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Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system
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We generalize the quantum heat engine (QHE) model which was first proposed by Bender et al. [J. Phys.
A 33, 4427 (2000)] to the case in which an ideal Fermi gas with an arbitrary number N of particles in a box
trap is used as the working substance. Besides two quantum adiabatic processes, the engine model contains two
isoenergetic processes, during which the particles are coupled to energy baths at a high constant energy Eh and a
low constant energy Ec, respectively. Directly employing the finite-time thermodynamics, we find that the power
output is enhanced by increasing particle number N (or decreasing minimum trap size LA) for given LA (or N ),
without reduction in the efficiency. By use of global optimization, the efficiency at possible maximum power
output (EPMP) is found to be universal and independent of any parameter contained in the engine model. For an
engine model with any particle-number N , the efficiency at maximum power output (EMP) can be determined
under the condition that it should be closest to the EPMP. Moreover, we extend the heat engine to a more general
multilevel engine model with an arbitrary 1D power-law potential. Comparison between our engine model and
the Carnot cycle shows that, under the same conditions, the efficiency η = 1 − Ec

Eh
of the engine cycle is bounded

from above the Carnot value ηc = 1 − Tc

Th
.

DOI: 10.1103/PhysRevE.86.021133 PACS number(s): 05.70.−a

I. INTRODUCTION

A quantum engine cycle consists of several basic quantum
thermodynamic processes, including quantum adiabatic pro-
cess, quantum isothermal process, quantum isobaric process,
quantum isochoric process, and isoenergetic process [1–5].
Based on these thermodynamic processes, various quantum
engine models have been studied in a series of publications
[1–27]. One of the important attributes shared by quantum
engine cycles is that the working substance is composed of
quantum matter. Using a single particle confined in a 1D
box potential as the working substance, Bender et al. [2]
constructed a two-level engine model by changing both the
potential wall and the quantum state in a specific manner.

For a two-level Bender engine model of a single particle
in various potentials, the performance has been studied
intensively [2,19–22]. It has been found that the efficiency
at maximum power output (EMP) is a constant for a given
potential [19,21] but sensitively dependent on the form of
the potential [21]. Two of the authors of the present work
generalized the Bender model [2] and gave a performance
analysis, extending a single two-state particle into two three-
state particles [23]. These engine models were well established
and analyzed, but under the certain approximations that the
working substance contains only one (or two) particle(s) and
that only two (or three) energy levels are taken into account. It
is natural to generalize these previous models by establishing
an arbitrary M-level engine model that works with an arbitrary
finite number N of particles (with N � M). Moreover, so far
there has been no universal and complete discussion on the
performance of such a quantum heat engine (QHE) model
in the literature [2,19–21,23] and, in particular, the problem
of EMP [26] of the generalized engine model has not been
addressed adequately and clearly.

*physwjh@gmail.com

In the present paper, we study the performance of an engine
model which consists of two quantum adiabatic and two isoen-
ergetic processes, by extending the previous models of a (two)
two-state (three-state) particle(s) in a potential to a multilevel
engine cycle with an arbitrary number N of noninteracting
fermions confined in a trap. Usually, efficiency is sacrificed to
maximize the power in finite-time thermodynamics [17,26].
By contrast, the finite-time process analysis finds that, for
given minimum trap size or particle number, the power output
can be enhanced by increasing particle number or decreasing
minimum trap size, without decrease in efficiency. We prove
by using global optimization that the efficiency at possible
maximum power output (EPMP) is intrinsic and independent
of the model parameters, such as the potential size, and the
particle number as well as the number of energy levels. The
EMP for any engine cycle can be determined, under the certain
condition that the efficiency of this model is closest to the
EPMP. The general case, in which a M-level engine model uses
the N -particle Fermi gas trapped in an arbitrary 1D power-law
potential as the working substance, is discussed. We compare
the engine cycle with the Carnot cycle, describing the quantum
Carnot cycle which works with N noninteracting fermions in
an arbitrary power-law potential. As expected, the value of the
efficiency of our engine model is found to be bounded from
above the Carnot value.

