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Structural and elastic properties of a confined two-dimensional colloidal solid:
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We implement molecular dynamics simulations in canonical ensemble to study the effect of confinement on
a two-dimensional crystal of point particles interacting with an inverse power law potential proportional to r−12

in a narrow channel. This system can describe colloidal particles at the air-water interface. It is shown that the
system characteristics depend sensitively on the boundary conditions at the two walls providing the confinement.
The walls exert perpendicular forces on their adjacent particles. The potential between walls and particles varies
as the inverse power of ten. Structural quantities such as density profile, structure factor, and orientational order
parameter are computed. It is shown that orientational order persists near the walls even at temperatures where
the system in the bulk is in fluid state. The dependence of elastic constants, stress tensor elements, shear, and bulk
moduli on density as well as the channel width is discussed. Moreover, the effect of channel incommensurability
with the triangular lattice structure is discussed. It is shown that incommensurability notably affects the system
properties. We compare our findings to those obtained by Monte Carlo simulations in Rici et al. [Phys. Rev. E
75, 011405 (2007)] and to the case with the periodic boundary condition along the channel width.
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I. INTRODUCTION

Colloidal crystals are a valuable model system, since
the effective interactions between colloidal particles can
be manipulated to a large extent. Furthermore, convenient
techniques to observe the structure and dynamics of such
systems are available [1–5]. Colloidal dispersions under
geometric confinement can help us to understand the effects of
confinement on the ordering of various types of nanoparticles.
Related phenomena occur in a wide variety of systems, e.g.,
electrons at the surface of liquid helium that are confined
in a quasi-one-dimensional channel [6], dusty plasmas [7],
hard disks [8,9], and magnetorheological [10] colloids under
confinement which are of great interest for various microflu-
idic and other applications. Two-dimensional (2D) colloidal
dispersions have been used successfully in studies on melting
in two dimensions during the last few decades [11–13]. In
previous studies, much attention has been paid to the generic
effect of confinement on crystalline order in d = 2 and to the
extent and range over which the confining boundaries disturb
(or enhance, respectively) the degree of order. The effect of
external walls on phase behavior has been studied for a long
time [14,15]. The confining wall can cause structural transition
such as layering transition [16–19]. Another interesting aspect
of confinement is related to formation of extended defects,
solitonic staircase, and standing strain wave superstructures
[20–23]. In this paper we intend to gain more insight and
shed more light onto a previously studied problem, which is a
2D confined colloidal system between two walls which exert
forces on the particles [24]. We implement molecular dynamics
simulation and compare our findings to those obtained earlier
by Monte Carlo simulations [24].

*foolad@iasbs.ac.ir

II. DESCRIPTION OF THE PROBLEM

Consider a 2D system of zero size soft disks, i.e., point
particles, interacting under a purely repulsive force with the
inverse power law potential U (r) = ε( σ

r
)p where r denotes

the distance between particles. The motivation for taking
the spatial dimension d = 2 comes from experimental fact
that some colloidal particles with superparamagnetic cores
in the interface of water-air thin film can be described by a
2D system of particles interacting with the above repulsive
potential with p = 3 [21,25]. However, the exponent p is
taken to be 12 for computational convenience in our paper. We
recall that taking p = 3 makes the potential long range, which
is computationally inconvenient and needs special treatment.
Choosing p = 12 has the merit that we can compare our
findings with the bulk results obtained by extensive simulations
[26]. We have chosen the cutoff distance rc = 3σ and have
adopted a reduced system of units in which ε and σ are taken
as unity (kB = 1). Now we discuss how to represent the effect
of confining walls. One choice is to take a smooth repulsive
wall located at x = xwall, described by a wall potential [27]
Uwall = εwall( σ

|x−xwall| )
10. The motivation for a decay with the

10th power is the idea that such a potential would result if
we have a semi-infinite crystal with a power law interaction
given by the above equation, but no cutoff, and the total
potential is summed over the half space [27]. We initially
set the particles on the sites of a triangular lattice which is
confined between a 2D channel. The channel walls are taken to
be along the y direction having a distance D from each other.
The system length along the y direction is L, and periodic
boundary condition is applied in the y direction. The particles
number is shown by N , and the number density is given by
ρ = N

A
in which A = DL is the channel area. Let a0 denotes

the lattice constant in the triangular lattice (distance between
nearest neighbors). The relation between ρ and a0 is given by

ρ−1 =
√

3a2
0

2 . Figure 1 illustrates the choice of the geometry:
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FIG. 1. (Color online) Geometry of the problem. A 2D colloidal
solid with trianagular lattice structure is confined between two walls.
The particles exerts repulsive forces between each other. Lattice
spacing is a0.

