) = Sμν(q, −t) = Sνμ(q,t)∗. (22)

For symmetric walls, the inversion symmetry I yields

Sμν(q,t) = Sμν(q,t)∗ = S−μ−ν(q,t), (23)

i.e., the matrices are real symmetric and invariant under
simultaneous change of sign of the mode indices.

The conservation of the particle number within the slit
geometry is encoded in the continuity equation

∂

∂t
ρ(�r,z,t) + �∇ · �j (�r,z,t) = 0, (24)

where the microscopic particle current density is given by

�j (�r,z,t) =
N∑

n=1

�pn(t)

m
δ[�r − �rn(t)]δ[z − zn(t)]. (25)

By the symmetry of the system the currents split naturally into
current densities parallel,

�j ‖(�r,z,t) =
N∑

n=1

�Pn(t)

m
δ[�r − �rn(t)]δ[z − zn(t)], (26)

and perpendicular to the surfaces,

j⊥(�r,z,t) =
N∑

n=1

P z
n (t)

m
δ[�r − �rn(t)]δ[z − zn(t)]. (27)

In this work we need only the longitudinal components that
contribute to the particle conservation law. Then the divergence
�∇ · �j (�r,z,t) = �∇�r · �j ‖(�r,z,t) + ∇zj

⊥(�r,z,t) consists of two
decay channels, with currents that are represented in the
Fourier domain,

jα
μ (�q,t)= 1

m

N∑
n=1

bα
( �̂q · �Pn(t),P z

n (t)
)

exp[iQμzn(t)] ei �q·�rn(t).

(28)

Here we abbreviate the unit vector �̂q = �q/q and introduce
the selector bα(x,z) = xδα,‖ + zδα,⊥, which will simplify the
subsequent manipulations. Consequently, a spatial Fourier
expansion of Eq. (24) leads to the continuity equation for
the density and current density modes,

∂tρμ(�q,t) = i
∑

α=‖,⊥
bα(q,Qμ)jα

μ (�q,t). (29)

It is instructive to consider also the current density correlator
matrix [J (q,t)]αβ

μν = J αβ
μν (q,t), with matrix elements defined

by

J αβ
μν (q,t) = 1

N

〈
jα
μ (�q,t)∗jβ

ν (�q,0)
〉
. (30)

In particular, its initial value J αβ
μν (q) = J αβ

μν (q,t = 0) can be
evaluated explicitly (see Appendix A),

J αβ
μν (q) = kBT

m

n∗
μ−ν

n0
δαβ. (31)

By Eq. (15) its inverse matrix can be expressed in terms of the
local specific volume,

[J −1(q)]αβ
μν = m

kBT
n0

v∗
μ−ν

L2
δαβ. (32)

Applying the same reasoning as above, one easily derives the
symmetry relations for the current-current correlator,

J αβ
μν (q,t) = J αβ

μν (q, −t) = J βα
νμ (q,t)∗, (33)

and for symmetric walls additionally,

J αβ
μν (q,t) = J αβ

μν (q,t)∗ = J βα
−ν−μ(q,t). (34)

The emergence of the channel indices (α,β) for the current
density correlator matrix, that represent the splitting of the
currents into a parallel and perpendicular component, occurs
in the same spirit as has been introduced for molecular liquids
[18] or a single molecular solute [19]. There, the currents
naturally split into a translational and an orientational part.

IV. ZWANZIG-MORI PROJECTION-OPERATOR
FORMALISM

In this section the equations of motion for the generalized
intermediate scattering function are derived with the help
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of the Zwanzig-Mori projection-operator formalism [2,57].
The dynamics is driven by Newton’s equations of mo-
tion, which implies that the time evolution of phase space
functions A(t) ≡ A({ �pn(t)},{�xn(t)}) is obtained by ∂tA(t) =
{A(t),H } ≡ iLA(t), where L is referred to as the Liouville
operator. The formal solution then reads A(t) = exp(iLt)A,
where we adopt the convention that if no argument is provided
the phase-space function refers to the initial time t = 0.

The set of fluctuating phase space functions is naturally
equipped with a Hilbert space structure via the Kubo scalar
product 〈A|B〉 ≡ 〈δA∗δB〉 as correlation functions between
fluctuations δA = A − 〈A〉. One easily convinces oneself
that the Liouville operator is hermitian with respect to the
Kubo scalar product, see, e.g., [2] for the mathematical rigor.
Dynamic correlation functions can then be represented as
matrix elements 〈δA(t)∗δB〉 = 〈A|R(t)|B〉 of the backwards-
time evolution operator R(t) = exp(−iLt). The projection-
operator formalism relies on an exact reformulation of the
operator identity ∂tR(t) = −iLR(t) to

∂tPR(t)P + iPLPR(t)P

+
∫ t

0
dt ′PLQ exp[−iQLQ(t − t ′)]QLPR(t ′)P = 0,

(35)

valid for any orthogonal projection operator P; see
Appendix B. Here Q = 1 − P denotes the projection onto
the orthogonal complement, and RQ(t) = exp(−iQLQt) is
referred to as the reduced backwards-time evolution operator.

Here we derive a formally exact equation of motion for
the generalized intermediate scattering function Sμν(q,t) =
〈ρμ(�q)|R(t)|ρν(�q)〉/N . First we use the density as distin-
guished variable and introduce the projector

Pρ = 1

N

∑
�q

∑
μν

|ρμ(�q)〉[S−1(q)]μν〈ρν(�q)|, (36)

with corresponding orthogonal projection operator Qρ =
1 − Pρ . Sandwiching the operator identity Eq. (35) between
the distinguished variables, one derives the first equation of
motion,

Ṡμν(q,t) +
∑
κλ

∫ t

0
Kμκ (q,t − t ′)[S−1(q)]κλSλν(q,t ′)dt ′ = 0.

(37)

Here we observed that in Newtonian dynamics
〈ρμ(�q)|L|ρν(�q)〉 = 0, such that the second term in Eq. (35)
does not contribute. The third term can be simplified using
QρL|ρμ(�q)〉 = L|ρμ(�q)〉 and leads to the memory kernel
K(q,t) with matrix elements,

Kμν(q,t) = 1

N
〈Lρμ(�q)|RQρ

(t)|Lρν(�q)〉. (38)

In contrast to bulk systems, the current densities display two
relaxation channels, one in plane and one in the perpendicular
direction. By the particle conservation law, Eq. (29), the
memory kernel naturally splits into four parts,

Kμν(q,t) =
∑

αβ=‖,⊥
bα(q,Qμ)Kαβ

μν(q,t)bβ(q,Qν), (39)

with the reduced current-current correlation matrix

Kαβ
μν(q,t) = 1

N

〈
jα
μ (�q)

∣∣RQρ
(t)

∣∣jβ
ν (�q)

〉
. (40)

The symmetries ofKαβ
μν(q,t) are identical to the current-current

correlation function J αβ
μν (q,t). Its initial value coincides with

the equilibrium static current-current correlator, Eq. (31).
Solving the first equation of motion, Eq. (37), for Sμν(q,t)
to second order in the lag time t , one derives the short-time
expansion

Sμν(q,t) = Sμν(q) − 1

2

kBT

m

n∗
μ−ν

n0
(q2 + QμQν)t2 + O(t4).

