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Local viscosity of a fluid confined in a narrow pore
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In this paper, molecular dynamics simulations of a simple Lennard-Jones fluid confined in narrow slit pores
and undergoing shear have been performed. The aim is to investigate the effects of density inhomogeneities at
the fluid-solid interfaces on the shear viscosity profiles. It has been found that the local viscosity was varying
strongly with the distance from the solid walls for both dilute and dense fluid states with oscillations correlated
to the density ones. To describe the computed viscosity profiles, we propose a scheme that uses the local average
density model, combined with an adequate weight function, for the configurational viscosity and a semiempirical
model for the translational viscosity. It is shown that the proposed approach is able to provide viscosity profiles
in good agreement with those coming from simulations for different pore widths and for different fluid states
(dilute to dense).

DOI: 10.1103/PhysRevE.86.021202 PACS number(s): 66.20.Cy, 47.11.Mn

I. INTRODUCTION

Fluids confined between solid surfaces are generally
strongly inhomogeneous in the direction perpendicular to the
fluid-solid interfaces because of surface effects (layering of
the molecules of the fluid because of adsorption and molecular
packing) [1]. This induces local variations in equilibrium and
transport properties of the confined fluids [1–4]. Understand-
ing such variations plays an important role in fundamental and
applied research for nanofluidics and microfluidics, which has
led to an extensive amount of literature on that topic over the
past 30 years [1–6].

Classical density functional theory (DFT) has been shown
to be able to provide a reliable prediction for strongly
inhomogeneous fluids, e.g., density profiles in narrow slit
pores [3]. However, the situation is more complex when
dealing with the transport properties of inhomogeneous fluids
even for simple fluids [6–13]. This is due to the lack of a
comprehensive theory to describe the transport properties of
nondilute fluids [14] together with difficulties in assessing the
results from an experimental point of view. Some attempts
exist to deal with that problem. They are mostly based on
the Enskog-like kinetic model and molecular dynamics (MD)
simulations results and can roughly explain the behavior of the
viscosity of inhomogeneous fluids [8,10,11,15–18]. However,
none of them are able to accurately describe the variation in
viscosity of very confined fluids [10,11,15].

Besides the attempts based on the kinetic theory in deter-
mining the spatial variation in transport properties of inho-
mogeneous fluids, there exists another simpler method, which
is very easy to implement [6,7]. This method heuristically
assumes that a local transport property of an inhomogeneous
fluid at a given position is equal to the value of the property at a
bulk state corresponding to a locally averaged density around
the given position. This approach is called the local average
density model (LADM). The LADM reasonably describes the
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velocity profiles of fluids confined between solid surfaces and
undergoing boundary shears [7,19]. However, the accuracy of
such an approach is still questionable as long as an explicit
comparison of the local transport property provided by the
LADM with the one directly deduced from the MD simulation
data does not always exist. Furthermore, previous papers
dealing with the LADM were mainly restricted to dense
fluids, and it seems that the model cannot be applied to dilute
fluids [6,20].

So, this paper aims at improving the description of the
local transport properties, limited here to shear viscosity, of
strongly inhomogeneous fluid confined in a narrow slit pore.
To do so, we employ nonequilibrium molecular dynamics
(NEMD) simulations on fluids confined in a narrow pore
and undergoing boundary shears as shown in Fig. 1. Then,
we determine the local viscosity (separated into translational
and configurational contributions) of the confined fluid and
evaluate the efficiency of some known models, e.g., the van
der Waals (vdW) model and the LADM combined with various
weight functions. By doing so, we can directly evaluate the
limitations of these models in predicting the local viscosity
based on the local thermodynamics properties. Finally, using
the results from a previous paper on inhomogeneous fluids
without confinement [20], we propose a heuristiclike simple
method that can overcome the weaknesses of the classical
LADM for low density fluids.

The outline of the paper is as follows: Details on the
methodology are presented in Sec. II. Then, the results are
provided in Sec. III together with a discussion on the validity of
the models aimed at describing the local viscosity of strongly
inhomogeneous fluids. Finally, the conclusions are drawn in
Sec. IV.