The left wall lies at x = 0, and the right wall is located at
x = D.

We remark that one can place a triangular configuration of
particles between confining walls in two different methods.
In the first method, two of the six nearest neighbors of each
particle are located northward and southward of it, whereas
in the second method two of the six nearest neighbors are
located westwards and eastwards. These two configurations
are mapped into each other by a 90◦ rotation (see Fig. 2).
As we shall see below, the elastic properties of the confined
colloidal solid differs notably for these configurations. We
show the distance between the first (last) column of particles
from the left (right) wall by dL (dR), respectively. The number
of columns (rows) are denoted by Nc and Nr correspondingly.

FIG. 2. (Color online) Two methods of placing particles between
the confining walls. In method 1, two of the six nearest neighbors
are located upwards and downwards to the central particle (main
figure). In method 2 (which is rotated by 90◦) two of the six nearest
neighbors are located leftwards and rightwards to the central particle
(upper right corner figure).

Note the number of particles is given by N = NcNr . In our

simulations, we mainly have chosen D = (Nc + 1)
√

3a0
2 with

dL = dR =
√

3a0
2 , but we have also studied the incommensurate

case where D �= (Nc + 1)
√

3a0
2 ( dL �= dR). In our simulations

we have chosen εwall = 0.0005 unless otherwise stated. It has
been shown that by this choice, the distance between columns
coincide, within error, with the ideal value

√
3

2 a0. The readers
can refer to Ref. [24] for further details.

A. Simulation method and details

We have employed molecular dynamics in the NEV ensem-
ble to simulate the model in the reduced units. We remark that
the initial velocities are such chosen to give rise to the desired
temperature when the system reaches to a steady state. The
simulation parameters and details are as follows. The velocity
Verlet algorithm has been used for integrating the equations
of motion with a time step of �t = 0.01, and the number of
simulation time steps has been mainly chosen T = 106 where
2 × 105 time steps are discarded for equilibration. The cutoff
radius rc = 3σ and the shifted-force potential have been taken
into account.

III. STRUCTURAL PROPERTIES

In this section we present our simulation results for a
narrow channel. Figure 3 shows the profile of density at two
temperatures with a soft wall boundary condition with Nc = 20
and Nr = 120 for method 1 of initial triangular setting of
particles. For comparison the result for a system with a periodic
boundary condition (PBC) along the x direction is shown as
well. The temperature kBT = 1 is below the melting point for
both soft walls and PBC, whereas at kBT = 3 the PBC system
seems to be melted but the soft wall system is not melted yet.
You see in the soft wall system that the presence of confining
walls enhances the density profile near the walls. A similar
phenomenon is observed in the Monte Carlo simulation of the
problem [24].

In Fig. 4 we compare the density profiles for methods 1 and
2 for the same temperatures as in Fig. 3. At low temperatures
the results are close to each other, and there is no qualitative
difference. When the temperature is raised to kBT = 3 the
difference between two methods becomes noticeable. Near
walls the density profile is the same, but when we leave the
walls and approach the center, the method 2 system melts
easier than the method 1 system. This suggest that the method
1 system is more stiff and exhibits a higher persistence to
melting than the method 2 system. The reason is due to the
number of particles per unit length in the adjacent column to the
walls. In method 1 this number is proportional to 1

a0
, whereas in

method 2 this number is proportional to 1√
3a0

, which is smaller.
Consequently in method 2 the force per unit length exerted by
a wall to its adjacent column of particles is smaller.

In Fig. 5 the density profiles for a temperature above the
melting points for both methods 1 and 2 as well as PBC are
shown. Note that in the soft wall boundary condition, the
system favors preserving its layering structure near the walls.
In the soft wall boundary condition the profiles of methods
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FIG. 3. (Color online) Density profile for a narrow channel with
Nc = 20 and Nr = 120 at two different temperatures. Both boundary
conditions, soft wall (method 1) and periodic, are sketched. Top:
kBT = 1, bottom: kBT = 3.