(41)

The parallel relaxation gives rise to a term for the motion along
the plates and a second one for the flow perpendicular to the
confinement. Note that different mode indices contribute in a
nontrivial way to the decay of Sμν(q,t) already at order O(t2),
due to the breaking of translational symmetry.

The reduced current correlator is not suited as a starting
point for approximations for the slow dynamics. Rather,
we employ a second Zwanzig-Mori step for the reduced
backwards-time evolution operatorRQρ

(t), hence we make the
replacement L �→ QρLQρ in the operator identity Eq. (35).
The new orthogonal projector is constructed from the current
kets |jα

μ (q)〉. Since currents corresponding to different relax-
ation channels are mutually orthogonal, Eq. (31), the projector
splits into two commuting orthogonal components,

Pj =
∑

α=‖,⊥
Pα

j , (42)

where the individual projections are represented by

Pα
j = 1

N

∑
�q

∑
μν

∣∣jα
μ (�q)

〉
[J −1(q)]αα

μν

〈
jα
ν (�q)

∣∣. (43)

By time-inversion symmetry the projections on the currents
are orthogonal to the densities, and the three projection
operators Pρ,P‖

j ,P⊥
j mutually commute. Then the Zwanzig-

Mori procedure yields the second equation of motion,

K̇αβ
μν(q,t)

+
∑
κλ

∑
γ=‖,⊥

∫ t

0
Mαγ

μκ (q,t − t ′)[J −1(q)]γ γ

κλ K
γβ

λν (q,t ′)dt ′ = 0,

(44)

where we observed again that J (q) is diagonal in the channel
indices. The memory kernel M(q,t) of the fluctuating forces
has matrix elements

Mαβ
μν(q,t) = 1

N

〈
jα
μ (�q)

∣∣LQ exp[−iLQt]QL
∣∣jβ

ν (�q)
〉
, (45)

where Q = QjQρ = 1 − Pj − Pρ projects onto the orthog-
onal subspace spanned by the density and the currents.
The dynamics of this subspace is generated by the reduced
Liouville operator LQ := QLQ.

The exact equations of motion assume the form of matrix-
valued integrodifferential equations, where the memory effects
emerge via the convolution integrals. We note that due to
the two decay channels both integrodifferential equations,
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Eqs. (37) and (44), with first-order derivative in time cannot
be replaced by a single integrodifferential equation with
second-order derivative, quite in contrast to simple one-
and multicomponent liquids. The equations simplify in the
Fourier-Laplace domain convention,

Ŝμν(q,z) = i

∫ ∞

0
dt Sμν(q,t) exp(izt), Im[z] > 0, (46)

where z constitutes a complex frequency.1 As usual, one
infers that the Laplace transforms are analytic functions in
the upper half plane Im[z] > 0, and all singularities are
concentrated on the complement [2]. From the definition of
the Kubo scalar product, the Laplace transforms of dynamic
correlation functions are matrix elements of the resolvent
operator (L − z)−1, e.g.,

Ŝμν(q,z) = 1

N
〈ρμ(�q)|(L − z)−1|ρν(�q)〉, (47)

and similarly for the other correlation functions. Transforming
the first equation of motion, Eq. (37), yields a matrix equation
for Ŝ(q,z) with formal solution,

Ŝ(q,z) = −[zS−1(q) + S−1(q)K̂(q,z)S−1(q)]−1. (48)

By linearity, the decomposition of K(q,t) into the different
relaxation channels, Eq. (39), translates directly to the Laplace
domain,

K̂μν(q,z) =
∑

αβ=‖,⊥
bα(q,Qμ)K̂αβ

μν(q,z)bβ(q,Qν). (49)

Last, the second equation of motion, Eq. (44), allows us to
calculate the current kernel by matrix inversion,

K̂(q,z) = −[zJ −1(q) + J −1(q)M̂(q,z)J −1(q)]−1. (50)

Up to this point, all equations are exact and all features specific
to the interactions within the liquid and the wall are encoded
in the force kernel M(q,t). Close to the glass transition,
we anticipate that forces due to interactions persist for long
times, implying that the Laplace transform M̂(q,z) becomes
large for small frequencies. By Eq. (50) the current correlator
K̂(q,z) becomes small in this case reflecting that transport
is drastically suppressed. The first equation of motion in the
Laplace domain, Eq. (48), implies that the density correlation
function Ŝ(q,z) diverges for z → 0 at the glass transition due
to the slowing down of the structural relaxation.

V. MODE-COUPLING THEORY

The Zwanzig-Mori formalism expresses the density dy-
namics in terms of the force kernel M(q,t). To close the set
of dynamic equations we need to specify the force kernel by
a suitable approximation. The basic insight is that caging by
neighboring particles is the driving mechanism for the slowing
down of the dynamics. Yet, the caging forces entering the force
kernel are generated by the interactions with the particles, i.e.,

1Since it is clear from the context when z refers to a complex
frequency or to a distance to the wall, no confusion arises.

by products of density modes. Here, we rely on the mode-
coupling idea for supercooled liquids [2] to establish a connec-
tion in the temporal domain between the force kernel as a func-
tional of the density correlation functions. The goal is thus to
derive a microscopic theory without free parameters allowing
us to evaluate the complete dynamics, including the long-time
structural relaxation, from a set of self-consistent equations.