II. MODEL AND THEORY

A. Fluid and solid models

In this paper, we study the shear viscosity of simple
fluids confined between solid walls. Interactions between fluid
particles and fluid-solid particles are described by a usual
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FIG. 1. (Color online) Scheme of the simulation box used in our
paper.

truncated Lennard-Jones (LJ) potential [21],

Uij (rij ) =
{

4εij

[( σij

rij

)12 − ( σij

rij

)6]
, if rij � rc,

0, if rij > rc,
(1)

where rij is the distance between particles i and j , εij is the
potential depth, σij is the molecular diameter, and rc is the
cutoff radius (taken equal to 2.5σij in this paper).

The scheme of the simulation box is shown in Fig. 1 in
which each wall is made of four atomic layers distributed on
a faced centered cubic lattice with the size of the lattice a =
1.6σss , i.e., a number density of the solid wall ρs ≈ 0.98/σ 3

ss .
The solid particles are fixed at their sites.

Inhomogeneities of the fluid are induced by interactions
between fluid and solid particles. To control these inhomo-
geneities, the fluid-solid interactions are modulated using a
classical k prefactor as

εsf = kεff = kε, (2)
σsf = σff = σss = σ. (3)

By tuning the amplitude of k, one can adapt the magnitude
of the first adsorbed fluid layer.

In the following, we express the variables in dimensionless
units by using the LJ reduced units. The reduced temperature
T ∗, density ρ∗, stress P ∗, and viscosity μ∗ are, thus, defined
as Ref. [21]

T ∗ = kBT

ε
, ρ∗ = NT σ 3

V
,

(4)

P ∗ = Pσ 3

ε
, μ∗ = μ

σ 2

√
mε

,

where kB is the Boltzmann constant, NT is the total number
of atoms contained in the volume V , and m is the mass of the
fluid particle.

B. NEMD scheme

The confined fluid is sheared by moving the walls in
opposite parallel directions at a constant velocity, see Fig. 1.
At the stationary state, this scheme yields a constant shear
stress in the fluid phase (this point will be checked in the
following). It is important to note that the chosen magnitude
of the velocity of the walls should be sufficiently large to
obtain a high signal-to-noise ratio but must also satisfy that
shear thinning is avoided [20].

C. Simulation details

All simulations consist of three steps. First, the confined
fluid is equilibrated during a run of 106 time steps. Then,
the NEMD scheme is applied to shear the confined fluid.
Finally, once the steady state is reached, which is ensured
by monitoring the evolution of the velocity profile with
time, the samplings are performed during 3 to 10 × 107 time
steps.

The solid walls are composed of a lattice of 10 × 10 unit
cells in the y and z directions, respectively, which correspond
to a number of wall particles Nw = 1600 and dimensions of
the simulated box L∗

y = 16 and L∗
z = 16. To provide a high

signal-to-noise ratio, the walls are moved with a high velocity
on the order of 0.5 in reduced units. However, we have verified
that the velocities used in the present paper still lead to a linear
response without shear thinning (see Sec. III A).

We have used an in-house code to perform the MD
simulations. The equations of motion of the particles are
solved by employing the Verlet velocity algorithm with a time
step �t∗ = 0.002. Classical periodic boundary conditions
are applied in all directions [21]. To compute interaction
force efficiently, we used the Verlet neighbor list [21]. A
Berendsen thermostat [22] is applied to the x and z velocity
components [23] during the NEMD simulations with the time
constant τ ∗ = 0.2 and to all three velocity components (x, y,
and z) during the equilibrium MD simulations with τ ∗ = 1.
To compute the local quantities, the simulation box is divided
into slabs along the x direction using �x∗ ≈ 0.11.

III. RESULTS AND DISCUSSIONS

A. Preliminary results

First, to test the proposed methodology, we have carried
out MD simulations on a rather dense fluid confined between
solid walls separated by W ∗ = 10. To generate the initial
configuration, we have employed the grand-canonical-like
molecular dynamics scheme described in Ref. [24]. In that
approach, the pore is simulated in contact with two bulk
reservoirs maintained at a given state (TBulk and ρBulk). Then,
once the equilibrium is reached, the average density in the
center of the pore is extracted and is used to generate the initial
configuration of the fluid confined within the slit pore as shown
in Fig. 1. The fluid state, employed to perform the preliminary
test, corresponds to a bulk fluid at T ∗ = 2 and ρ∗ = 0.625,
i.e., a dense supercritical fluid. The k prefactor chosen is
equal to 0.387 (moderately adsorbent walls), which provides a
maximum of the reduced local density roughly equal to 1, see
Fig. 2(a).