1 and 2 are almost similar to each other. As stated earlier, in
method 2, the melting in the center is more evident.

Next we exhibit the structure factor S(q) in Fig. 6 for
a temperature below the melting point where the colloidal
system is in the solid phase. The boundary condition is soft
walls. We recall the definition of the structure factor S(q):

S(q) = 1

N

∑
l,m

〈eiq.(rl−rm)〉, (1)

where 〈〉 denotes time averaging. We show this quantity for
both methods of initial setting. Note in method 1 we have
taken q = (q,0), whereas in method 2 we took q = (0,q). The
sharp peaks confirms the solid structure of the system. The first
(largest) peak is associated with the nearest neighbor distance
a0.

To give a quantitative description of the degree of order
in the system, we obtain the orientational order parameter
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FIG. 4. (Color online) Density profile for a narrow channel with
Nc = 20 and Nr = 120 at two different temperatures. The soft wall
boundary condition with both methods 1 and 2 is considered. Top:
kBT = 1, bottom: kBT = 3.

�6. This quantity is related to the local orientational order
parameter associated with each particle k:

�6(k) = 1

6

∑
j (n.n.of k)

e6iφjk , (2)

where φjk denotes the angle between a reference line (here the
positive y axis) and the line connecting particle k to particle j .
Figure 7 shows the profile of the orientational order parameter
squared modulus for a narrow channel at various temperatures
at ρ = 1.05 for the soft wall system. As you can see the
modulus of �6 is greater near walls than in the channel center.
Similar to the density profile, the walls enhance the degree
of orientatinal order near them. The results of Monte Carlo
simulations show quite similar behavior [24]. As you can see
there is notable difference between methods 1 and 2 of initial
triangular setting at high temperatures. Method 1 has higher
orientational order than method 2, which can be attributed
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FIG. 5. (Color online) Top: Density profile for a narrow channel
with Nc = 20 and Nr = 120 at a temperature above the melting
point for both boundary conditions, soft wall and periodic. Bot-
tom: Comparison of methods 1 and 2 in the soft wall boundary
condition.

to its higher stiffness. The difference gets sharper when the
temperature arises.

Figure 8 shows the dependence of the orientational order
parameter squared modulus at the channel center as well as
near its walls versus T at ρ = 1.05 for both methods 1 and
2. These results are in qualitative agreement with MC results
[24]. When the vicinity of the walls are considered, only a
monotonous decrease with the temperature is observed. On the
other hand, when the channel center is considered, a change in
the slope emerges which can be attributed to system melting
in the center. By increasing the temperature, the difference
between methods 1 and 2 becomes enhanced.

IV. ELASTIC CONSTANTS

Apart from the study of the lattice structure, positional and
orientational order parameters, and structural properties, there
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S(q)

qd π2/

FIG. 6. (Color online) Structure factor S(q) for a narrow channel
with the soft wall boundary condition at a temperature kBT = 1 for
initial setting. Methods 1 and 2 give identical results.

is also considerable interest in the mechanical properties and in
particular elastic constants of 2D crystals. The dependence of
these elastic constants on temperature (or density, respectively)
plays a crucial role in the theory of 2D melting [13,28,29].
One expects a significant effect of the symmetry of the
crystal structure. The Voigt notation has been implemented
here [30]. In two dimensions we have four elastic constants,
C11,C22,C12,C33. In this paper we have implemented the
method of stress fluctuation to obtain the elastic constants
[31,32]. This method which is based on an atomic-level
description was originally introduced by Born and Huang [33].
The contribution from the particles to the elastic constants are
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FIG. 7. (Color online) The squared modulus of the orientational
order parameter profile �6 of a narrow channel with the soft-wall
boundary condition at ρ = 1.05 for various temperature values.
Methods 1 and 2 are shown.
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FIG. 8. (Color online) Temperature dependence of the orienta-
tional order parameter squared modulus at the center as well as near
the channel walls. Methods 1 and 2 are compared to each other.

as follows:

Cαβγ δ(i) = 1

2�(i)

∑
j �=i

(
φ

′′
(rij )

r2
ij

− φ
′
(rij )

r3
ij

)
[xα(j ) − xα(i)]

× [xβ(j ) − xβ(i)][xγ (j ) − xγ (i)][xδ(j ) − xδ(i)]

+ φ
′
(rij )

rij

[xβ(j ) − xβ (i)][xγ (j ) − xγ (i)]δαδ.