II. QUANTUM VERSION OF THE FIRST
THERMODYNAMIC LAW AND OF

ADIABATIC THEOREM

The first law of thermodynamics in quantum-mechanical
systems can be expressed as a function of eigenenergies εn

and probability distributions pn [5,26],

dE = d-Q + d-W =
∑

n

εndpn +
∑

n

pndεn, (1)
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where d-Q = ∑
n εndpn and d-W = ∑

n pndεn depict the heat
exchange and work done, respectively. Here we have used d-Q
(d-W ) instead of dQ (dW ), since the heat exchange Q (work
W ) is a process variable. As in a classical system where the
generalized force Yn, conjugate to the generalized coordinate
yn, is defined by Yn = − d-W

dyn
, the force for a quantum system

reads

F = −d-W

dL
= −

∑
n

pn

dεn

dL
, (2)

where L is the generalized coordinate corresponding to the
force F .

Because the von Neumann entropy SVN = kBTr(ρ ln ρ),
with kB being Boltzmann constant, identically vanishes when
the density matrix ρ is of a pure state [19,21], the Shanon
entropy instead of the von Neumann entropy will be consid-
ered. The Shanon entropy can be expressed in terms of the
probability distributions as

S = −kB

∑
n

pn ln pn. (3)

The quantum adiabatic theorem [28] predicts that an isolated
system would remain in its initial state during an adiabat.
It is clear from Eq. (3) that the entropy in an adiabatic
process remains constant through no change in the probability
distributions pn, with n = 1,2,3, . . ..

III. A MULTILEVEL ENGINE MODEL OF FINITE N
NONINTERACTING FERMIONS TRAPPED

IN A 1D BOX

An arbitrary state |ψ〉 can be expanded in terms of the
eigenstates |un〉 as |ψ〉 = ∑

n an|un〉, with the expansion
coefficients satisfying

∑∞
n=1 |an|2 = 1. For an ideal Fermi gas

with a finite number of particles confined in a 1D box with
width L, the Schrödinger equation of the system can be written
as

− h̄2

2m

d2ψ(x)

dx2
− Eψ(x) = 0, (4)

where ψ(x) is required to satisfy the boundary conditions
ψ(0) = 0 and ψ(L) = 0. The expectation value of the system
Hamiltonian is thus given by E = 〈ψ |H |ψ〉 = ∑

n εn|an|2,
where the single-particle energy spectrum is εn = n2π2h̄2

2mL2 , with
m being the mass of a particle, and n = 1,2,3, . . ..

A multilevel QHE model of N noninteracting fermions
in a 1D box potential, consisting of two adiabatic and
two isoenergetic processes, is illustrated in Fig. 1(a). The
isoenergetic and quantum adiabatic processes are, respectively,
identified as:

(i) Isoenergetic process: The potential width L changes
as the potential wall moves, and the system is coupled to an
energy bath in the isoenergetic process where the energy of
the system E(L) remains constant. So the energy exchange
is a form of heat exchange by definition, and the external
fields play the role of heat baths in traditional quantum heat
engines. From a physical point of view, an isoenergetic process
can be achieved when the working substance interacts with
an external field [2,22,27,29,30], as shown in Fig. 1(b). For
instance, when the atom system interacts with a radiation field
[2,22,27], photons are converted from high or low to low or
high states during the operation of the engine, leading to a
change in energetic value. In such a case, the particles undergo
transitions among the energy levels under the action of the
radiation fields if the width of the trapping potential varies
very slowly, thereby indicating that the isoenergetic process
could be realized [31].