As mentioned previously, during the NEMD simulations,
the Berendsen thermostat was employed on the x and z velocity
components. So, it is important to check the temperature profile
over the y direction (not thermostated) as shown in Fig. 2(b).
Two interesting features are observed. First, temperatures
in both directions (perpendicular and along the flow) are
constant across the entire fluid. Second, the temperature in
the y direction is equal to the expected one, even if the
thermostat was not applied in this direction. This can simply
be understood as a consequence of the equipartition theorem
[21,23].
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FIG. 2. (Color online) Preliminary results for the state: ρ∗
Bulk = 0.625 and T ∗ = 2. (a) Density profiles: inverted triangles for equilibrium

simulations, triangles for nonequilibrium simulations. (b) Temperature profiles: inverted triangles and triangles for the temperature perpendicular
to and along the flow direction respectively. (c) Normal stress profiles: inverted triangles for the normal stress at equilibrium and triangles
during nonequilibrium simulations. (d) Shear stress profiles: Diamonds, triangles, and inverted triangles for the total, configurational, and
translational shear stresses, respectively. (e) Velocity profiles: diamonds when V ∗

wall = 0.3 and triangles when V ∗
wall = 0.6. (f) Shear viscosity

profiles: diamonds when V ∗
wall = 0.3 and triangles when V ∗

wall = 0.6.

The momentum conservation equation for a fluid confined
in a narrow pore, i.e., at a low Reynolds number and experienc-
ing a boundary shear in the y direction (Couette configuration)
should lead to constant shear and normal stresses over the x

coordinate [9,20]. From the Irving-Kirkwood definition for
the pressure tensor, the normal stress Pxx and the shear stress
τxy across a plane parallel with the solid surfaces, i.e., the y-z
plane, can be deduced as functions of the x coordinate of the
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plane [9] using

Pxx(x) = 1

Vs

∑
i

mv2
i,xδ(xi − x) − 1

2A

[ ∑
i<j

x2
ij

rij

∂ULJ

∂rij

1

|xij |

	

(
x − xi

xij

)
	

(
x − xj

xij

) ]
, (5)

τxy(x) = 1

Vs

∑
i

mvi,x[vi,y − uy(x)]δ(xi − x)

− 1

2A

[ ∑
i<j

xij yij

rij

∂ULJ

∂rij

1

|xij |

	

(
x − xi

xij

)
	

(
x − xj

xij

) ]
, (6)

where Vs is the volume of a slab, A = Ly × Lz is the area
of the y-z plane of the simulation box, m is the mass of a
molecule, vi,α is the α component of the velocity of molecule
i, uy(x) is the streaming velocity, xij is the x component of
rij , δ is the Kronecker symbol, and 	(x) is the Heaviside step
function.

To compute the local pressure tensor during the MD simu-
lations, we have employed the volume average method, which
is simply a discretization of Eqs. (5) and (6) and is equivalent
to the method of planes if a sufficiently fine discretization is
employed [25]. So, to divide the simulation box in small slabs
perpendicular to the x axis, we have used the width of each
slab �x∗ ≈ 0.11, which is consistent with what is proposed
in Ref. [25] and is sufficient to obtain the normal and shear
stress profiles nearly independent of �x∗. It is worth pointing
out that such a formulation of the pressure tensor, Eqs. (5)
and (6), implies that the kinetic contributions are assigned to
the locations where the particles are, and the configurational
contributions are equally distributed between the particles
i and j considered. Additionally, we have computed Pwall and
τwall, which are normal and shear stresses acting on the walls
due to intermolecular forces between the fluid and the solid
molecules.

Results shown in Figs. 2(c) and 2(d) confirm that the
behavior of the confined fluid studied in this paper satisfies
the momentum conservation equation. It is worth noting that,
even if the density is not constant, see Fig. 2(a), the local shear
stress is constant in the whole fluid and is equal to τwall.

Equation (6) is composed of two contributions: the first term
on the right hand side is the translational contribution, and the
second term is the configurational one. Rather surprisingly, the
translational contribution increases, and the configurational
contribution decreases when the local density increases, see
Figs. 2(a) and 2(d). Such a trend is contradictory with
what occurs in a homogeneous fluid where the translational
contribution decreases with increasing density [26]. However,
this can be explained by the fact that, in an inhomogeneous
fluid, the number of particles per volume unit increases with
density, but, contrary to what occurs in a homogeneous fluid,
the mobility of the particles does not decrease [20,27]. This
can be understood because the momentum transport occurs
perpendicular to the dense layer (and the flow) and not parallel
to it.

