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We study the surface scaling behavior of a semi-infinite d-dimensional O(N ) spin system in the presence of
a quenched random field and random anisotropy disorders. It is known that above the lower critical dimension
dLC = 4 the infinite models undergo a paramagnetic-ferromagnetic transition for N > Nc (Nc = 2.835 for the
random field and Nc = 9.441 for random anisotropy). For N < Nc and d < dLC there exists a quasi-long-
range-order phase with a zero order parameter and a power-law decay of spin correlations. Using a functional
renormalization group, we derive the surface scaling laws that describe the ordinary surface transition for d > dLC

and the long-range behavior of spin correlations near the surface in the quasi-long-range-order phase for d < dLC.
The corresponding surface exponents are calculated to one-loop order. The obtained results can be applied to the
surface scaling of periodic elastic systems in disordered media, amorphous magnets, and 3He-A in aerogel.
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I. INTRODUCTION

The phase diagram and critical properties of spin systems
with quenched disorder have attracted considerable interest
for decades. One usually distinguishes two types of quenched
disorder: (i) random-temperature-like (random-bond-like) dis-
order corresponding to randomness coupled to the local energy
density as in, for example, diluted ferromagnets [1] and (ii)
random-field-like disorder corresponding to the case when the
order parameter couples to a random symmetry breaking field
[2]. The influence of random-temperature disorder is rather
well understood. There exist several powerful methods to
study the phase behavior and criticality such as the perturbative
renormalization group (RG) method. In particular, the Harris
criterion states that uncorrelated random-temperature-like
disorder affects the critical behavior if the correlation-length
critical exponent ν of the corresponding pure system satisfies
the inequality ν < 2/d, where d is the spatial dimensionality
[3]. This criterion can be generalized to the case of correlated
disorder [4,5]. The effect of the random field disorder being
more profound is much less studied. The prominent example
is the critical behavior of the random-field Ising model
(RFIM) whose complete understanding is still lacking despite
significant numerical, analytical, and experimental efforts [6].
It has been found that the perturbative calculations including
standard RG methods lead to incorrect results, in particular,
to the so-called dimensional reduction (DR). Analysis of the
Feynman diagrams giving the leading singularities [7] or
using supersymmetry [8] predicts that the critical behavior
of the RFIM in d dimensions is the same as that of the
pure system in d − 2 dimensions. Consequently, the lower
critical dimension of the RFIM below which there is no true
long-range order is expected to be dDR

LC = 3. However, the
simple Imry-Ma arguments [2] and more rigorous methods [9]
show that the lower critical dimension of the RFIM is in
fact dLC = 2. Deviations from the DR prediction are also
confirmed by the high-temperature expansion [10] and real
space RG [11]. The failure of DR can be explained by the
complicated energy landscape that renders the perturbation
theory useless to all orders due to unphysical averaging over
multiple minima and maxima. The latter can be formulated in

terms of supersymmetry or replica symmetry breaking [12,13].
To overcome this obstacle one needs nonperturbative methods
or a correct resummation of the perturbation theory.

Considerable progress has been achieved in recent years
for the O(N ) models in which disorder couples to the N -
component order parameter either linearly as in the random-
field (RF) case or bilinearly as in a random-anisotropy (RA)
system. These models are relevant for diverse physical systems
including amorphous magnets [14], diluted antiferromagnets
in a uniform external magnetic field [15], liquid crystals in
porous media [16,17], nematic elastomers [18], critical fluids
in aerogels [19–21], vortices in type-II superconductors [22],
and stochastic inflation in cosmology [23]. Similar to the
RFIM, these models suffer from DR, i.e., the perturbation
theory in weak disorder wrongly suggests that the behavior
of these disordered systems is the same as that of the cor-
responding pure systems with smaller dimensionality [7,24].
Fisher studied the effect of higher-rank anisotropies and found
that they all are relevant near the lower critical dimension
dLC = 4 of the RF O(N ) model [25]. He showed that the
higher-rank anisotropies are generated by the RG flow even
if the bare model has only RF or RA disorder. Fortunately,
this infinite number of relevant operators can be recast into
Taylor coefficients of an auxiliary function for which one
can write down a closed functional renormalization group
(FRG) flow equation. However, as shown in Ref. [25], the FRG
flow equation has no fixed point (FP) in the class of analytic
functions. Only almost two decades later, being inspired by
the progress in disordered elastic systems [26–29], it was
realized that the scaling properties of the RF and RA systems
are encoded in a nonanalytic FP with a cusplike behavior
at the origin [30]. It was shown that the nonanalytic FPs
control the paramagnetic-ferromagnetic phase transitions in
the RF and RA O(N ) models and allow one to compute the
critical exponents within an ε = d − 4 expansion [31]. The
critical exponents obtained using the FRG differ from those
predicted by DR already to one-loop order. Recently, the FRG
calculations have been extended to two-loop order [32,33]
and the effect of long-range-disorder correlations has been
studied [21,34]. Using the truncated exact FRG developed in