EE(t)

u

u

u

u
u

AA BB

Energy Bath I

DDCC

Energy Bath II

(a) (b)

FIG. 1. (Color online) (a) Interaction of a M-level system with an external field E(t). (b) Graphic sketch of a multilevel QHE model of an
ideal Fermi gas with a finite number N of particles in a 1D box trap. At instants A and D, the N particles stay in the N energy levels with
n = 1,2, . . . ,N − 1,N , while at instants B and C, the particles stay in highest energy levels with n = M,M − 1, . . . ,M − N + 2,M − N + 1.
In the process A → B(C → D) the system absorbs (releases) energy from (to) energy bath I (II) and the energy of the system is kept unchanged
at a constant energy Eh (Ec). In the adiabatic branches B → C and D → A the N -particle system is decoupled from the energy bath and stays
in fixed states.

021133-2



PERFORMANCE OF A MULTILEVEL QUANTUM HEAT . . . PHYSICAL REVIEW E 86, 021133 (2012)

(ii) Adiabatic process: During the adiabatic process, the
system is decoupled from the energy bath and remains a fixed
state through no change of the probability distributions pn.

The four processes that our engine model operates are
described as follows:

(1) At the start of the isoenergetic expansion A → B, the
finite N noninteracting fermions are assumed to occupy the
lowest energy levels and the system is brought into contact
with an energy bath (labeled I). As a result, the energy of the
system is given by

EAB = Eh = π2h̄2

2mL2
A

N∑
i=1

i2 = π2h̄2

2mL2
A

G1, (5)

where G1 ≡ ∑N
i=1 i2 = 1

6N (N + 1)(2N + 1). In this isoen-
ergetic expansion, the state of a single particle is a linear
combination of the M energy eigenstates. Using the condition∑

n |a(i)
n |2 = 1 with a(i)

n being the expansion coefficients of ith
particle occupying the nth eigenstate, the energy of the system
as a function of potential width L is

Eh = h̄2π2

2mL2

N∑
i=1

M∑
n=1

∣∣a(i)
n

∣∣2
n2. (6)

Combination of Eq. (5) with Eq. (6) gives rise to the following
relation:

L2 = L2
A

G1

N∑
i=1

M∑
n=1

∣∣a(i)
n

∣∣2
n2. (7)

When these fermions occupy from the Mth to the (M −
N + 1)th level, respectively, the maximum value of L in the

isoenergetic expansion is obtained as LB =
√

G2
G1

LA, where

G2 ≡ ∑M
i=M−N+1 i2 and, thus, G2 = 1

6M(M + 1)(2M + 1) −
1
6 (M − N )(M − N + 1)(2M − 2N + 1). From Eq. (6), the

force F is determined by FAB(L) = h̄2π2

mL2

∑N
i=1

∑M
n=1 |a(i)

n |2,
which, according to Eq. (7), can be written as

FAB(L) = h̄2π2

mL2
AL

G1. (8)

The heat quantity Qh absorbed from the energy bath I is
given by

Qh =
∫ LB

LA

FAB(L)dL = π2h̄2

2mL2
A

G1 ln

(
G2

G1

)
. (9)

(2) In the adiabat B → C, the system adiabatically expands,
outputing work while isolated from any energy bath. During
this process the system remains in the fixed state and no heat
exchange occurs.

(3) This isoenergetic compression C → D, where the
Fermi system is coupled to the other energy bath
(labeled II), is almost an inverse process of the first process.

At the end of the compression LD =
√

G1
G2

LC , the system

is back in the initial state in which all particles occupy the
lowest energy levels. During this isoenergetic compression,
the expectation value of the Hamiltonian is kept constant as

ECD = Ec = π2h̄2

2mL2
C

G2. (10)

Similar to the isoenergetic expansion, the force as a function
of L can be obtained as

FCD(L) = h̄2π2

mL2
CL

G2, (11)

and the heat quantity Qc released to the energy bath II is
determined according to

Qc =
∣∣∣∣
∫ LD

LC

FCD(L)dL

∣∣∣∣ = π2h̄2

2mL2
C

G2 ln

(
G2

G1

)
. (12)

(4) In the adiabatic compression D → A the system is
decoupled from the energy baths. As in the adiabat B → C,
the system remains in the fixed state with no heat exchange in
this compression process.