We implement the mode-coupling idea following the strat-
egy of simple bulk liquids: The forces are projected onto a set
of fluctuating density-pair modes and the resulting four-point
correlation function with reduced dynamics is factorized into
a product of density correlation functions with the original
dynamics. The technical procedure is to identify first an
orthogonal projection operator onto the pair fluctuating modes:

Pρρ =
∑

11′22′
|δρ(1)δρ(2)〉g(12; 1′2′)〈δρ(1′)δρ(2′)|. (51)

Here we followed Ref. [18] to simplify the notation by com-
bining the wave numbers and mode indices into superindices
i = (�qi,μi) and i ′ = (�q ′

i ,μ
′
i). The matrix g(12; 1′2′) ensures

idempotency, P2
ρρ = Pρρ , by the normalization condition∑

1′2′
g(12; 1′2′)〈δρ(1′)∗δρ(2′)∗δρ(1′′)δρ(2′′)〉

= 1

2
[δ(1,1′′)δ(2,2′′) + δ(1,2′′)δ(2,1′′)]. (52)

The essential part of the mode-coupling approximation is the
factorization of the dynamical four-point correlation function
into dynamical two-point correlation functions,

〈δρ(1)∗δρ(2)∗ exp[−iLQt]δρ(1′)δρ(2′)〉
≈ N2[S(1,1′,t)S(2,2′,t) + (1′ ↔ 2′)]. (53)

Specializing to t = 0 yields an approximate factorization of
the static four-point correlation function,

〈δρ(1)∗δρ(2)∗δρ(1′)δρ(2′)〉
≈ 〈ρ(1)|ρ(1′)〉〈ρ(2)|ρ(2′)〉 + (1′ ↔ 2′). (54)

For consistency, we employ the same factorization also in the
normalization condition, Eq. (52), which then allows us to
determine

g(12; 1′2′) ≈ 1

4N2
{[S−1](1,1′)[S−1](2,2′) + (1′ ↔ 2′)}.

(55)

Collecting terms the mode-coupling procedure leads to an
approximation for the force kernel as a bilinear functional
of the generalized intermediate scattering function,

[M(q,t)]αβ
μν ≈ 1

2N3

∑
�q1,�q2=�q−�q1

∑
μ1μ2ν1ν2

X α
μ,μ1μ2

(�q,�q1 �q2)

× Sμ1ν1 (q1,t)Sμ2ν2 (q2,t)X β
ν,ν1ν2

(�q,�q1 �q2)∗ (56)

Note that, due to translational invariance in lateral direction
to the walls, only wave vector �q1 and �q2 contribute which
fulfill the selection rule �q = �q1 + �q2. Here the complex-
valued vertices X α

μ,μ1μ2
(�q,�q1 �q2) arise from the overlap of the
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fluctuating forces with the density pair modes

X α
μ,μ1μ2

(�q,�q1 �q2) =
∑
μ′

1μ
′
2

〈QLjα
μ (�q)∗δρμ′

1
(�q1)δρμ′

2
(�q2)〉

× [S−1(q1)]μ′
1μ1 [S−1(q2)]μ′

2μ2 . (57)

The overlaps can be evaluated explicitly in terms of
structural quantities〈
QLjα

μ (�q)∗δρμ1 (�q1)δρμ2 (�q2)
〉 = N

kBT

m
δ�q,�q1+�q2

×
[
bα( �̂q · �q1,Qμ1 )Sμ−μ1,μ2 (q2) + (1 ↔ 2)

−
∑
κσ

n∗
μ−κ

n0
bα(q,Qκ )[S−1(q)]κσ Sσ,μ1μ2 (�q,�q1 �q2)

]
; (58)

see Appendix C. Here, static correlations of the density with
pair modes occur, which introduces the triple correlation
function

Sσ,μ1μ2 (�q,�q1 �q2) = 1

N
〈δρσ (�q)∗δρμ1 (�q1)δρμ2 (�q2)〉. (59)

In practice, the static triple correlations are difficult to
determine and therefore further approximations are intro-
duced. In simple and molecular bulk liquids the convolution
approximation [2] has proven successful to describe the glassy
behavior. In Appendix D we prove that the convolution
approximation applied to a liquid confined in a slit (see
Appendix E for details) leads to a similar vertex structure as
found for simple and molecular liquids. As a result the vertices
assume the compact form

X α
μ,μ1μ2

(�q,�q1,�q2) ≈ −N
kBT

m

n0

L2
δ�q,�q1+�q2

× [bα( �̂q · �q1,Qμ−μ2 )cμ−μ2,μ1 (q1) + (1 ↔ 2)]. (60)

Here cμν(q) are the matrix elements of the direct correlation
function implicitly defined by the proper generalization of the
Ornstein-Zernike equation,

S−1(q) = n0

L2
[v − c(q)], (61)

with2 [v]μν = vν−μ. Direct inspection shows that cμν(q) has
the same symmetry properties as Sμν(q).

The fluctuating force kernel enters the Zwanzig-Mori
equation, Eq. (50), only in terms of the combination
J −1(q)M̂(q,z)J −1(q). This suggests to define an effective
force kernel M(q,t), which is then given by

Mαβ
μν(q,t) = [J −1(q)M(q,t)J −1(q)]αβ

μν

≈ Fαβ
μν [S(t),S(t); q]

= 1

2N

∑
�q1,�q2=�q−�q1

∑
μ1μ2
ν1ν2

Yα
μ,μ1μ2

(�q,�q1 �q2)

×Sμ1ν1 (q1,t)Sμ2ν2 (q2,t)Yβ
ν,ν1ν2

(�q,�q1 �q2)∗, (62)

2In our previous work, Ref. [53], we considered only symmetric
walls, where [v]μν = vν−μ = vμ−ν .

with new vertices

Yα
μ,μ1μ2

(�q,�q1 �q2)

= n2
0

L4

∑
κ

v∗
μ−κ [bα( �̂q · �q1,Qκ−μ2 )cκ−μ2,μ1 (q1) + (1 ↔ 2)].

(63)

Note that the static inverse current correlator, Eq. (32), is diag-
onal with respect to the channel index α but not with respect
to the mode indices μ,ν. The notation for the MCT functional
F [S(t),S(t); q] emphasizes the bilinearity with respect to the
generalized intermediate scattering functions, which is a direct
implication of the mode-coupling approximation.

The MCT equations for confined fluids closely resemble the
ones for molecular liquids. This motivates us to define a class
of mode-coupling theories which is distinguished by multiple
relaxation channels for current kernels. The mathematical
properties proven in the next section therefore hold not only
for MCT of confined liquids but to all MCT theories belonging
to this class.

VI. NONERGODICITY PARAMETER

In this section we introduce the nonergodicity parameter,
which plays a key role in glass physics for representing the
spontaneous arrest of density fluctuations. It is also known as
the glass form factor and allows us to discriminate between
an ergodic “liquid phase” and a nonergodic “glass phase.”
The first subsection of this part provides general information
about the long-time behavior of the self-consistent set of
equations for confined liquids. In the remaining subsections,
we prove certain mathematical aspects of the mode-coupling
equations. In particular, we show that an iteration scheme
can be defined where convergence to a solution for the
nonergodicity parameter is ensured. Furthermore this solution
is distinguished by the property that it fulfills a certain
maximum principle. These last subsections may be skipped
upon the first reading of the paper.