021131-11539-3755/2012/86(2)/021131(12) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.021131


ANDREI A. FEDORENKO PHYSICAL REVIEW E 86, 021131 (2012)

Ref. [35], it has been argued that spontaneous breaking of the
supersymmetry, which leads to a breakdown of DR, occurs
only below a critical dimension dDR ≈ 5.1 [36].

A more peculiar issue concerns the phase diagram of the
RF and RA models below dLC. It is known that for the RF
model and models with isotropic distributions of random
anisotropies true long-range order is forbidden below dLC = 4
(for anisotropic distributions, long-range order can occur even
below dLC [37]) for N > 1. Nevertheless, quasi-long-range
order (QLRO) with a zero order parameter and an infinite cor-
relation length can persist even for d∗

LC(N ) < d < dLC, where
d∗

LC(N ) is the lower critical dimension for the paramagnetic-
QLRO transition. For example, the Gaussian variational
approximation predicts that the vortex lattice in disordered
type-II superconductors can form the so-called Bragg glass
exhibiting slow logarithmic growth of displacements [38]. This
system can be mapped onto the three-dimensional RF O(2)
model (XY model), in which the Bragg glass corresponds to
the QLRO phase [39]. Indeed, for N < Nc and d < dLC, the
FRG equations have attractive FPs that describe the QLRO
phases of RF and RA models [30]. However, the question
of the lower critical dimension of the paramagnetic-QLRO
transition is still controversial. In order to study the transition
between the QLRO phase and the disordered phase using
a FRG, one has to go beyond the one-loop approximation.
The truncated exact FRG [35] and the two-loop FRG [33]
performed using a double expansion in

√|ε| and N − Nc give
access to the additional singly unstable FP that controls the
transition. Both methods give qualitatively similar pictures
of the FRG flows: The critical and attractive FPs merge in
some dimension d∗

LC(N ) < dLC, which is considered the lower
critical dimension of the paramagnetic-QLRO transition. For
the RF O(2) model, both methods give approximately the same
estimation d∗

LC ≈ 3.8(1) and thus suggest that there is no Bragg
glass phase in d = 3. However, one has to take caution when
extrapolating results obtained for small

√|ε| and N − Nc.
Moreover, in contrast to the models of Refs. [30,33], which
belong to the so-called hard-spin models, the system studied
in Ref. [35] corresponds to soft spins. They can belong to
different universality classes since the soft-spin model allows
for topological defects that destroy the QLRO.

The real systems usually are finite and have boundaries
whose effect is twofold: (i) The free energy of the system in
addition to the bulk contribution proportional to the volume
acquires a new term proportional to the area of the surface and
(ii) the presence of boundaries breaks the translational invari-
ance. In general, this can modify the behavior in the boundary
region extended in the bulk only over distances of the order of
the bulk correlation length. However, at the bulk critical point
or in the QLRO phase, the bulk correlation length is infinite, so
one expects the effect of boundaries to be more pronounced.
Indeed, the presence of the boundaries introduces a whole
set of critical exponents describing the scaling behavior at
and close to the boundary at criticality [40]. Several different
classes of the surface transitions are known depending upon
boundary conditions [41]. The ordinary transition corresponds
to the case when the surface magnetization is suppressed due
to a reduced number of close neighbors near the boundary,
so that the surface ordering is completely driven by the bulk
magnetization. If for some reason the coupling between spins

on the surface is sufficiently enhanced with respect to the bulk
coupling or there is an external surface magnetic field, the
surface may order before the bulk does. The latter is called the
surface transition. Then the system can undergo the so-called
extraordinary transition in the presence of an ordered surface.
The two lines of the extraordinary transition and the surface
transition meet at the multicritical point, which is called the
special transition. The last three transitions can take place
only if the dimension of the surface d − 1 is above the lower
critical dimension for the transition. These transitions have
been studied for various systems with discrete and continuous
symmetries using different methods, such as RG and numerical
simulations (for reviews see Refs. [40,42,43]).