The engine cycle A → B → C → D → A is drawn in the
(F,L) plane [see Fig. 2]. By repeatedly performing the above
sequence of processes, we have a scenario in which energy is
systematically extracted from the energy bath I, some of which
released to the energy bath II and the rest of which delivered
as work. In discussing the engine model, we assume unitary
transformation from a pure state to a pure state. Although the
system may be in a mixed state during any engine process,
the system is assumed to remain in a pure state at the special
instants A,B,C, and D [of course, it is possible for the system
to be in a mixed sate [20] even at these special instants].

The total work per cycle and the efficiency are, respectively,
given by

W = Qh − Qc = π2h̄2

2m

(
G1

L2
A

− G2

L2
C

)
ln

(
G2

G1

)
, (13)

η = W

Qh

= 1 − G2L
2
A

G1L
2
C

= 1 − Ec

Eh

. (14)

Before ending this section, we would like to point out that,
although no equations of motions and thus no real dynamics
are used to describe the evolution of the quantum system,
the time required for completing a thermodynamic process
should satisfy the condition of quantum speed limit. That is,

FIG. 2. Schematic diagram of a QHE cycle in the plane of the
width L and force F (L). The quantum states of the N particles
and the values of the potential width at the four special instants
are as follows: |u1〉,|u2〉, . . . ,|uN−1〉, and |uN 〉 at instants A and D,
|uM〉,|uM−1〉, . . . ,|uM−N+2〉, and |uM−N+1〉 at instants B and C.
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in order for the initial state of the system to evolve through a
unitary evolution to a state, the finite time ∼h̄/E is required
for completing that transition [32].

IV. OPTIMIZATION ON THE QHE CYCLE

We are now in a position to discuss the power output and
efficiency for the QHE cycle. As emphasized, in order for
the adiabatic theorem to apply, the time scale associated with
the variation of the state must be much lager than that of the
dynamical one, ∼h̄/E [21,23,26,28]. Let v̄(t) and τ0 be the
average speed of the variation of L and the total cycle time,
respectively. The speed v̄(t) should be slow enough that the
change of L is much slower than the dynamical time scale,
∼h̄/E, and thus the adiabatic as well as isonergetic scheme
remains valid. In other words, the speed v̄(t) must satisfy the
condition that v̄(t) � L

h̄/E
, which, together with Eqs. (5) and

(14), gives an estimate:

v̄(t) � π2h̄G2L

2mL2
AR2

. (15)

The total change in the potential with L per cycle, LT , is
given by

LT = (LB − LA) + (LC −LB) + (LC − LD) + (LD − LA)

= 2(LC − LA). (16)

The total cycle time τ0 as a function of the average speed is

τ0 = LT /v̄ = 2(LC − LA)/v̄. (17)

Defining R = LC/LA and � = G2/G1, we find the power
output by using Eqs. (13) and (17),

P = W

τ0
= π2h̄2v̄G1

4mL3
A

R2 − �

R3 − R2
ln(�), (18)

which is a monotonous increasing (decreasing) function of G1

(or LA), indicating that the power output can be enhanced
by increasing particle number N (or decreasing minimum
potential width LA) for given LA (or N ). Note that, according
to inequality Eq. (15), the power output should satisfy the
condition that P � π4h̄3G1G2L

8mL5
AR2

R2−�
R3−R2 ln(�). The positive work

(P > 0 or W > 0) condition can be obtained from Eq. (18) as

R >
√

�, (19)

which depends on the ratio �. Only when this positive work
condition is satisfied can the positive work be extracted.