A. General definitions

In this section we show that the set of self-consistent
equations for the intermediate scattering function can be solved
for their respective long-time limits without solving explicitly
for the dynamics for all times. Here, we adopt the same
approach as for bulk systems and employ a nonvanishing long-
time limit of the generalized intermediate scattering function,

Fμν(q) := lim
t→∞ Sμν(q,t) �= 0, (64)

as the definition for a glassy state. In the current case
they constitute an infinite matrix that inherits the hermitian
structure of the scattering function,

Fμν(q) = Fνμ(q)∗. (65)

For symmetric walls, the inversion symmetry I yields
additionally

Fμν(q) = Fμν(q)∗ = F−μ−ν(q), (66)

so the matrices are real symmetric and invariant under
simultaneous change of sign of the mode indices.
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We argue that on general grounds the nonergodicity
parameter is a non-negative matrix F(q) � 0. Indeed, for any
set of complex numbers yν ,

∑
μν y∗

μSμν(q,t)yν constitutes the
autocorrelation function of the variables

∑
μ yμδρμ(�q,t) and

as such its long-time limit is non-negative [2].
By the Laplace transform a nonergodic contribution results

in a zero-frequency pole, Sμν(q,z) = −Fμν(q)/z + (smooth),
for small complex frequencies z. Reversely, the nonergodicity
parameter can be obtained from the limit

Fμν(q) := − lim
z→0

zŜμν(q,z). (67)

By the mode-coupling approximation, an arrest of the density
modes is accompanied by a freezing of the force kernel,

N (q) := M(q,t → ∞) = F [F,F; q], (68)

which is again a non-negative matrix with respect to the
double index γ := (α,μ),δ := (β,ν) since it is the long-time
limit of an autocorrelation function. We demonstrate in the
next subsection that the MCT approximation preserves this
property. The simultaneous freezing of the forces and the
densities implies again a zero-frequency pole for M̂αβ

μν (q,z) and
by Eqs. (50) and (49), the current correlator vanishes for small
complex frequencies z → 0 as K̂μν(q,z) = zGμν(q) + o(z)
where

Gμν(q) =
∑

αβ=‖,⊥
bα(q,Qμ)[N −1(q)]αβ

μνb
β(q,Qν). (69)

In particular, one infers G(q) � 0, since the inverse of a
non-negative matrix inherits the same property as well as its
contraction with respect to the channel indices. From the first
equation of motion, Eq. (48), the nonergodicity parameter can
be evaluated as

F(q) = [S−1(q) + S−1(q)G(q)S−1(q)]−1

= S(q) − [S−1(q) + G−1(q)]−1. (70)

The long-time limit of the mode-coupling equations is a
solution of the set of Eqs. (68)–(70). To avoid cumbersome
notation we allow G(q) to become formally infinite; in that
case we put G−1(q) = 0. In general, these equations possess
many solutions, in particular F(q) ≡ 0 represents the trivial
solution, which corresponds to an ergodic liquid.

B. Positivity of the mode-coupling functional

To demonstrate the positivity property, it is convenient
to introduce the pair-mode indices a := (μ1,μ2) and b :=
(ν1,ν2). Then Eq. (62) allows for the compact expression

F[F,F; q]γ δ = 1

2N

∑
ab

∑
�q1,�q2=�q−�q1

Yγ
a (�q,�q1 �q2)

× [F(q1) ⊗ F(q2)]abYδ
b (�q,�q1 �q2)∗, (71)

where ⊗ denotes the Kronecker product in the
space of mode indices, Eμ1ν1 (q1)Fμ2ν2 (q2) = [E(q1) ⊗
F(q2)]a=(μ1,μ2),b=(ν1,ν2).

Sandwiching Eq. (71) between complex-valued tuples sγ

and summing over γ yields∑
γ δ

sγ ∗F[F,F; q]γ δsδ

= 1

2N

∑
γ δ

∑
ab

∑
�q1,�q2=�q−�q1

sγ ∗Yγ
a (�q,�q1 �q2)[F(q1) ⊗ F(q2)]ab

×Yδ
b (�q,�q1 �q2)∗sδ

= 1

2N

∑
ab

∑
�q1,�q2=�q−�q1

Za(�q,�q1 �q2)∗[F(q1) ⊗ F(q2)]ab

×Zb(�q,�q1 �q2). (72)

The first ingredient is the Kronecker product of non-
negative matrices which is non-negative again. Second,
a contraction with complex-valued tuples Za(�q,�q1 �q2)∗ :=∑

γ sγ ∗Yγ
a (�q,�q1 �q2) is performed yielding a non-negative num-

ber. Thus, the mode-coupling functional maps non-negative
matrices in the mode indices μ,ν to non-negative matrices
with respect to the double indices γ,δ for each wave number q.
Generically, all vertices are nonvanishing and all components
of the functional are positive matrices F [F,F; q] � 0 provided
the arguments are positive, F(q) � 0.

C. A convergent iteration scheme

First, we show that the mode-coupling functional
N [F; q] := F [F,F; q] preserves the following partial order-
ing: F � E if F(q) − E(q) � 0 for all q. It is convenient to use
a representation of Eq. (71) that makes the symmetry upon
exchanging the slots manifest,

F[F,E; q]γ δ

= 1

4N

∑
ab

∑
�q1,�q2=�q−�q1

Yγ
a (�q,�q1 �q2)

× [F(q1) ⊗ E(q2) + E(q1) ⊗ F(q2)]abYδ
b (�q,�q1 �q2)∗.

(73)

In the following we suppress the dependence on q and all
operations are to be understood componentwise for each
q. For given F � 0 and E � 0 the arguments for showing
the positivity of the functional are easily adapted to show
F [F,E] � 0. Assuming F � E one derives N [F] − N [E] =
F [F + E,F − E] � 0. Thus the mode-coupling functional
preserves ordering N [F] � N [E].

Since inversion reverses ordering it follows that N −1[E] −
N −1[F] � 0 and therefore also the contractions, Eq. (69),
fulfill G[E] − G[F] � 0. Eventually, the mapping

I[F] := S − [S−1 + G−1[F]]−1, (74)

is continuous and also preserves the ordering

I[F] − I[E] � 0. (75)

Since G[F] � 0, positivity is inherited for the images of the
mapping I[F] � 0. Furthermore S � I[F] for F � 0, and all
fixed points ¯̄F � 0 fulfill S � ¯̄F.

We define a sequence F(n+1) = I[F(n)] with initial value
F(0) = S � 0. Since G[S] � 0 the first iteration leads to
a matrix that is strictly smaller S � F(1). By induction
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one infers that the sequence is monotone and bounded
S � F(n) � F(n+1) � 0,n = 1,2 . . . and thus converges to some
non-negative fixed point F̄ � 0.