The effect of weak random-temperature-like disorder on
the surface criticality was studied using RG methods in
Refs. [44,45]. The modified Harris-type criteria and other
exact inequalities have also been derived for the critical
behavior of systems with quenched disorder restricted to
the surface [46]. However, not so much is known about the
surface criticality in systems with RF disorder. The phase
diagram of the three-dimensional (3D) semi-infinite RFIM
as a function of the ratios of the bulk and surface interaction
strengths and magnetic fields has been studied using a mean
field approximation in Ref. [47]. The surface criticality of the
RFIM has been studied numerically in Ref. [48]. It was also
shown that the RF disorder on the surface of a 3D spin system
with continuous symmetry destroys long-range order in the
bulk and QLRO emerges instead of it [49]. In this work we
address the question of how the RF and RA disorder in the bulk
affect the behavior of spin systems with continuous symmetry
in the vicinity of free surfaces. In particular, we consider the
ordinary surface transition of the RF and RA O(N ) models for
d > 4 and the spin correlations in the QLRO phase near a free
surface for d < 4.

The paper is organized as follows. Section II introduces
the model. In Sec. III we renormalize the theory and derive
the scaling laws. In Sec. IV we calculate the surface critical
exponents to one-loop order. Section V summarizes the
obtained results.

II. MODEL AND SCALING LAWS

We consider a d-dimensional semi-infinite O(N ) spin
system whose configuration is given by the N -component
classical vector field s(r) satisfying the fixed-length constraint
|s(r)|2 = 1. The position vector r = (x,z) has a (d − 1)-
dimensional component x parallel to the surface and a one-
dimensional component z � 0 that is perpendicular to the
surface z = 0. It is convenient to introduce shorthand notations
for the volume integral over half space

∫
V

≡ ∫ ∞
0 dz

∫
dd−1x

and for the surface integral
∫
S

≡ ∫
dd−1x. The large-scale

behavior of the disordered spin system can be described by
the effective Hamiltonian

H[s] = H0[s] + Hsurf[s] + Hdis[s], (1)

consisting of the sum of three terms that result from the semi-
infinite bulk, surface, and disorder in the bulk. The contribution
from the semi-infinite bulk can be expressed in the form of the
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well-known O(N ) nonlinear σ model

H0[s] =
∫

V

[
1

2
[∇s(r)]2 − h · s(r)

]
, (2)

where h is the magnetic field in the bulk. The surface
contribution to the Hamiltonian can be written in its simplest
form as [50]

Hsurf[s] = −
∫

S

h1 · s(x), (3)

where for simplicity we assume that the surface magnetic field
h1 has the same direction as the bulk field h. We consider a
quite general type of bulk disorder such that its potential can
be expanded in spin variables as

Hdis[s] = −
∫

V

∞∑
μ=1

∑
i1,...,iμ

h
(μ)
i1,...,iμ

(r)si1 (r) · · · siμ(r). (4)

The coefficients h
(μ)
i1,...,iμ

(r) are assumed to be Gaussian random
variables with zero mean and variance given by

h
(μ)
i1,...,iμ

(r)h(ν)
i1,...,jν

(r′) = δμνδi1j1 · · · δiμjν
rμδ(r − r′). (5)

The first two coefficients have a simple physical interpretation:
h

(1)
i is a random magnetic field and h

(2)
ij is a second-rank

random anisotropy. The higher-order coefficients h(μ) are
higher-rank random anisotropies. As was shown in Ref. [25],
even if the system has only a finite number of nonzero
bare h(μ), the RG transformations will generate an infinite
set of higher-order anisotropies. However, the RG flow
preserves the symmetry with respect to inversion s → −s. For
instance, starting from the bare model with only a second-rank
anisotropy, only even-rank anisotropies will be generated by
the RG flow. We will reserve the notation RA for the systems
that possess this symmetry and the notation RF for the systems
that do not.

We employ the replica trick to average over disorder.
Introducing n replicas of the original system and averaging
their joint partition function over disorder, we obtain the
replicated Hamiltonian

Hn =
∫

V

{
n∑

a=1

[
1

2
[∇sa(r)]2 − h · sa(r)

]

− 1

2T

n∑
a,b=1

R[sa(r) · sb(r)]

}
−

n∑
a=1

∫
S

h1 · sa(x), (6)

where we have introduced the functionR(z) defined asR(z) =∑
μ rμzμ, with rμ given by Eq. (5). The properties of the

original disordered system (1) can be extracted in the limit
n → 0. Both the RF and the RA models are described by
the replicated Hamiltonian (6). The only difference is that the
function R(z) is even for the RA systems and noneven for the
RF systems.