The efficiency in Eq. (14) as a function of � and R becomes

η = 1 − �

R2
, (20)

increasing monotonously as � decreases.
In Fig. 3, we plot the three-dimensional diagram of

(P ∗,�,R), with P ∗ ≡ P/(π2h̄2v̄G1

4mL3
A

) being the dimensionless

power output. Figure 3 shows that there exists a maximum
dimensionless power output for given values of � and R. When
the ratio � is kept unchanged, we have the following condition
by setting the derivative of the power P ∗ with respect to the
ratios R equal to zero:

R3
m + �(−3Rm + 2) = 0. (21)

1
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FIG. 3. (Color online) Dimensionless power output P ∗ as a
function of � and R.

Note that, for a two-level (or three-level) engine with a single
(or two) particle(s) in a box trap, � = 2 (� = 13/5) and
Eq. (21) reduces to the corresponding one in Ref. [19] (or
Ref. [23]). Mathematically, the maximum power can be found
by using global optimization that sets the derivatives of the
power P ∗ with respect to the ratios R and � equal to zero.
In such a case, the maximization conditions ∂P ∗

∂R
|R=Ropt = 0

and ∂P ∗
∂�

|�=�opt = 0 lead to the solution at Ropt � 2.9525 and
�opt � 3.7532, yielding the universal value of the EPMP,

ηopt � 0.5697. (22)

However, the values of �opt, Ropt, and ηopt are determined
at the possible maximum power output. Physically, contrary
to the continuous variation of R (the ratio of the maximum
potential width LC to minimum potential width LA), the
ratio � (the ratio of the energy-level number M to the
particle number N ) for a small particle-number N must be
discrete since both N and M are positive integers. As a
consequence, the maximum dimensionless power output P ∗

max
and the corresponding efficiency ηm change discretely, as
shown in both Table I and Fig. 4. For a model with a fixed
particle-number N , the optimal energy-level number M can
be determined, based on the principle that the ratio � (this
value is nothing but the optimal value of �m in physical
meaning) should be the one closest to the value of �opt. As

TABLE I. The optimal values of M , �m, Rm, and ηm for different
values of N .

N M �m R ηm

2 4 5.0000 3.4360 0.5765
3 5 3.5714 2.8898 0.5723
5 8 3.4546 2.8586 0.5773
10 16 3.6494 2.9103 0.5691
20 32 3.7596 2.9390 0.5647
50 79 3.7024 2.9242 0.5670
80 126 3.6878 2.9204 0.5676
100 158 3.7256 2.9302 0.5661
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FIG. 4. (Color online) For different values of � at given particle number N = 3, dimensionless power output P ∗ (a) and efficiency η (b) as
functions of R, respectively. The values of � are adopted 2.0714 with M = 4, 3.5714 with M = 5, and 5.5000 with M = 6, respectively.

an example, for an engine model with N = 3 particles, the
optimal energy-level number is given by M = 5, since the
ratio �m ≡ 3.5714 is closest to �opt = 3.7532. It can be seen
from Table I that, when N as well as M increases, the physical
values of Rm, �m, and ηm approach the corresponding the
optimal values at the possible maximum power output, Ropt,
�opt, and ηopt, respectively, implying that the EPMP given in
Eq. (22) would be reached when N becomes large enough
(see more details in the Appendix).

Figure 4 displays the dimensionless power output (a) and
efficiency (b) as functions of the ratio R for different values
of �. It is shown that the efficiency η increases as � (R)
decreases (increases), while there exists a maximum value of
dimensionless power output P ∗ as a function of R (�) for given
� (R). Combing Eqs. (25) and (20), we plot the performance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

η

P*

 

 

Γ=2.0714

Γ=5.5000

Γ=3.7532

ηm

P*
max

FIG. 5. (Color online) Dimensionless power output P ∗ versus
efficiency η in the case of N = 3. The values of dimensionless power
output, with � = 2.0714 (M = 4), and with � = 5.5000(M = 6), are
represented by a red and a blue solid line with circles and squares,
respectively. The dimensionless power output for �opt = 3.7532
(which is determined under the possible maximum power) is denoted
by a black dashed line with asterisks.