(3)

Note that the term proportional to δαδ should not be considered
in the soft wall case. The contribution from a wall is obtained
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FIG. 9. (Color online) Dependence of the elasticity tensor com-
ponents on density in the soft wall boundary condition at kBT = 1
for both methods 1 and 2. The values of the elastic constants show a
substantial difference in methods 1 and 2.

from the following relation:

Cαβγ δ(i) = 1

2�(i)

[
1

x2
i

φ
′′
W (xi) − 1

x3
i

φ
′
W (xi)

][
xW

α − xα(i)
]

× [
xW

β − xβ(i)
][

xW
γ − xγ (i)

][
xW

λ − xλ(i)
]
, (4)

in which φW is the wall potential imposed on the particles. Also
note that xW

y = yi and xW
x = 0 for the left wall and xW

x = D

for the right wall. Figure 9 shows the dependence of elastic
constants in a narrow channel versus the density in the solid
phase. The soft wall boundary condition is implemented, and
both methods of initial triangular setting are considered. All
the components increase with increment of ρ. This seems
natural since the solid becomes more tough when the density
is increased. Except for C11 for which both methods give
identical results, the other three components of the elastic
tensor show notable difference for methods 1 and 2. For C12
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FIG. 10. (Color online) Top: Dependence of the elasticity tensor
components on the number of columns Nc for the soft wall system
at kBT = 1 for both methods 1 and 2. Bottom: Dependence of the
elastic tensor components on the number of rows Nr for both the soft
wall (method 1) and periodic boundary conditions at kBT = 1. The
value for the elasticity tensor components in the PBC are smaller than
the corresponding values in the soft wall boundary condition.
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and C33 method 2 has a higher value in a given density, whereas
for C22 the method 1 value is larger than method 2.

In order to have a further insight into the problem, we
have investigated the dependence of elastic constants at a give
density (ρ = 1.05) on the channel width D. Figure 10 exhibits
the dependence of elastic constants on the number of columns
Nc and the rows Nr .

The channel width D = (Nc + 1)
√

3a0
2 plays a noticeable

role. The constant C11 is mostly affected by the channel width.
C22 is least affected. After Nc increases beyond 60 (which
equals to Nr

2 ) the channel width D plays almost no role and the
values approach the bulk ones. Our results in Fig. 10(a) are in
qualitative agreement with those by Monte Carlo simulations
[24]. The main difference is that in our results C12 and C33

coincide with each other when the system width becomes large,
whereas in Ref. [24] they do not. Notice that the symmetry
C12 = C33 is expected in the bulk. The values of our elastic
constants are less than those in Ref. [24]. We remark that
the channel length in Ref. [24] (Nr = 30) is not the same
as ours (Nr = 120). Similar to the previous graph, for C11

methods 1 and 2 give almost identical results. Also for a given
width D, C12 and C33 are larger for method 2 while C22 is
smaller. Molecular dynamics simulation allows us to compute
the components of the stress tensor by averaging over the
system particles trajectories. The stress tensor elements can,
in principle, be evaluated from the particles trajectories. There
are two contributions: one from the particles and the other
from the walls. The contribution from the particles to the stress
tensor component associated to particle i turns out to be [32]

σαβ(i) = 1

2�(i)

∑
j �=i

1

rij

φ′(rij )[xα(j ) − xα(i)][xβ(j ) − xβ(i)].

(5)

To evaluate the wall contribution, we assume each wall as a
fixed particle with infinite mass at the same height of particle
i. With this in mind, the contribution of the left wall which is
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FIG. 11. (Color online) Dependence of the stress tensor compo-
nents on the density for a narrow channel with the soft wall boundary
condition in the solid phase (methods 1 and 2 are exhibited).

located at xLW = 0 becomes

σ LW
αβ (i) = 1

2�(i)
φ′

LW(xi)δα,xxβ(i), (6)

in which φLW(xi) is the potential energy between the left wall
and particle i. Similarly, the contribution from the right wall
yields

σ RW
αβ (i) = 1

2�(i)
φ′

RW(D − xi)δα,x[D − xβ(i)]. (7)

Dependence of the stress tensor components on the density for
a temperature below melting is shown in Fig. 11.