D. Covariance and maximum principle

Here we show that the limit F̄ obtained by iteration with
initial condition F(0) = S represents a maximal solution in
the sense that all other non-negative solutions ¯̄F � 0 of the
equation

F = I[F] (76)

are smaller or equal than F̄, i.e., F̄ � ¯̄F. F̄ is uniquely
determined by this maximum property. The corresponding
proof is based on the covariance of Eq. (76) under the linear
transformation

T : F �→ T [F] = F − ¯̄F =: F̃, (77)

which maps ¯̄F to 0 and S � 0 to S̃ = S − ¯̄F � 0. The latter
relation follows since Eq. (74) requires S � I[F] for all
F � 0. The requirement of covariance implies that there is a
transformed map Ĩ[F̃] such that

F̃ = Ĩ[F̃]. (78)

The transformed functional Ĩ[F̃] is chosen such that it is
linked to the original functional I[F] via

Ĩ[F̃] = I[F] − ¯̄F. (79)

This requirement directly ensures that if F is a fixed point
of I , then F̃ is a fixed point of Ĩ[F̃]. Thus, analogously to
Eq. (74) we define G̃[F̃] by

Ĩ[F̃] = S̃ − [S̃−1 + G̃−1[F̃]]−1. (80)

Substituting I[F] from Eq. (74) and Ĩ[F̃] from Eq. (80) into
Eq. (79) and taking into account that I[ ¯̄F] = ¯̄F we find the
renormalized functional

G̃[F̃] := [G−1[F] − G−1[ ¯̄F]]−1. (81)

For non-negative transformed functions F̃, i.e., for
F � ¯̄F, it follows from the previous subsection that
(G−1[F] − G−1[ ¯̄F]) � 0. Consequently, the renormalized
functional is again positive: G̃[F̃] � 0 for F̃ � 0. This in turn
implies that all properties discussed in the previous subsection
remain true for Ĩ[F̃] on the subspace of non-negative F̃,
as well. Hence, the iteration of Eq. (78) with initial value
F̃(0) = S̃ = S − ¯̄F � 0 yields a fixed point ¯̃F = limn→∞ F̃(n),
which is non-negative ¯̃F � 0. By construction of the
transformed functional Ĩ[F̃], Eq. (79), the diagram

F I

T

I[F]

T

F̃ Ĩ Ĩ[F̃]

(82)

commutes. This property implies that the sequences
generated by the maps I[F] and Ĩ[F̃] are in a one-to-one
correspondence: F̃(n) = F(n) − ¯̄F. Thus, in the limit n → ∞
the fixed points of the transformed and the original equation

obey ¯̃F = F̄ − ¯̄F � 0. Hence, the fixed point F̄ is larger or
equal to the assumed fixed point ¯̄F:

F̄ � ¯̄F. (83)

Since the above argument applies to any fixed point ¯̄F � 0, the
fixed point F̄ is the largest non-negative solution of the self-
consistent equation determining the nonergodicity parameter.
This property will be referred to as maximum principle.
Suppose now F∗ is a non-negative fixed point solution which
fulfills the maximum condition Eq. (83), i.e., F∗ � ¯̄F for all
fixed points of Eq. (76). Since F̄ is such a fixed point it is

F∗ � F̄. (84)

On the other hand we can also choose in Eq. (83) ¯̄F = F∗
since ¯̄F is any of the fixed points, i.e., we obtain

F̄ � F∗. (85)

Together with Eq. (84) we conclude F̄ = F∗. Consequently
the maximum property determines F̄ uniquely.

Let us note that the covariance principle used here is less
restrictive than for simple bulk liquids. There it could be shown
that the transformed mode-coupling functional is again of
polynomial type [54].

VII. SUMMARY AND CONCLUSIONS

The mode-coupling theory for liquids in confinement
[53] constitutes a microscopic theory that is based on first
principles. The scope of the theory is all two-time correlation
functions, which can be measured experimentally by scattering
methods, such as neutron, X ray, or light scattering [2,56]. The
same correlation functions are readily obtained by tracking all
particle positions as is performed in video microscopy [44–46]
or in computer simulations [36–43]. Apart from being a
description for liquids, the theory is also designed as a theory
for the glass transition, where the structural relaxation slows
down by many orders of magnitude. The strategy was first
to derive a set of exact equations of motion employing the
Zwanzig-Mori formalism [2], which introduces a memory
kernel that is a functional of all the microscopic details on
the interaction of the particles among themselves and with
the walls. This functional is in general unknown, and the
mode-coupling idea is to consider it as a functional local in
time of the intermediate scattering functions. The coupling
coefficients are then called vertices and are determined from
structural information only.

For the case of confining parallel and flat walls, the
fluctuating density field is expanded in a complete set of
symmetry-adapted modes, which are continuous functions of
a wave vector parallel to the planes and a discrete mode index
for the Fourier expansion perpendicular. The intermediate
scattering function is naturally generalized to a matrix-valued
quantity with symmetry properties inherited from microscopic
considerations. The breaking of translational symmetry per-
pendicular to the walls implies that the container can exchange
momentum with a scattering probe, which is reflected in the
nondiagonal elements of the intermediate scattering function.

A peculiarity occurs since the currents associated with the
density fluctuations naturally split into a component parallel

021502-9



LANG, SCHILLING, KRAKOVIACK, AND FRANOSCH PHYSICAL REVIEW E 86, 021502 (2012)

and perpendicular to the container walls. This requires us to
modify the structure of the equations of motion from a single
generalized harmonic oscillator to two coupled equations
of motion with retarded friction. The same mathematical
structure also occurs in the context of molecular liquids, where
the currents consist of a translational and a reorientational
part [18–20,23]. There the splitting was necessary to ensure
that the structural relaxation dynamics is independent of the
moment of inertia and mass of the molecule [24].

Our approach can also be employed for different types of
confinement, such that the density modes can be expanded into
a complete set of geometry-adapted modes. In practice this can
be achieved only for systems that display a residual symmetry
such as a rectangular duct, a cylindrical shell, or a spherical
cavity, but in principle also for arbitrary smooth wall surfaces.