characteristic curve of P ∗ − η, as shown in Fig. 5. Figure 5
displays that the curve of the dimensionless power output
versus the efficiency is parabola-like. It can be seen from Fig. 5
that, when P ∗ < P ∗

max, there are two different efficiencies for
given power output, where one is smaller than ηm and the
other is lager than ηm. When η < ηm, the dimensionless power
output P ∗ increases as the efficiency decreases, such that the
efficiencies, larger than ηm, are the optimal values for the heat
engine. That is, the optimal region of the efficiency is given by

ηm � η < 1. (23)

The value of ηm is the allowable value of the lower bound
of the optimal efficiency. The ratio R determining the
structure of the engine model should satisfy the relation
R � Rm, where Rm is determined from Eq. (21) and thus
depends on the value of �. In constructing the structure of the
engine cycle, the condition that LC = RmLA must be fulfilled
in order for the engine to operate in the optimal region given
in Eq. (23).

V. GENERAL CASE

In order to consider the general case, we will consider 1D
power-law potentials whose energy spectrum are parameter-
ized by the form of [33–35]

εn = h̄ωnσ , (24)

where ω is the trap frequency, n is a positive integer quantum
number, and σ is the index of the single-particle energy
spectrum. The frequency ω can be expressed in terms of
the trap width L as ω = λL−θ , where λ is a constant for a
given potential and θ is a trap exponent [36] in dependence
of the trapping potential. There are several special cases as an
prominent example: (i) σ = θ = 2 for a box and a harmonic
potential, λ = π2h̄2

2m
for a box potential, while λ = h̄2

m
for a

harmonic potential [21], with m being the particle mass. (ii)
σ = θ = 1 and λ = πh̄c for extremely relative particles in a
box potential [37]. (iii) σ = 4

3 , θ = 2, and λ = h̄2

m
for a quartic

potential [33].
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The power output P = W/τ0, with τ0 defined in Eq. (17),
is given by

P = λh̄v̄G1

2

1

Lθ+1
A

Rθ − �

Rθ+1 − R
ln �, (25)

where G1 ≡ ∑N
i=1 iσ , G2 = ∑M

i=M−N+1 iσ , and � = G2/G1,
yielding the positive work condition

R > �1/θ . (26)

The efficiency of the generalized engine model is then
given by

η = 1 − �

Rθ
. (27)

Defining the dimensionless power output P ∗ = P/( G1λh̄

2Lσ+1
A

) and

using the extremal condition of ( ∂P ∗
∂R

)R=Rm
= 0, we have

Rθ+1
m + �[−Rm(θ + 1) + θ ] = 0, (28)

in a similar manner adopted in Sec. III. For a box trap,
Eq. (28) becomes identical to Eq. (21). Under the positive
work condition that was given by Eq. (26), we can obtain
the optimal value R = Rm and thus determine corresponding
efficiency ηm of the model working with a given potential. For
simplicity, through our discussions the working system has
been assumed to be in a state that the fermions occupy the
consecutive energy levels. On the other hand, the EPMP, in
which the optimal values of both � and R are only determined
by Eq. (28), is rarely dependent of the choice of the energy
levels. Thus, the EMP, as the one closest to the EPMP, will be
rarely influenced by our choice of the energy levels for given
particle number N .

VI. RELATIONSHIP BETWEEN EFFICIENCY OF THE
QUANTUM ENGINE CYCLE AND THAT OF THE
CORRESPONDING QUANTUM CARNOT CYCLE

In this section we discuss the relationship between the
efficiency of the QHE cycle mentioned above and that of
the Carnot cycle consisting of two quantum adiabatic and
two isothermal processes. In a quantum isothermal process,
the N -particle Fermi system as the working substance is
coupled with heat baths at constant temperatures, Th and
Tc, respectively, whereas occupation probabilities are kept
constant during any adiabatic process, as shown in Fig. 2.
(The N -particle system is coupled to heat baths at constant
temperatures T = Th and T = Tc, instead of E = Eh and
E = Ec, in the processes A → B and C → D, respectively.)