Power counting shows that dLC = 4 is the lower critical
dimension of the model (6) [24]. Above the lower critical
dimension the RF and RA systems undergo a paramagnetic-
ferromagnetic transition. The scaling behavior at criticality is
controlled by a zero-temperature FP similar to the RFIM [51],

reflecting the fact that disorder dominates over thermal fluc-
tuations. However, the temperature is dangerously irrelevant.
For instance, this results in violation of the usual hyperscaling
relation and the appearance of an additional universal exponent
θ that modifies the hyperscaling relation to Ref. [6]

ν(d − θ ) = 2 − α, (7)

where ν and α are the correlation-length and the specific-heat
exponents. One also expects a dramatic slowing down as
the transition is approached with the characteristic relaxation
time ln τ ∼ t−νθ

1 , where t1 = |T − Tc|/Tc is the reduced
temperature [52]. The magnetizations in the bulk and on the
surface vanish at the transition according to

σ (t1) ∼ t
β

1 , σ1(t1) ∼ t
β1
1 , (8)

where we have introduced the bulk and the surface magneti-
zation exponents. At the critical point t1 = 0 a small magnetic
field in the bulk h induces a magnetization in the bulk and also
on the surface according to

σ (h) ∼ h1/δ, σ1(h) ∼ h1/δ1 , (9)

where we defined the exponents δ and δ1. The surface magnetic
field h1 leads to the surface magnetization

σ1(h1) ∼ h
1/δ11
1 . (10)

Below the lower critical dimension dLC a QLRO phase with
zero magnetization can emerge. At criticality or in the QLRO
phase, the correlation functions of the order parameter exhibit
scaling behavior. Due to dangerous irrelevance of the tem-
perature the connected and disconnected correlation functions
scale with different exponents. We define the connected and
disconnected correlation functions of the two local operators
A and B as

[A(r) · B(r′)]con ≡ 〈A(r) · B(r′)〉 − 〈A(r)〉 · 〈B(r′)〉,
[A(r) · B(r′)]dis ≡ 〈A(r)〉 · 〈B(r′)〉 − 〈A(r)〉 · 〈B(r′)〉.

Here the angular brackets denote the thermal averaging and
the overbar stands for the disorder averaging. For instance, the
connected and disconnected correlation functions of spins in
the bulk scale independently as

[s(r) · s(r′)]con ∼ 1

|r − r′|d−2+η
, (11)

[s(r) · s(r′)]dis ∼ 1

|r − r′|d−4+η̄
. (12)

Following the general scaling picture of the surface critical
phenomena, we introduce the surface exponents η⊥ and η̄⊥,
which replace the bulk exponents η and η̄ in Eqs. (11) and (12)
when one of the points r or r′ belongs to the surface:

[s(x,z) · s(x′,0)]con ∼ 1

[(x − x′)2 + z2](d−2+η⊥)/2
, (13)

[s(x,z) · s(x′,0)]dis ∼ 1

[(x − x′)2 + z2](d−4+η̄⊥)/2
. (14)

We also define the surface exponents η‖ and η̄‖ that describe the
connected and disconnected correlation function when both

021131-3



ANDREI A. FEDORENKO PHYSICAL REVIEW E 86, 021131 (2012)

points lie on the surface:

[s(x) · s(x′)]con ∼ 1

|x − x′|d−2+η‖
, (15)

[s(x) · s(x′)]dis ∼ 1

|x − x′|d−4+η̄‖
. (16)

Schwartz and Soffer [53] showed that the bulk exponents of
the RF model obey the inequality 2η � η̄. The same arguments
can be applied to the surface correlation functions so that the
surface exponents satisfy similar inequalities: 2η⊥ � η̄⊥ and
2η‖ � η̄‖. Note that these inequalities cannot be applied to the
RA model where the coupling to disorder is bilinear.