As can be seen, the symmetry σxy = σyx is fulfilled. There
is a notable dependence for the nonzero components σxx and
σyy on the density. By increasing the density ρ, they tend to
decrease. As you can see there is not much difference between
methods 1 and 2. In Fig. 12 we have sketched the dependence
of bulk and shear moduli B and μ on ρ and Nc for a narrow
channel with the soft wall boundary condition for methods 1
and 2. These quantities increase nonlinearly with the density
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FIG. 12. (Color online) Top: Density dependence of the bulk and
shear mudulii B and μ in the solid phase soft wall boundary condition.
Bottom: Column number dependence of the bulk and shear moduli
B and μ in the solid phase. Methods 1 and 2 are compared.
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FIG. 13. (Color online) Dependence of the stress tensor compo-
nents on the incommensurability parameter �. The results are for
method 1 of the soft wall boundary condition.

ρ. Again we see that beyond Nc = Nr

2 there is almost no
dependence on Nc. In comparison between methods 1 and 2,
we see that the bulk modulus does not show significant change
but the shear modulus does. In fact, method 2 gives a larger
shear modulus which is expected since the method 2 system has
a smaller degree of stiffness and hence larger shear modulus.

V. CHANNEL WITH INCOMMENSURATE WIDTH TO
TRIANGULAR LATTICE

In the previous sections, the channel width D was carefully
chosen such that the ideal triangular lattice structure fits into
the channel as perfectly as possible. It would be interesting
to see what happens when such a choice is not made, and
D does not correspond to an integer multiple of the distance

between columns d =
√

3a0
2 (method 1). Such questions have
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FIG. 14. (Color online) Dependence of the elasticity tensor
components on the incommensurability parameter � for method 1.
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FIG. 15. (Color online) Dependence of B and μ on the incom-
mensurability parameter � for method 1.

been considered in the literature (e.g., Refs. [24]) for ultrathin
strips, and structures rather rich in defects were found. Here
we investigate the impact of the incommensurability on the
system characteristics. Figures 13 and 14 show the dependence
of stress and elasticity tensor components on the incommen-

surability parameter �, which is defined as dR =
√

3a0
2 + �.

We observe the bulk and shear moduli are mostly affected
by variations of �, whereas stress and elasticity components
are less affected. In Fig. 13 we see that σxy and σyx do not
show any significant dependence on �, whereas the diagonal
elements σxx and σyy exhibit quite noticeable dependence on
�. In Fig. 14 we observe that in the incommensurate system the
elasticity tensor components decrease when � in increased.

Eventually in Fig. 15 we have shown the dependence of
bulk and shear moduli on �. Similar to elasticity tensor, by
increasing the degree of incommensurability the bulk and shear
moduli decrease. The amount of decrease is quite sharp.

VI. SUMMARY AND CONCLUSION

We have used molecular dynamics simulations to study the
effect of confinement on a 2D crystalline solid, with triangular
structure, of point particles interacting with an inverse power
law potential proportional to r−12 in a narrow channel. Two
methods of initial setting of particles in a triangular lattice
are discussed. The system characteristics depend sensitively
on the interaction of the two walls providing the confinement.
The walls exert perpendicular forces on their adjacent particles.
Some structural quantities, namely, density profile, structure
factor, and orientational order parameter are computed, and
their dependence on temperature, density, and other system
parameters are evaluated. It is shown that orientational order
persists near the walls even at temperatures where the system
in the bulk is in the fluid state. Moreover, the dependence
of elastic constants, stress tensor elements, shear and bulk
moduli on density as well as the channel width is discussed,
and it is shown that they increase with raising the density.
The effect of varying the channel width is explored, and it
is found that in general the bulk and shear moduli increase
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with increasing the channel width until the width becomes
comparable to the system length. Furthermore, the effect of
incommensurability of the channel with the triangular lattice
structure is discussed. It is shown that incommensurability
notably affects the system properties. We compare our findings
to those obtained by Monte Carlo simulations in Ref. [24] and
to the periodic boundary condition along the channel.
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