We first consider an M-level system of a single particle
in a 1D power-law trap. For a three-level system with a
single particle, ξ (1)

n = |an|2 (n = 1,2, . . . ,M). These occupa-
tion probabilities should satisfy the Boltzmann distribution
ξ

(1)
n+1 = ξ (1)

n e−�n(L)/kBT with �n(L) ≡ [(n + 1)σ − 1]λ/Lθ and
n = 1,2, . . . ,M − 1, where λ was defined below Eq. (24).
According to the condition that

∑M
n=1 ξ (1)

n = 1, the occupation
probability ξ

(1)
1 of the ground state is written in terms of trap

size L and temperature T :

ξ
(1)
1 = 1∑M

n=1 e−(nσ −1)λ/(kBT Lθ )
, (29)

which shows that the occupation probability depends on
the actual number of energy levels involved. The canon-
ical partition function ZN for an ideal N -particle Fermi
system can be determined by the exact recurrence re-
lation [38–40] ZN = 1

N

∑N
k=1(−1)k+1zkZN−k , where zk =∑∞

n=1 exp[−kλnσ /(kBT Lθ )] and Z0 = 1. Using the above
recurrence relation, one can readily obtain the following
recursive scheme for the occupation probabilities [39]:

ξ (N)
n = exp[−λnσ /(kBT Lθ )]

ZN−1

ZN

[−ξ (N−1)
n + 1

]
, (30)

where ξ (N)
n and ξ (N−1)

n represent the occupation probabilities
of the nth state for system with N and N − 1 particles,
respectively. The expressions of occupation probabilities for an
ideal Fermi system with an arbitrary number of particles [41]
can be found using the recursive scheme.

Let S(J ) be the entropies of the working substance at
different instants J = A,B,C, and D, the heat exchanges
Qh and Qc are Qh = Th[S(B) − S(A)] and Qc = Tc|S(D) −
S(C)|. According to the first law of thermodynamics, the work
W per cycle can be calculated as

W = Qh − Qc = (Th − Tc)[S(B) − S(A)]. (31)

In obtaining Eq. (31) the relations S(C) = S(B) and S(D) =
S(A) for two adiabats have been used. The efficiency of the
quantum Carnot engine, η

C
= W

Qh
, is thus given by

ηC = 1 − Tc

Th

. (32)

Because the occupations probabilities ξ (N)
n with n =

1,2, . . . ,M in Eq. (30) are fixed in the adiabatic process, there
exists a relation Tc

Th
= (LB

LC
)θ .

In the branch A → B with fixed initial potential width LA,
the total energy of the M-level system of N noninteracting
fermions can be expressed as E(L) = λ

∑M
n=1 L−θ ξ (N)

n . The

maximum value LB =
√

G2
G1

LA of potential width, where G1 =∑N
n=1 nσ and G2 = ∑M

n=M−N+1 nσ at instant B is achieved,
only under the conditions that ξ (N)

n = 1 with n = 1,2, . . . ,N

at instant A and n = M − N + 1,M − N + 2, . . . ,M − 1,M

at instant B. It is clear that this condition can be completely
satisfied in the isoenergetic process described above. However,
it is impossible to achieve a state in which N fermions occupy
either the highest or lowest N energy levels in the presence
of a heat bath. We find from Eq. (30) that, for the quantum
isothermal process A → B in which E(LB) � E(LA), this

condition cannot be fulfilled and thus LB <

√
G2
G1

LA. As a

consequence, we have the inequality

η = 1 − Ec

Eh

< 1 − Tc

Th

. (33)