The MCT equations for simple liquids display a series
of mathematical properties, which have been demonstrated
rigorously [2,54]. For example, the nonergodicity parameters
can be obtained as the limit of a simple iteration scheme,
which is guaranteed to converge to a non-negative solution, as
required by general properties of autocorrelation functions.
This solution is distinguished by a maximum principle,
which is obtained by a covariance property of the set
of MCT equations of motion [2,54]. For multicomponent
liquids the intermediate scattering function is generalized to
a matrix-valued quantity where the matrix indices refer to
the different species in the liquid. The ideas of the proofs
can then be transferred [55] provided the notion of positivity
is generalized to hermitian matrices with positive eigenvalues.
The nonergodicity parameters of the MCT for confined liquids
are solutions of matrix-valued equations with a sophisticated
mathematical structure due to the splitting of the currents. Here
we have shown that the mode-coupling functional is positive
in the matrix sense with respect to certain superindices.
Then we suggested an iteration scheme for the nonergodicity
parameters with initial value F(0) = S, which is monotonic
thereby ensuring convergence. The solution F̄ thus obtained
is non-negative and fulfills a generalized maximum principle.
The key again was to show that the structure of the equations
determining the long-time limit reflect a covariance property
with respect to suitable shifts of the nonergodicity parameters.
The proofs developed here readily transfer also to the case
of molecular liquids, which display the same mathematical
structure. Hence, our paper entails important conclusions
also for the well-established mode-coupling approach for
molecular liquids [18–20,23,58,59] and it is encouraging to
investigate MCT extensions for even more complex systems.
The mathematical implications of our work demonstrate the
robustness of the Zwanzig-Mori procedure combined with
the first-principles MCT approach. We are confident that
also the mathematical properties of the dynamic equations
of motion from the bulk MCT can be generalized to the
case of confined liquids. In particular, one should prove
the existence and uniqueness of the time-dependent solution
and demonstrate that for overdamped motion the solutions
correspond to pure relaxations described by a superposition of
decaying exponentials only. Furthermore, the long-time limit
of the intermediate scattering function is expected to coincide
with the maximal solution obtained by our iteration scheme.
Similarly, we anticipate that all glass transition singularities in

the MCT for confined systems are of the A� type, specified by
the classification of Arnol’d [60].

Recently, striking correlations between diffusivities of
colloidal spheres in confinement with local packing properties
have been observed and quantified in a series of empirical
scaling properties [49]. In particular, the mobility displays
oscillations as a function of the wall separation, which is
attributed to commensurability effects of the packing in
confinement [48]. Since the mode-coupling theory for confined
liquids incorporates packing effects in terms of generalized
static structure factors, it appears promising that our theory
constitutes a microscopic basis for the observed empirical
correlations.

The confining walls induce strong anisotropic correlations
in the liquid [61] and cannot be treated by perturbation
theory. In particular, the changes cannot be obtained as linear
response to an external potential as has been investigated in
Refs. [34,62]. Our setup requires us to consider symmetry-
adapted modes from the very beginning such that the layering
and local packing is incorporated in suitable static quantities.

Confinement of a liquid can also be achieved inside of a
porous matrix where a glass transition can occur within the
frozen structure [26–29]. In addition to the slowing down due
to caging the interaction with the disordered environment can
lead to a localization phenomenon. In contrast to flat parallel
walls, the disordered obstacles imply an additional relaxation
channel in the memory kernel, which in mode-coupling
approximation results in a linear coupling to the intermediate
scattering function. Such a linear coupling is expected also for
the case of rough walls, where corrugations open the possibility
to exchange momentum also in the parallel direction of the
walls.

The mode-coupling theory for confined liquids is a micro-
scopic theory that does not require parameter adjustments.
Hence the theory can be tested by computer simulations
and experiments. The required input is the static structure
which is assumed to be known. The MCT equations involve
the three-point static correlation function, which is typically
difficult to determine. Applying a static convolution approx-
imation for inhomogeneous liquids [63] to slit geometry
the vertices assume the same compact form as found for
simple and molecular liquids. In particular, this approach
reduces to the standard convolution approximation in the
limit of bulk and two-dimensional liquids, respectively. While
for three-dimensional homogeneous systems the convolution
approximation has been proven sufficient to capture the key
features of supercooled simple liquids, see Ref. [64] for an
exception, it remains a challenge for the future to clarify the
quality of these different approaches.

The most promising route for experimental tests are dense
colloidal suspensions confined by glass plates [44] where
the effects of commensurability can conveniently be studied.
Our theory is applicable also for these overdamped systems
provided the equations of motion are supplemented by friction
terms accounting for the interaction with the solvent and
dropping the inertial terms. A more rigorous approach would
rely on the Smoluchowski operator in the first place and
introduce suitable one-particle irreducible memory kernels
as has been done for bulk liquids [65]. These modifications
affect only the short-time behavior; the structural relaxation
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encoded in the MCT memory kernels remains unchanged
[66]. In particular, the phase diagram and the characteristic
nonergodicity parameters are identical for atomic liquids and
colloidal suspensions.

The MCT approach for the collective dynamics of confined
liquids can be adapted to the case of tagged-particle motion,
which is of particular interest since the self-dynamics is readily
accessible in computer simulation and single-particle tracking
methods on experimental samples. In particular, the incoherent
nonergodicity parameters are obtainable from a similar set
of self-consistent matrix equations as for the collective ones,
where the mode-coupling functional now couples to both the
coherent and incoherent motion [67]. Similarly, it would be
interesting to study also the motion of the transverse currents
and discuss the emergence of more than one viscosity due to
the breaking of translational symmetry.

Our equations allow for a direct generalization to the case of
multicomponent mixtures, which is of particular interest, since
they can be easily driven to a glassy state. For confinement
it is even more important to suppress the nucleation of
crystals since flat walls tend to facilitate the formation of
ordered structures. Mixing effects [12,68–70] arise due to the
presence of a new length scale characterizing the near order.
In confinement this local packing competes with the layering
induced by the walls and an even richer phenomenology is
expected.
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APPENDIX A: STATIC CURRENT DENSITY CORRELATOR

The static current density correlation J αβ
μν (q) =

N−1〈jα
μ (�q)|jβ

ν (�q)〉 is a diagonal matrix with respect to
α and β as averages over unpaired momenta, e.g., P x

n P
y
n ,

vanish. Inserting the current densities and pre-averaging over
the momenta one obtains

J αβ
μν (q) = 1

Nm2
δαβ

N∑
n,m=1

bα
(〈( �̂q · �Pn)( �̂q · �Pm)〉, 〈P z

nP z
m

〉 )
×〈ei �q·(�rm−�rn) exp (iQνzm) exp(−iQμzn)〉. (A1)

Direct evaluation of the averages over the momenta yields〈
P z

nP z
m

〉 = 〈( �̂q · �Pn)( �̂q · �Pm)〉 = δnm mkBT , (A2)

and with 〈ρμ(�q,t)〉 = Anμδ�q,�0 one obtains the explicit expres-
sion

J αβ
μν (q) = kBT

m

n∗
μ−ν

n0
δαβ. (A3)

APPENDIX B: TIME-EVOLUTION OPERATOR IDENTITY

The backwards-time evolution operator R(t) = exp(−iLt)
allows for the decomposition R(t) = RP (t) + RQ(t) with
RP (t) = PR(t) and RQ(t) = QR(t). By the equation of
motion ∂tR(t) = −iLR(t), one obtains

∂tRQ(t) = −iQLRP (t) − iQLRQ(t), (B1)

which is formally solved by

RQ(t) = e−iQLtQ − i

∫ t

0
e−iQL(t−t ′)QLRP (t ′)dt ′. (B2)

Hence the backwards-time evolution operator can be expressed
as

R(t) = PR(t) + e−iQLtQ − i

∫ t

0
e−iQL(t−t ′)QLRP (t ′)dt ′.