In addition, to test the influence of the shear on the static
properties of the confined fluid, we have compared the density
and normal pressure profiles at equilibrium with those during
nonequilibrium simulations. Results depicted in Figs. 2(a) and
2(c) indicate that, for the shear rate used in the present paper,
the shear has a negligible effect on the local density and normal
pressure.

It is worth pointing out that, when the strain rate varies
rapidly over a length typical of intermolecular correlations, the
classical local Newton’s law of viscosity must be generalized
by a nonlocal constitutive equation [28]. However, in the
Couette configuration simulated in this paper, the variation
in the gradient of the strain rate is small in the region
from the pore center to the first adsorbed layer. This means
that the effect of the variation in the strain rate induced from
the inhomogeneity of the fluid on the local shear stress can
be neglected in this region [29]. It should also be noticed
that the remaining region in which the gradient of the strain
rate is non-negligible, is rather small, i.e., smaller than σ/2.
So, one can expect that this effect remains rather limited. To
confirm this statement, we have performed NEMD simulations
with two different velocities of the solid walls V ∗

wall = 0.3 and
V ∗

wall = 0.6 to compare the results between them.
As shown in Fig. 2(e), the velocity profiles are superposing

(when scaled by the velocity of the solid walls) for the two
different V ∗

wall’s tested. This is more obvious when looking at
the local viscosity profiles deduced from NEMD simulations
and using Newtonian law, i.e., μ(x) = τxy (x)

(
duy (x)

dx
)
. As shown in

Fig. 2(f), they are independent of the velocity of the solid
walls. Thus, in the following, a local shear viscosity has
been computed using the Newtonian law in which the center
finite difference is used to compute the local shear rate, i.e.,
duy(x)/dx.

It should be mentioned that we have also performed similar
checks for a dilute state, i.e., T ∗ = 2 and ρ∗ = 0.291. All the
previous findings on the dense state have been confirmed for
the dilute state.

B. Viscosity decomposition

When using Eq. (6) combined with the Newtonian equation,
it is possible to separate the viscosity in two contributions,
which is crucial to describe the local viscosity of inhomo-
geneous fluids as we have shown in a previous paper [20].
The first term on the right hand side of Eq. (6) represents
the translational contribution, and the second term represents
the configurational contribution to the local shear stress [26].
Thus, the local shear viscosity, estimated from the NEMD
simulations, can be expressed as the sum of two terms,

μ(x) = μt (x) + μc(x), (7)

where μt is the local translational shear viscosity computed
from

μt (x) =
1
Vs

∑
i mvi,x[vi,y − uy(x)]δ(xi − x)

duy (x)
dx

, (8)
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FIG. 3. (Color online) Solid curves in the insets: Shear viscosity profiles with corresponding density profiles. (a) and (b) T ∗
Bulk = 2.0 and

ρ∗
Bulk = 0.291, (c) and (d) T ∗

Bulk = 2.0 and ρ∗
Bulk = 0.625. Circles for the NEMD simulations results, dashed curve (green color) for the vdW

model, solid curve (cyan color) for the LADM + F-M model, dotted curve (black color) for the LADM + H-R model, dashed-dotted curve
(blue color) for the LADM + Tarazona model, dashed-dotted-dotted curve (black color) for Eq. (22).

and μc is the local configurational shear viscosity evaluated
thanks to

μc(x) =
− 1

2A

[∑
i<j

xij yij

rij

∂ULJ

∂rij

1
|xij |	

(
x−xi

xij

)
	

( x−xj

xij

)]
duy (x)

dx

. (9)

From a physical point of view, μt corresponds to the mo-
mentum transfer associated with the displacement (diffusion)
of the particles and μc corresponds to the contribution due to
interaction (collision) between particles. Thus, in a dilute state,
μt will be the dominant mechanism of momentum transfer,
whereas, it will be μc for a dense state.

In a homogeneous fluid, the translational viscosity of a
LJ fluid is, to a very good extent [26], equal to the “zero-
density” viscosity μ0, deduced from a classical Chapman-
Enskog approach [30], i.e.,

μ∗
t = μ∗

0 = 5

16�v

√
T ∗

π
, (10)

in which �v is the collision integral.