That is, under the same conditions, the efficiency of our engine
model is bounded from above the Carnot value. Note that the
inequality Eq. (33) is independent of the form of the potential,
the particle number, as well as the energy-level number.
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VII. SUMMARY AND DISCUSSIONS

As a summary, we have extended the previous models
in Refs. [2,21,23] by considering a QHE that consists of
an arbitrary number of fermions in a trap. Considering the
finite-time processes, we explicitly derive the expressions of
power output and efficiency and demonstrate that the power
output can be enhanced, but without decrease in efficiency,
either by increasing particle number as well as energy levels
involved in the engine model or by decreasing minimum value
of the potential width. We find that the EPMP is universal and
independent of any parameters, including the maximum and
minimum values of potential width, the particle number, and
energy-level number. The optimal region as well as positive
work condition of the engine cycle has been found, which can
provide a new theoretical basis for the performance evaluation
and improvement of the quantum heat engine. We discuss the
generalized engine cycle model, which proceeds with an ideal
Fermi gas with an arbitrary number of particles trapped in
an arbitrary power-law potential. This generalized model is a
microscopic analogue of the classical Carnot engine and its ef-
ficiency is proved to be bounded from above the Carnot value.

A natural extension of our work would be to take into ac-
count other Hamiltonians [36,42]. For example, if the working
substance consists of N bosons in a trap, the case becomes
more complex [43]. We also expect that the performance
characteristics of other models exhibiting interaction between
particles [24,36,42] can be studied in the future.
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APPENDIX: THE PROBABILITY OF FINDING
A PHYSICAL VALUE OF � CLOSE TO THE BEST

VALUE �opt = 3.7532

Now we turn to discussion on the probability of finding a
physical value much closer to the optimal value of �opt (as
as well as the EPMP ηopt). Since � = G2

G1
, where G2 and G1

were defined in the text, the ratio � = 2N2+6M(M−N+1)−3N+1
(2N+1)(N+1) ,

leading to

Mopt = 1
2 (N − 1)+ 1

6

√
3(N + 1)[(4�opt − 1)N + 2�opt + 1].

(A1)
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FIG. 6. (Color online) M as a function of N . The upper
[M = M(�opt + δ,N )] and lower [M = M(�opt − δ,N )] bounds of
M are denoted by a black solid line and a blue dash-dotted
line, respectively. The optimal M [M = M(�opt,N )] at possible
maximum power output is the red dashed line. The probability
of finding a physical value of �m approaching the optimal �opt

is proportional to the blue region between the lower and upper
bounds.

Assuming �m = �opt ± δ, where δ << 1, both �m and �opt

were defined in Sec. IV, M can be written as

Mm = 1
2 (N − 1)

+ 1
6

√
3(N+1)[(4�opt ± 4δ − 1)N + 2�opt ± 2δ + 1].

(A2)

Let � ≡ |Mm − Mopt|, it is not difficult to verify that

� = 2δ + δ/N

4� − 1 + (2� + 1)/N

√
(N + 1)[N (4� − 1) + 2� + 1].

(A3)
In obtaining Eq. (A3), we have used the approximate expan-

sion
√

1 ± 4δ+2δ/N

4�−1+(2�+1)/N = 1 ± 1
2

4δ+2δ/N

4�−1+(2�+1)/N + . . . , pro-

vided that δ << 1. We find the leading order of the expansion
of Eq. (A3) is satisfied with a form as � ∝ N , when N tends
to be large enough. Since the probability of finding a physical
value approaching the optimal �opt is proportional to the value
of �, it increases as N increases. As an example, in Fig. 6
we plot the region of �′ = M(N,�opt + δ) − M(N,�opt − δ)
in the (N,M) plane, adopting the values of δ = 0.3000 and
�opt = 3.7532. It can seen from Fig. 6 that, when the particle
number N increases, the probability of finding a physical
value that close to the optimal �opt increases, implying that
the optimal value of �opt as well as ηopt would be reached
when N tends to be large enough.
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