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Hysteresis and return-point memory in colloidal artificial spin ice systems
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Using computer simulations, we investigate hysteresis loops and return-point memory for artificial square and
kagome spin ice systems by cycling an applied bias force and comparing microscopic effective spin configurations
throughout the hysteresis cycle. Return-point memory loss is caused by motion of individual defects in kagome ice
or of grain boundaries in square ice. In successive cycles, return-point memory is recovered rapidly in kagome ice.
Memory is recovered more gradually in square ice due to the extended nature of the grain boundaries. Increasing
the amount of quenched disorder increases the defect density but also enhances the return-point memory since
the defects become trapped more easily.
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I. INTRODUCTION

Frustration effects arise in many condensed and soft
matter systems, such as when geometric constraints prevent
collections of interacting elements such as spins or charged
particles from simultaneously minimizing all pairwise inter-
action energies. One of the best known frustrated systems are
the spin ices [1,2], named for their similarity to the frustrated
proton ordering in water ice [3]. Spin ices have been realized
in both two and three dimensions and exhibit interesting
excitations such as effective magnetic monopoles [1,4]. More
recently, artificial spin ices were created with arrays of
nanomagnets [5–14], colloidal particles [15,16], and vortices
in nanostructured superconductors [17]. In artificial ices, direct
visualization of the microscopic effective spin configurations
is possible, and system parameters such as interaction strength,
doping, or the amount of quenched disorder can be controlled.
Under a varying external field, changes in the microscopic
configurations can be imaged and used to construct hysteresis
loops [7–9,14], as shown for kagome ice where the motion,
creation, and annihilation of topological defects along the
hysteresis cycle were demonstrated [7]. Memory effects
are generally associated with hysteresis, and in return-point
memory (RPM), the system returns to the same microscopic
configuration after completing a hysteresis loop [18–22].
Recently developed techniques show that in real magnetic
materials, RPM occurs in strongly disordered samples and
is absent for weak disorder when the system becomes too
soft to remember its previous state [19,20,22]. Certain classes
of T = 0 disordered spin systems, such as the random field
Ising model [18], exhibit perfect RPM, while other systems
require many loops to organize into a state with RPM [20,21].
In more general disordered systems, an RPM-like effect was
recently observed in the form of random reorganization into a
reversible state for assemblies of interacting particles subjected
to a cyclic shear [23]. Insights into magnetic RPM may offer a
better understanding of such reversible-irreversible transitions
that have been observed in a broad range of systems [24].

Artificial spin ices are an ideal system for studying RPM
since they exhibit hysteresis and the microscopic states can
be visualized directly. The type of topological defect that
forms and its mobility varies in different ice systems, ranging
from mobile monopoles [7,9] in kagome ice to less mobile

grain boundaries [6,17] in square ice, and this could modify
the RPM behavior. To quantify this, we perform numerical
simulations of hysteresis in artificial square and kagome spin
ices constructed from colloids in double-well traps with varied
amounts of quenched disorder. Our model was previously
shown to capture the behavior of square and kagome ices
[15,17], and the number and type of topological defects present
can be controlled by changing the amount of quenched disorder
[17]. We use molecular dynamics simulations to capture the
motion of extended objects such as grain boundaries. Our
work implies that RPM phenomena can be studied in general
artificial spin systems where a spin degree of freedom can
be defined, as well as in artificial spin ice systems where
geometrical frustration of the effective spins is present. This
provides a new method for exploring microscopic memory
effects in condensed matter systems.

II. SIMULATION

We simulate an artificial spin ice of N charged col-
loidal particles trapped in an array of elongated double-well
pinning sites that have two states determined by which
well is occupied by the colloid. The dynamics of col-
loid i is governed by the overdamped equation of motion
η(dRi/dt) = Fcc

i + Fs
i + Fext, where the damping constant

η = 1. The colloid-colloid interaction force has a Yukawa
or screened Coulomb form, Fcc

i = −F0q
2 ∑N

i �=j ∇iV (Rij ),
with V (Rij ) = (1/Rij ) exp(−κRij )r̂ij . Here Rij = |Ri − Rj |,
R̂ij = (Ri − Rj )/Rij , Ri(j ) is the position of particle i(j ),
F0 = Z∗2/(4πεε0), Z∗ is the unit of charge, ε is the solvent
dielectric constant, q is the dimensionless colloid charge,
1/κ = 4a0 is the screening length, and a0 is the unit of distance
that is typically of order a micron. We neglect hydrodynamic
interactions between colloids since we work in the low volume
fraction limit and the colloids remain confined in the pins.
The pinning force Fs arises from Np elongated traps of
length l = 1.333a0, width dp = 0.4a0, and depth fp = 100F0.
The pin ends are parabolic confining potentials with radius
rp = 0.2a0. A cylindrical force restricts motion in the direction
perpendicular to the long axis of the pinning site, and a barrier
in the center of the pinning site is produced by a repulsive
parabolic force of height fr that creates two energy minima on