In addition, the configurational viscosity of a LJ homoge-
nous fluid can be described accurately by the correlation
developed by Galliero et al. [31] using T ∗ and ρ∗ as inputs,

μ∗
c,corr(T

∗,ρ∗) = (eb2ρ
∗ − 1) + b3(eb4ρ

∗ − 1)

+ b5

(T ∗)2
(eb6ρ

∗ − 1), (11)

where the numerical parameters bi have been fitted on
extensive MD results. When Eqs. (10) and (11) are combined,
the correlation so built yields an estimate of the shear viscosity
of a homogenous LJ fluid with a maximum absolute deviation
below 5% compared to MD results for 0 � ρ∗ � 1.275 and
0.6 � T ∗ � 6.

C. Local shear viscosity modeling

So, using the approach described previously, we have
computed the viscosity profiles of two different fluids using
NEMD simulations, one in a dilute state at T ∗

Bulk = 2.0 and
ρ∗

Bulk = 0.291 and another one in a dense state at T ∗
Bulk = 2.0,

ρ∗
Bulk = 0.625, confined in a pore of a width W ∗ = 10. The
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FIG. 4. (Color online) Configurational viscosity profiles. (a) T ∗
Bulk = 2.0 and ρ∗

Bulk = 0.291. (b) T ∗
Bulk = 2.0 and ρ∗

Bulk = 0.625. The legend
is the same as that in Fig. 3.
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FIG. 5. (Color online) Translational viscosity profiles. (a) T ∗
Bulk = 2.0 and ρ∗

Bulk = 0.291. (b) T ∗
Bulk = 2.0 and ρ∗

Bulk = 0.625. Circles for
NEMD simulations results, solid curves for Eq. (21).

k prefactor (related to adsorption) in Eq. (2) has been taken
equal to 0.387 so that the local density remains in the validity
range of the LJ shear viscosity correlation, Eq. (11).

The local viscosity in Fig. 3 clearly indicates that the local
viscosity deduced from NEMD simulations strongly varies
with position (i.e., with density inhomogeneities) for both
states. Moreover, the viscosity profiles are strongly correlated
to the density ones for the two states studied here, a result
which is consistent with previous findings on inhomogeneous
systems [20]. To better understand the influence of density
inhomogeneities on the local shear viscosity, in the following,
we separately consider the effects on the two viscosity
contributions.

1. Configurational viscosity

By using Eq. (9), we have computed the configurational
viscosity profiles for both states during the simulations. As
shown in Fig. 4, the configurational viscosity varies with the
distance from the solid surface similar to the density profiles.
So, as assumed in the DFT approaches for static properties,
we have tested to which extent the NEMD configurational
viscosity profiles computed using Eq. (9), μ∗

c (x), can be
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FIG. 6. (Color online) Correlation between μ∗
t (x)/μ∗

t,Bulk and
ρ∗(x)/ρ∗

Bulk in the dense state using different pore widths from 5σ to
10σ .

deduced from

μ∗
c (x) = μ∗

c,corr[T
∗(x),ρ∗

eff(x)], (12)

where μ∗
c,corr is estimated using Eq. (11) and ρ∗

eff is an effective
density profile that satisfies the equality in Eq. (12). Thus, the
main question is how ρ∗

eff(x) should be related to the density
profiles obtained during MD simulations, i.e., ρ∗(x)?

To answer that question, we have first tested the simplest
approach, called the van der Waals model [20,32], that is
defined by

ρeff(x) = ρ(x). (13)

Figure 4 shows that the vdW model leads to a strong
overestimation of the variations in μ∗

c induced by the density
inhomogeneities for both states. This result is consistent with
the fact that the configurational viscosity not only is affected
by the local thermodynamic properties, but also is affected
by the surrounding density, i.e., nonlocal effects are expected.
Hence, as the vdW model neglects nonlocal effects, it also fails
to yield a good estimate of μ∗

c (x).
To include nonlocal effects, we have then used approaches

based on the local average density model proposed by Bitsanis
et al. [7],

ρeff(x) =
∫

ω(|x − x ′|,{ρ})ρ(x ′)dx ′, (14)

where ω(|x|,{ρ}) is a weight function. There exist various
forms of the weight function appearing in Eq. (14) that
have been proposed to deal with static properties [32,33]. In
this paper, we have selected, among them, three well-known
different forms. The first one, which is density independent, is
the Fischer and Methfessel (F-M) model [33] in which