III. FUNCTIONAL RENORMALIZATION GROUP

A. Perturbation theory

In the limit of low temperature and weak disorder the
configuration of the system is fluctuating around the com-
pletely ordered state in which all replicas of all spins align
along the same direction, which is parallel to h and h1. It is
convenient to split the order parameter sa = (σa,πa) into the
(N − 1)-component vector πa , which is perpendicular to this
direction, and the component σa = √

1 − π2
a , which is parallel

to this direction. Then the effective action of the system can
be written as

S[π ] = 1

T

n∑
a=1

{∫
V

[
1

2
(∇πa)2 + (πa · ∇πa)2

2
(
1 − π2

a

) − h σa

]

−
∫

S

h1σa

}
− 1

2T 2

n∑
a,b=1

∫
V

R(πa · πb + σaσb).

(17)

In general, one has to add to the action (17) the terms
such as δd (0)

∫
V

ln(1 − π2
a) generated by the Jacobian of the

transformation from sa to πa . However, in what follows we
will use the dimensional regularization scheme [54] in which
δd (0) = 0, so we ignore these terms in action (17) from the
beginning.

Let us denote averaging with the action (17) by double
angular brackets and introduce the correlation functions

G
(L,K)
α,β (r,x) =

〈〈
L∏

ν=1

παν
(rν)

K∏
μ=1

πβμ
(xμ)

〉〉
, (18)

where L points r = (r1, . . . ,rL) are off surface and K points
x = (x1, . . . ,xK ) are siting on the surface. In Eq. (18) we have
used the shorthand notation α = (α1, . . . ,αL), where each αν

stands for the component number iν and the replica number
aν , and similarly for β. The correlation functions (18) can be
computed using the generating functional [55]

F[J,J1] = ln
∫

Dπ exp

(
−S[π ] +

∫
V

J(r)π(r)

+
∫

S

J1(x)π(x)

)
, (19)

where we assume that the source J(r) vanishes at the surface.
Differentiating with respect to the sources, we obtain

G(L,K)(r,x) =
L∏

ν=1

δ

δJ (rν)

K∏
μ=1

δ

δJ1(xμ)
F

∣∣∣∣∣∣
J=J1=0

, (20)

where for the sake of brevity we have suppressed all tensorial
indices. Using correlation functions (18), one can compute the
connected and disconnected functions defined in Eqs. (11)
and (12). However, since we are interested only in the
scaling behavior, it is more convenient to consider the similar
correlation functions not for s but for π fields. For example,
the correlation functions at two off-surface points read

[π(r) · π (r′)]con = lim
n→0

N−1∑
i=1

G
(2,0)
i,a;i,a(r,r′), (21)

[π(r) · π (r′)]dis = lim
n→0

N−1∑
i=1

G
(2,0)
i,a;i,b(r,r′), (22)

where the connected correlation function corresponds to a
single replica and the disconnected one to two different replicas
a �= b. To compute the correlation functions at the surface such
as [π(r) · π(x′)]con or [π(x) · π (x′)]dis one has to replace G(2,0)

by G(1,1) and G(0,2), respectively.
Expanding the effective action (17) in small π , we will

treat the quadratic part as a free action and the rest of the
infinite series as interaction vertices (see the Appendix). Then
the correlation functions (18) can be expressed in terms of
Feynman diagrams, which give the low-temperature and small
disorder expansion. In practical calculations it is convenient
to perform the Fourier transform with respect to x: π̂(q,z) =∫

dd−1xπ (x,z)e−iq·x and define
∫
q

≡ ∫
dd−1q/(2π )d−1. The

quadratic terms give the free propagator

Ĝ0
q(z,z′) = 1

2q̄

[
e−q̄|z−z′ | + q̄ − h1

q̄ + h1
e−q̄(z+z′)

]
, (23)

where we have introduced the shorthand notation q̄ ≡ (q2 +
h)1/2. The free propagator (23) satisfies the boundary condi-
tions

[∂z − h1]Ĝ0
q(z,z′)|z=0 = 0. (24)

The free surface corresponds to the limit h1 → 0 in which
Eq. (23) becomes the Neumann propagator consisting of the
bulk part and the image part. In what follows we will use
the Neumann propagator as the bare one and treat the terms
proportional to h1 as soft insertions [50,56].