021406-11539-3755/2012/86(2)/021406(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.021406
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FIG. 1. (Color online) Schematic of a portion of the artificial ice
samples. A charged colloid (dots) can sit in either end of each trap
(lozenges). Dark green (light yellow) traps surround vertices that are
in a positively (negatively) biased ground state. (a) Square ice, with
Fext applied at θ = 45◦ from the x axis. (b) Kagome ice, with Fext

applied along the x axis.

either end of the pin [15]. For square ice the pins are arranged
with v = 4 traps meeting at each vertex, while for kagome ice,
v = 3 traps meet at each vertex [17], as shown in Fig. 1. The
distance between adjacent vertices is a = 2a0 and there are Nv

vertices. Our square ice has 35 × 35 vertices (Nv = 1225) and
Np = 2450 elongated pins, while our kagome ice has 40 × 40
vertices (Nv = 1600) and Np = 2400 elongated pins. Systems
of larger size show the same behavior. Disorder is added to the
system by increasing or decreasing fr in individual pinning
sites according to a normal distribution with mean fb = 1.0F0

and standard deviation σ . This is analogous to varied island
coercive fields in the nanomagnetic system. We initialize the
system by placing a colloid in one randomly selected end of
each pinning site so that N = Np. To construct a hysteresis
loop we apply an external force Fext = Fextn̂ uniformly to
the sample, which for charged colloidal particles could be
achieved using an external electric field. In the kagome ice
n̂ = x̂, while in the square ice n̂ = √

2(x̂ + ŷ)/2, as illustrated
in Fig. 1. For large enough Fext, the sample saturates into a
biased ground state determined by the direction of Fext. The
two types of biased ground state vertices are illustrated for
both ices in Fig. 1. We sweep Fext from zero to a positive
maximum value Fmax at a rate of δFext = 0.005 every 5000
simulation steps, then back down through zero to a negative
maximum value −Fmax, and finally back up to zero to create
one loop. Our results are unchanged for slower sweep rates
using smaller values of δFext. The initial curve is defined as
the first sweep up of Fext to Fmax after the sample has been
prepared in a random state.

III. RESULTS

We first show that our model captures the hysteretic
behavior observed in artificial ice systems [7–9,19]. In the
absence of quenched disorder or drive, we find ice-rule obeying
states that are ordered ground states in the square ice [15] and
disordered in the kagome ice. When we add quenched disorder
with σ > 0, due to its lack of extensive degeneracy the square
ice forms grain boundaries composed of non-ice-rule obeying
vertices as shown in simulation [17] and experiment [6], while
in kagome ice isolated non-ice-rule defects appear [7,17].
We define the reduced magnetization m as the projection
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FIG. 2. (Color online) (a)–(c) Square ice sample with σ = 0.1.
(d)–(f) Kagome ice sample with σ = 0.1. All curves are averaged
over ten disorder realizations. (a) and (d) The reduced magnetization
m vs Fext. Saturation occurs at m = ±1.0 when all the vertices are in
biased states. Outer line: Saturated loop with Fmax = 2.0. Inner lines:
Consecutive loops with Fmax = 0.7, below saturation. The initial
curves are not shown. (b) and (e) Fraction of unbiased vertices Nub

vs Fext for the saturated loop with Fmax = 2.0. (c) and (f) Nub vs Fext

for repeated unsaturated loops with Fmax = 0.7, with cycle number
n increasing from top to bottom. For clarity, we omit the horizontal
lines connecting Fext = ±Fmax to Fext = 0. The first few half cycles
are labeled; dotted arrows indicate sweep direction for the labeled
curves. There is a much greater decrease in Nub for the square ice
than for the kagome ice. Inset of (f): min(q), the effective spin overlap
in the n = 2 cycle, vs σ for (circles) kagome and (squares) square
ice. Samples with stronger disorder have higher q values.