(B3)

The reduced backwards-time evolution operator can be
cast in the explicitly symmetric form exp(−iQLt)Q =
Q exp(−iQLQt)Q. Multiplying the previous equation from
the right by P and from the left by PL one arrives at

PLR(t)P

= PLPR(t)P − i

∫ t

0
dt ′PLQe−iQLQ(t−t ′)QLPR(t ′)P.

(B4)

Last, employing the equation of motion ∂tR(t) = −iLR(t),
the operator identity

∂tPR(t)P + iPLPR(t)P

+
∫ t

0
dt ′PLQe−iQLQ(t−t ′)QLPR(t ′)P = 0 (B5)

follows, which is the starting point of the Zwanzig-Mori
procedure.

APPENDIX C: EVALUATION OF THE OVERLAP
MATRIX ELEMENT

Here we calculate the scalar product 〈QLjα
μ (�q)∗

δρμ1 ( �q1)δρμ2 (�q2)〉 required for the mode-coupling vertex in
Eq. (58). With Q = 1 − Pj − Pρ and Pj |δρμ1 ( �q1)δρμ2 (�q2)〉 =
0 by time inversion symmetry, one obtains three contributions:〈

QLjα
μ (�q)∗δρμ1 ( �q1)δρμ2 (�q2)

〉
= 〈

jα
μ (�q)∗

[
Lδρμ1 ( �q1)

]
δρμ2 (�q2)

〉 + (1 ↔ 2)

− 〈
Ljα

μ (�q)∗Pρ

[
δρμ1 ( �q1)δρμ2 (�q2)

]〉
. (C1)

For the first term the particle conservation law Eq. (29) implies〈
jα
μ (�q)∗

[
Lδρμ1 ( �q1)

]
δρμ2 (�q2)

〉
=

∑
γ

bγ
(
q1,Qμ1

)〈
jα
μ (�q)∗jγ

μ1
(�q1)δρμ2 (�q2)

〉
. (C2)
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Again, averaging over the momenta first, and then over the
positions similar to Eq. (A2), one obtains〈

jα
μ (�q)∗jγ

μ1
(�q1)δρμ2 (�q2)

〉
= δαγ δ�q,�q1+�q2

kBT

m
bα( �̂q · �̂q1,1)〈ρμ−μ1 (�q2)|ρμ2 (�q2)〉

= δαγ δ�q,�q1+�q2N
kBT

m
bα( �̂q · �̂q1,1)Sμ−μ1,μ2 (q2). (C3)

Here, translational invariance implies conservation of momen-
tum parallel to the walls �q = �q1 + �q2.

Evaluating the projection on the density modes in the third
term in Eq. (C1) leads to〈

Ljα
μ (�q)∗Pρ

[
δρμ1 ( �q1)δρμ2 (�q2)

]〉
= 1

N

∑
κ,σ

〈
jα
μ (�q)|Lρκ (�q)

〉
[S−1(q)]κσ

× 〈
δρσ (�q)∗δρμ1 (�q1)δρμ2 (�q2)

〉
= 1

N

∑
κ,σ,β

bβ(q,Qκ )
〈
jα
μ (�q)

∣∣jβ
κ (�q)

〉
[S−1(q)]κσ

× 〈
δρσ (�q)∗δρμ1 (�q1)δρμ2 (�q2)

〉
, (C4)

where particle conservation, Eq. (29), has been used again.
Substituting Eq. (31) for the current-current static correlator
the projected matrix element evaluates to〈

Ljα
μ (�q)

∣∣Pρ

∣∣δρμ1 ( �q1)δρμ2 (�q2)
〉

= δ�q,�q1+�q2N
kBT

m

∑
κ,σ

n∗
μ−κ

n0
bα(q,Qκ )

× [S−1(q)]κσ Sσ,μ1μ2 (�q,�q1 �q2). (C5)

Here, we abbreviated the static three-point correlation func-
tion by Sσ,μ1μ2 (�q,�q1 �q2) = N−1〈δρσ (�q)∗δρμ1 (�q1)δρμ2 (�q2)〉,
Eq. (59). Collecting terms one finds Eq. (58) of the main text:〈
QLjα

μ (�q)|δρμ1 (�q1)δρμ2 (�q2)
〉

= N
kBT

m
δ�q,�q1+�q2

{
bα

( �̂q · �q1,Qμ1

)
Sμ−μ1,μ2 (q2) + (1 ↔ 2)

− 1

n0

∑
κ,σ

n∗
μ−κb

α(q,Qκ )[S−1(q)]κσ Sσ,μ1μ2 (�q,�q1 �q2)

}
.

(C6)

APPENDIX D: VERTEX APPROXIMATION

In this Appendix, we complete the calculation of the MCT
vertex, using the convolution approximation in order to express
the static three-point correlation function in terms of products
of two-point correlation functions. The vertex after evaluating
the overlap matrix elements is given by three terms [cf.
Eq. (58)]:

X α
μ,μ1μ2

(�q,�q1 �q2)

= N
kBT

m
δ�q,�q1+�q2

{ ∑
μ′

1μ
′
2

[
bα

( �̂q · �q1,Qμ′
1

)
×Sμ−μ′

1,μ
′
2
(q2)[S−1(q1)]μ′

1μ1 [S−1(q2)]μ′
2μ2 + (1 ↔ 2)

]

−
∑
κ,σ

∑
μ′

1μ
′
2

n∗
μ−κ

n0
bα(q,Qκ )[S−1(q)]κσ

×Sσ,μ′
1μ

′
2
(�q,�q1 �q2)[S−1(q1)]μ′

1μ1 [S−1(q2)]μ′
2μ2

}
. (D1)

For the first two terms in the bracket, the sums over (μ′
1,μ

′
2)

can be performed which leads to

bα( �̂q · �q1,Qμ−μ2 )[S−1(q1)]μ−μ2,μ1

+ bα( �̂q · �q2,Qμ−μ1 )[S−1(q2)]μ−μ1,μ2 . (D2)

Inserting the Ornstein-Zernike equation, Eq. (61), they can be
recast to

n0

L2

[
bα

(
q,Q2μ−μ1−μ2

)
v∗

μ−μ1−μ2

− bα
( �̂q · �q1,Qμ−μ2

)
cμ−μ2,μ1 (q1)