ω(|x|) =
{

1
σ
, |x| � σ

2 ,

0, elsewhere.
(15)

The second one, also density independent, the generalized
Hard-Rod (H-R) model [33], is defined as

ω(|x|) =
{

6
σ 3

[(
σ
2

)2 − (|x|)2
]
, when |x| � σ

2 ,

0, elsewhere.
(16)
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FIG. 7. (Color online) Viscosity profiles for various pore widths (with corresponding density profiles in the insets). Left: dilute state. Right:
dense state. Circles for NEMD simulations and curves for Eq. (22).
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FIG. 8. (Color online) Viscosity profiles for various pore widths for T ∗
Bulk = 4.0 and ρ∗

Bulk = 0.291. The legend is the same as that in Fig. 7.

The last one, which is the most efficient among the three
to describe the static properties of confined fluids [33], the
Tarazona model, is defined as

ω[|x − x ′|,ρeff(x)] = ω0(|x − x ′|) + ω1(|x − x ′|)ρeff(x)

+ω2(|x − x ′|)ρeff(x)2 (17)

where ωi=0−2(|x|) are given in Ref. [33]. It is precisely worth
the fact that the length, over which the nonlocal effects are
taken into account, is equal to σ for the first two weight
functions, whereas, it is equal to 2σ for the last one [32,33].

Figure 4 shows the results obtained when using Eq. (12)
combined with Eq. (14) with the three weight functions
tested in this paper. From these figures, it is clear that, when
nonlocality is introduced using Eq. (14), results can be largely
improved compared to the simple vdW model. However, rather
surprisingly, the two first weight functions (that introduce
nonlocality over a distance equal to σ ) yield better results
than the Tarazona one (that introduces nonlocality over a
distance equal to 2σ ), see Fig. 4. This finding is probably
related to the fact that thermodynamic quantities are more
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strongly dependent on long-range interactions than transport
properties [34,35]. Such an assumption is supported by the
fact that hard-sphere approaches are used to estimate viscosity
with a reasonable efficiency [14], whereas, such a fluid model
is fundamentally inadequate for thermodynamic properties.
Another form of support for that assumption comes from the
fact that viscosity is only weakly dependent on the cutoff radius
[31,36,37], whereas, thermodynamic properties are strongly
affected by a small cutoff radius value [21,38].

It should be noted that, among the weight functions with
nonlocalities over a distance equal to σ , the generalized H-R
function is a more consistent choice because the F-M function,
Eq. (15), is strongly discontinuous at σ/2, whereas, the H-R
is not. Thus, in the following, the H-R weight function is
employed.

2. Translational viscosity

Similar to what was performed for configurational viscos-
ity, the translational viscosity profiles for both states have
been computed during the NEMD simulations. As shown
in Fig. 5, the translational viscosity varies appreciably with
the distance from the solid surface, i.e., with the densi-
ties’ inhomogeneities. Such a behavior is contradictory with
Eq. (10), which implies a translational viscosity independent
of the density. Furthermore, the obvious correlation between
the local translational viscosity and the local density is opposite
to what is found in homogeneous LJ fluids for which the
translational viscosity decreases slightly when the density
is increased [26]. This point has already been discussed in
Ref. [20] for inhomogeneous fluids without confinement. As
explained in this paper, μ∗

t (x) is connected to the local number
of molecules and the local mobility of each molecule in which
the latter is also correlated positively to the local density.

To quantify this correlation between the local translational
viscosity and the local thermodynamic conditions, the idea is to
quantify the ratio between μ∗

t (x) and the translational viscosity
of the bulk fluid μ∗

t,Bulk, i.e., the translational viscosity of the
fluid in the bulk reservoir in contact with the porous medium (at
the same chemical potential as the one of the confined fluid).
For that purpose, we assume that the translational viscosity is
a function of the density and of the insertion probability [20],
which leads to

μt (x)

μt,Bulk
= g[ρ(x)]f (ρ(x), exp{βϑ[ρ(x),T (x)]})

g(ρBulk)f {ρBulk, exp[βϑ(ρBulk,TBulk)]} , (18)

where ϑ is the chemical potential, g is a function of the density,
and f is a function of the insertion probability. From the
thermodynamic equilibrium condition, we can write that