of the effective spin of each trap onto the driving direction,
m = N−1

v

∑Np

i=1 seff
i · n̂, where seff

i is a unit vector defined to
point from the empty end of the trap to the filled end of the trap.
In Fig. 2(a) and 2(d) we plot the hysteresis loops for square and
kagome ice samples with σ = 0.1. The outer curve is obtained
with Fmax = 2.0, beyond the saturation level where m = ±1.
We plot the fraction of unbiased vertices Nub versus Fext with
Fmax = 2.0 in Fig. 2(b) and 2(e). The completely ordered
biased states are destroyed only for 0.4 < |Fext| < 1.0, close
to the coercive fields at which the effective spin direction flips.
The shape of the hysteresis loop and the peaks in the nonbiased
defect density in Fig. 2(b) and 2(e) are in excellent agreement
with the digitally constructed hysteresis loops produced in
experiments on nanomagnetic kagome ice samples [7–9]. We
find the same behavior for slower sweep rates using smaller
values of δFext and also for larger samples, as shown in Fig. 3.
The inner curves in Figs. 2(a) and 2(d) show consecutive
hysteresis loops obtained below saturation with Fmax = 0.7,
near the middle of the range of Fext in which the largest number
of defects appear. In Fig. 2(c) and 2(f) we plot Nub versus
Fext for the unsaturated hysteresis loops. For the square ice,
Fig. 2(c) shows that Nub decreases with increasing n, where
n is the number of loops performed, indicating that defect
annihilation is occurring. For continued cycling beyond the
number of loops shown in the figure, the system settles into
a steady state. In the kagome ice, Fig. 2(f) shows that Nub

hardly changes from one cycle to the next, indicating that only
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FIG. 3. (Color online) (a) Magnetization m vs Fext and
(b) number of defects Nub vs Fext for saturated loops with Fmax = 2.0
obtained for the square ice system in Figs. 2(a)–2(c) using different
sweep rates δFext. Black filled circles: δFext = 0.005, the rate used
throughout the paper. Red filled symbols indicate slower sweep rates.
Filled triangles: δFext = 0.0005; filled squares: δFext = 0.0010; filled
diamonds: δFext = 0.0025. Blue open symbols indicate faster sweep
rates. Open triangles: δFext = 0.01; open squares: δFext = 0.025;
open diamonds: δFext = 0.05. The curves for δFext = 0.005 are
nearly indistinguishable from curves obtained for slower sweep rates,
indicating that we are working in the quasistatic regime in the paper.
(c) Magnetization m vs Fext and (d) number of defects Nub vs Fext for
saturated loops with Fmax = 2.0 obtained for the square ice system in
Figs. 2(a)–2(c) with the same pinning density in samples of different
size containing Nv pins. Black filled circles: Np = 3528; red open
squares: Np = 4802; green filled diamonds: Np = 6272; blue open
triangles: Np = 7938; black plus signs: Np = 9800. The system size
considered in Figs. 2(a)–2(c) is already large enough to be in the
regime where no significant size dependence of the results appears.

a small number of defects annihilate. For the saturated case
with Fmax = 2.0 shown in Fig. 2(b) and 2(e), the Nub curves
do not evolve under repeated looping since the sample loses
all memory of the microscopic configuration near the coercive
field once saturation is reached.

We quantify the RPM by measuring the overlap q in the
effective spin configurations along a hysteresis loop [20,22]
at equal values of Fext after n complete cycles. For each trap,
we define an effective spin Si = 1 if the colloid is sitting in
the right or top end of the trap, and Si = −1 if the colloid is
sitting in the left or bottom end of the trap. Writing the value
of Si after n cycles as S

(n)
i , we measure

q(Fext) = N−1
N∑

i=1

S
(n−1)
i (Fext)S

(n)
i (Fext). (1)

The term in the sum is 1 if the trap was biased in the same
direction both before and after the complete cycle, and −1 if
the colloid jumped to the other end of the trap. In Fig. 4(a)
and 4(b) we plot q versus Fext for both the saturated and
unsaturated hysteresis curves in the square and kagome ices
shown in Fig. 2(a) and 2(d). In the case of the saturated loops, q
for the initial curve in Fig. 4(a) shows that since the sample was
not initialized in a biased state, the initial configuration differs
significantly from the effective spin configuration obtained one
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FIG. 4. (Color online) Effective spin overlap q vs Fext during
consecutive hysteresis loops averaged over ten disorder realizations
for (a) a square ice sample with σ = 0.1 and (b) a kagome ice sample
with σ = 0.1. Outer line: Saturated loop with Fmax = 2.0, including
the initial curve. Inner lines: Unsaturated loops with Fmax = 0.7, with
n increasing from bottom to top; the first few half loops are labeled.
Solid lines: clockwise loops; dashed lines: counterclockwise loops.
In the kagome ice, q approaches 1 after only a few cycles, while a
much larger number of cycles are required before q approaches 1 in
the square ice.