− bα
( �̂q · �q2,Qμ−μ1

)
cμ−μ1,μ2 (q2)

]
, (D3)

where the linearity of the selector bα for α =‖ and the selection
rule �q = �q1 + �q2 has been used. As for the third term, the
convolution approximation (see Appendix E) gives for the
triplet structure factor

Sσ,μ′
1μ

′
2
(�q,�q1 �q2) ≈ n2

0

L6

∑
β1,β2,β3

λ1,λ2,λ3

nβ1+β2+β3v−β1−λ1Sσλ1 (q)

× v−β2−λ2S(−λ2)μ′
1
(q1)v−β3−λ3S(−λ3)μ′

2
(q2),

(D4)

where we omit a redundant δ�q,�q1+�q2 prefactor. One can then
successively sum out (μ′

1,μ
′
2,σ ), (λ1,λ2,λ3), β1, and κ , to

reduce this term to

− n0

L4

∑
β2,β3

n∗
μ−β2−β3

bα
(
q,Qβ2+β3

)
vμ1−β2vμ2−β3 . (D5)

Further progress is achieved in terms of the explicit expression
for the selector and by using the linearity of Qβ with respect
to its index in the case α =⊥. Eventually, performing the last
summations over β2 and β3, the third term in Eq. (D1) reduces
to

− n0

L2
bα

(
q,Q2μ−μ1−μ2

)
v∗

μ−μ1−μ2
(D6)

and is found to cancel the first term in Eq. (D3).
The vertex thus simplifies to

X α
μ,μ1μ2

(�q,�q1 �q2)

≈ −N
kBT

m
δ�q,�q1+�q2

n0

L2
bα( �̂q · �q1,Qμ−μ2 )cμ−μ2,μ1 (q1)

−N
kBT

m
δ�q,�q1+�q2

n0

L2
bα( �̂q · �q2,Qμ−μ1 )cμ−μ1,μ2 (q2), (D7)

which has the same form as for simple [2] and molecular
liquids [18,23].

APPENDIX E: CONVOLUTION APPROXIMATION

In this Appendix based on Ref. [63], we report the
expression of the triplet structure factor of an inhomogeneous
fluid system provided by the convolution approximation. We

021502-12



MODE-COUPLING THEORY OF THE GLASS TRANSITION . . . PHYSICAL REVIEW E 86, 021502 (2012)

first discuss the general case, then specialize the equations to
the slab geometry.

Consider an inhomogeneous N -particle fluid system
enclosed in a rectangular box of volume V . Its one-body
density and its total correlation function are denoted by n(�r)
and h(�r1,�r2), respectively, with the corresponding Fourier
transforms,

ñ(�k) =
∫

n(�r)ei�k·�rd�r, (E1)

h̃(�k1,�k2) =
∫

h(�r1,�r2)ei(�k1·�r1+�k2·�r2)d�r1d�r2. (E2)

The triplet structure factor is defined as

S(3)(�k1,�k2,�k3) = 1

N
〈δρ(�k1)δρ(�k2)δρ(�k3)〉, (E3)

with

δρ(�k) = ρ(�k) − 〈ρ(�k)〉 = ρ(�k) − ñ(�k) (E4)

and

ρ(�k) =
N∑

j=1

ei�k·�xj , (E5)

where �xj is the position of the j th particle. Note that, at vari-
ance with the main text, the definitions of the structure factors
in this Appendix do not involve any complex conjugation to
preserve the symmetry of the working equations.

Following Rajan et al. [63], the convolution approximation
for S(3)(�k1,�k2,�k3) reads

S(3)(�k1,�k2,�k3)

≈ 1

NV 6

∑
�K1 , �K2 , �K3�p1, �p2, �p3

ñ( �p1 + �p2 + �p3)
3∏

i=1

ñ(�ki + �Ki)

× [h̃(− �pi, − �Ki) − h̃(�ki − �pi, −�ki − �Ki)]. (E6)

This result is most conveniently reformulated in terms of the
pair structure factor

S(2)(�k1,�k2) = 1

N
〈δρ(�k1)δρ(�k2)〉, (E7)

related to h̃(�k1,�k2) through

NS(2)(�k1,�k2) = ñ(�k1 + �k2)

+ 1

V 2

∑
�p1, �p2

ñ(�k1 − �p1)ñ(�k2 − �p2)h̃( �p1, �p2).

(E8)

Defining the local specific volume v(�r) = 1/n(�r) and its
Fourier transform ṽ(�k) such that

1

V

∑
�p

ñ(�k1 − �p)ṽ( �p − �k2) = V δ�k1,�k2
, (E9)

Eq. (E8) is easily inverted to yield

h̃(�k1,�k2)

= −ṽ(�k1 + �k2) + N

V 2

∑
�p1, �p2

ṽ(�k1 − �p1)ṽ(�k2 − �p2)S(2)( �p1, �p2),

(E10)

which can be injected into Eq. (E6). The summations over
�K1, �K2, and �K3, can then be explicitly performed and, using

the fact that for a closed system (e.g., canonical system)
S(2)(�k,�0) = 0 for any �k, it follows that in the convolution
approximation

S(3)(�k1,�k2,�k3) ≈ N2

V 6

∑
�p1, �p2, �p3
�l1,�l2,�l3

ñ( �p1 + �p2 + �p3)

×
3∏

i=1

ṽ(− �pi − �li)S(2)(�li ,�ki). (E11)

One can readily check that this expression reproduces the
standard result for bulk systems. Indeed, one then has ñ(�k) =
Nδ�k,�0, ṽ(�k) = (V 2/N )δ�k,�0, and S(2)( �p,�k) = S(k)δ �p+�k,�0,
so that

S(3)(�k1,�k2,�k3) ≈ δ�k1+�k2+�k3,�0S(k1)S(k2)S(k3). (E12)

Application to the slab geometry is just as
straightforward. One simply has to set V = LA, split
each sum over a wave vector �k = (�q,Qμ) into one
over a transverse index μ and one over an in-plane
wave vector �q, and replace ñ(�k), ṽ(�k), S(2)(�k1,�k2), and
S(3)(�k1,�k2,�k3), with nμAδ�q,�0, vμAδ�q,�0, S(2)

μ1μ2
(q1)δ�q1+�q2,�0,

and S(3)
μ1μ2μ3

(�q1,�q2,�q3), respectively. Eventually,
one gets

S(3)
μ1μ2μ3

(�q1,�q2,�q3) ≈ δ�q1+�q2+�q3,�0
n2

0

L6

∑
β1,β2,β3
λ1,λ2,λ3

nβ1+β2+β3

×
3∏

i=1

v−βi−λi
S

(2)
λiμi

(qi). (E13)
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