ϑ[ρ(x),T (x)] = ϑ(ρBulk,TBulk). (19)

Then, from Eqs. (18) and (19), we can deduce, as a first
order approximation, that μt (x)

μt (ρBulk,TBulk) is a function of ρ(x)
ρBulk

only.
It should be mentioned that such an approximation is valid
only when the variations in ρ(x)

ρBulk
are not too large, i.e., when

the fluid-solid interactions are not too strong. Starting from that
assumption, using the NEMD results obtained, we have found
that a simple power law is sufficient to provide reasonable
results, see Fig. 6, i.e., the local translational viscosity can be

well described by

μt (x) = μt,Bulk

(
ρ(x)

ρBulk

)γ

, (20)

where γ is a parameter function of the bulk state (γ ≈ 3 for the
dilute state and γ ≈ 1.4 for the dense state). Again, it should
be pointed that this relation will remain valid only when the
variations in ρ(x)

ρBulk
are not too large, i.e., ρ(x)

ρBulk
between 2/3 and

3/2.
To estimate the relation between γ and ρBulk and TBulk, we

have performed NEMD simulations for 30 different systems
keeping k = 0.387 on a large range of bulk states (T ∗

Bulkvaries
from 1.5 to 4 and ρ∗

Bulkvaries from 0.2 to 0.7) and various
pore widths (W ∗varies from 5 to 10). Results indicate that γ

increases with decreasing bulk density and increasing bulk
temperature. In other words, the local viscosity is more
strongly correlated to ( ρ(x)

ρBulk
) at higher bulk temperatures and

lower bulk densities. Based on these results, we propose a
correlation for γ ,

γ = 0.8
exp

(
0.022T 2

Bulk

)
ρBulk

. (21)

As shown in Fig. 5, Eqs. (20) and (21) are able to yield
a reasonable μt (x) profile based on the local thermodynamic
properties.

3. Local viscosity

Thus, to quantitatively describe the local viscosity of pure
fluids confined in not too adsorbent narrow pores over a large
range of thermodynamic conditions, we propose to use

μ(x) ≈ 5

16�v

√
T (x)

π

(
ρ(x)

ρBulk

)γ

+ μc,corr[T (x),ρeff(x)],

(22)

in which ρeff is deduced using Eq. (14) with the H-R weight
function defined by Eq. (16) and γ is obtained by Eq. (21).

As shown in Figs. 3, 7, and 8, the local viscosities predicted
from the local thermodynamic condition using Eq. (22) are
consistent with the ones provided by NEMD simulations for
different thermodynamic conditions (two temperatures and
two densities) and various pore widths.

IV. CONCLUSION

In the present paper, we have investigated the local shear
viscosity of Lennard-Jones fluids confined in narrow slit pores
by using molecular dynamics simulations of a Couette-like
configuration. It is shown that, when using such a configuration
with the appropriate parameters, the variation of the gradient
of the strain rate is small in the region from the pore center
to the first adsorbed layer. The remaining region in which this
variation is non-negligible is limited to regions close to the
walls that are smaller than σ/2. So, it is consistent to define
a local viscosity from the classical Newton equation, and a
nonlocal constitutive equation is not required in this case.

The local shear viscosity has been found to vary strongly
with the distance to the walls and to be dependent on the density
inhomogeneities of the fluid. To quantitatively understand
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this behavior, we have decomposed the local viscosity into
configurational and translational contributions. Interestingly,
it has been found that both contributions vary with the distance
to the walls.

NEMD results showed that the local average density model
provides a reasonable estimate of the local configurational
viscosity when combined with the appropriate weight function,
which seems to be the Hard-Rod one for the systems studied
here. However, it has been found that this approach is
insufficient to yield good results of the viscosity profiles in the
dilute state, i.e., when the configurational viscosity is small
compared to the translational viscosity.

Based on extensive simulations, we have proposed a
simple relation to describe the translational viscosity profiles
starting only from the density profiles. Thus, when this

relation is combined with the LADM + H-R model for the
configurational viscosity, we have found that it is possible
to quantitatively determine the shear viscosity profiles of a
confined LJ fluid for different pore widths (five to ten molecule
sizes) and for different fluid states (dilute to dense) when the
solid walls are not too adsorbent.
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