cycle later, but for n = 2 and above, q = 1, indicating perfect
memory. For the unsaturated loops obtained with Fmax = 0.7,
q is low during the first cycle, but as n increases q gradually
converges to a value just below q = 1. A comparison with
Fig. 2(c) indicates that the increase in memory with increasing
n is correlated with a decrease in Nub, although for this value of
Fmax there are always some defected vertices present even after
the system reaches a steady state in which the grain boundaries
cease to evolve. The kagome ice in Fig. 4(b) shows a similar
behavior except that q approaches 1 after only a few cycles,
leading to a much faster establishment of RPM than in the
square ice. In Fig. 2(f) we show that the number of defected
vertices remains nearly constant in the kagome ice even under
repeated cycling. This indicates that although the kagome ice
defects do not annihilate, they are mobile during the first few
cycles and then become pinned. Our results demonstrate that
for the square ice, changes in the amount of RPM are primarily
associated with the annihilation of defects, while in the kagome
ice, RPM is suppressed by the motion of defects.

Although the number of defects Nub in both types of ice
increases with increasing disorder σ , the amount of RPM
increases with increasing disorder. We illustrate this in the inset
of Fig. 2(f) where we plot the value of q on the n = 2 plateau
versus σ . A similar effect was observed for real magnetic
systems and in spin simulations [19,20,22]. In our system, q

increases with increasing disorder due to the stronger pinning
of the domain walls in the square ice or of the individual
defects in the kagome ice. In the square ice, the disorder
prevents the domain walls from coarsening. It was previously
shown that as the particle-particle interaction strength in
our system is reduced, non-ice-rule obeying vertices begin
to appear since their energetic cost decreases [15]. For
noninteracting colloids, the sample is strongly disordered but
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FIG. 5. (Color online) Vertices in (a) square ice and (b) kagome
ice samples from Fig. 2 during repeated hysteresis cycles. Vertices are
colored depending on how many cycles the vertex spends in a defect
state, ranging from dark blue for never defected sites to dark red for
permanently defected. (a) Motion and annihilation of defects occur
near grain boundaries. (b) Individual defects move and are pinned
independently without forming grain boundaries.

also has perfect RPM since the defected configurations are
controlled only by the local disorder and are not modified by
particle interactions. Thus we expect that in the experimental
nanomagnetic artificial ices, when the coupling is reduced
for increased spacing between the nanomagnets, the system
should show increased or perfect RPM.

To illustrate the defect dynamics, in Fig. 5 we plot the
vertices colored according to the number of hysteresis cycles
each vertex spent as a defected site. Red vertices indicate
locations where defects became trapped. Figure 5(a) shows that
in the square ice, the defects organize into grain boundaries
which move and coarsen under repeated hysteresis cycles.
In Fig. 5(b) the kagome ice contains no grain boundaries
but has a smaller fraction of intermediately colored vertices
compared to the square ice since the isolated defects become
trapped after only a few cycles. The square ice grain boundaries
are less well pinned than the isolated kagome defects since
they are extended objects. These mobile grain boundaries are
responsible for the lower amount of RPM found in the square
ice compared to the kagome ice. As the grain boundaries
become trapped after repeated cycles, RPM increases and
eventually saturates. The isolated kagome defects become
trapped much more rapidly and their lower density contributes
to the overall higher level of RPM in the kagome ice. The

motion of individual defects in kagome ice has already been
imaged in experiments; it would be interesting to observe
whether these defects become localized within a few hysteresis
cycles as we predict.

For most artificial ice systems, thermal effects are not
relevant; however, thermal fluctuations can be significant in
a colloidal system. We find that our results are robust against
the addition of weak thermal disorder, and that for T > 0 there
is only a slight reduction in the asymptotic value of q and a
slight increase in the number of cycles required to reach a
steady state. For higher temperatures, RPM is lost even when
the system is cycled to saturation since the thermal fluctuations
cause random effective spin flips that change the path on each
cycle. There is also no increase in RPM under repeated cycles
at higher temperature [22].

IV. SUMMARY

In summary, we have studied hysteresis and return-point
memory effects for artificial square and kagome ices at the
microscopic level. In the square ice for repeated unsaturated
hysteresis loop cycles that extend to biases near the coercive
field, the RPM increases with each cycle as the grain
boundaries present in the sample coarsen and become pinned.
In kagome ice the number of defects remains nearly constant
under repeated hysteresis cycles and there is much higher
RPM. Here individual defects hop rather than annihilating
and are eventually pinned at sites with stronger disorder. The
grain boundaries in the square ice are more mobile than the
individual defects in the kagome ice since they are extended
objects. Our results can be tested readily in different types
of artificial ices and also could be studied in more general
artificial spin systems.
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