B. Functional renormalization group equations
and critical exponents

The correlation functions (18) calculated perturbatively in
small disorder and temperature suffer from UV divergences. To
avoid mixture with IR singularities in the O(N )-noninvariant
correlation functions it is convenient to keep h �= 0. The UV
divergences can be converted into poles in ε = d − 4 using
dimensional regularization. To renormalize the theory one has
to absorb these poles into a number of Z factors. However,
all the Taylor coefficients rμ of the disorder correlator R(z)
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turn out to be relevant operators, so one has to introduce renor-
malization of the whole function. To simplify calculation of
the disorder renormalization one can use the background field
method [29], which allows one to handle functional diagrams
that involve the whole function R(z) instead of computing
one by one the counterterms to the derivatives R(μ)(0). Using
the Legendre transform of the generating functional (19) from
the sources J to the background fields �, one derives the
effective action [�], which is the generating functional of
the one-particle irreducible vertices. The two-replica part of the
effective action gives the renormalization of the disorder. Since
the scaling behavior is controlled by a zero-temperature FP,
we will disregard all terms involving more than two replicas.
These terms are irrelevant near d = 4 or their contributions are
suppressed in the limit T → 0 [25,32]. The renormalization of
the disorder simplifies by changing variables: R(z) = R(φ),
where z = cos φ; for instance,R′(1) = −R′′(0). In terms of the
variable φ, the function R(φ) becomes periodic with period 2π

in the RF case and with period π in the RA case. The relation
between the renormalized and the bare correlation functions
reads

G(L,K)(r; T ,h,h1,R,μ)

= Z−(L+K)/2
π Z

−K/2
1 G̊(L,K)(r; T̊ ,h̊,h̊1,R̊), (25)

where circles denote the bare quantities and μ is an arbitrary
momentum scale. The UV divergences are absorbed into Z

factors according to

π̊ = Z1/2
π π , π̊ |s = (ZπZ1)1/2π |s , (26)

h̊ = μ2ZT Z−1/2
π h, h̊1 = μZT (ZπZ1)−1/2h1, (27)

T̊ = μ2−dZT T , R̊ = μ4−dK−1
d ZR[R], (28)

where (2π )dKd = 2πd/2/(d/2) is the surface area of a
d-dimensional unit sphere and (x) is the Euler Gamma
function. In Eq. (28) ZR[R] is a functional acting on the renor-
malized disorder correlator R(φ), which has the following loop
expansion:

ZR[R] = R + δ(1)(R,R) + δ(2)(R,R,R) + · · · , (29)

where δ(1)(R,R) is bilinear in R and proportional to 1/ε,
while δ(2)(R,R,R) is cubic in R and contains terms of order
1/ε and 1/ε2. According to Eq. (26), the surface field π |s
renormalizes differently from the field π in the bulk. The new
factor Z1 serves to cancel the additional UV divergences in
Feynman diagrams arising from the image part of the Neumann
propagator Ĝ0

q (z,z′) for z′ → 0. The renormalized theory is not
unique and depends on the scale μ. Using this fact, we will
derive the FRG equation.

We now consider how the scaling behavior can be extracted
from the renormalized theory. Using the independence of
the bare theory on the momentum scale μ, one can derive
the flow equations for the renormalized correlation functions
differentiating both sides of Eq. (25) with respect to μ at fixed
bare quantities. One finds that the renormalized correlation

functions satisfy the FRG equation[
μ∂μ + (d − 2 − ζT )T ∂T − ζhh∂h − ζh1h1∂h1 + L

2
ζπ

+K

2
(ζπ + ζ1) −

∫
dφ β[R(φ)]

δ

δR(φ)

]
G(L,K) = 0, (30)

where the integral in the last line is taken over a period, i.e.,
(0,π ) for RA and (0,2π ) for RF models and we have introduced
the scaling functions

ζi = μ∂μ ln Zi |0 (i = T ,π,1), (31)

ζh = 2 + ζT − ζπ/2, (32)

ζh1 = 1 + ζT − (ζπ + ζ1)/2, (33)

β[R] = −μ∂μR(φ)|0. (34)

Here zero indicates that the derivatives are taken at fixed
bare quantities. Flow equations similar to Eq. (30) hold also
for the correlation functions in which some or all the fields
πa(r) are replaced by σa(r) and for other observables, e.g., the
correlation length and the magnetization [54].

The long-distance physics can be obtained from the solution
of the FRG equation (30) in the limit of μ → 0. The
renormalized disorder correlator and the temperature flow
according to

−μ∂μR(φ) = β[R], (35)

−μ∂μ ln T = 2 − d + ζT . (36)

The scaling behavior is controlled by a zero-temperature FP
β[R∗] = 0, with R∗ of order ε and T ∗ = 0. Indeed, according
to Eq. (36), the temperature is irrelevant, i.e., it flows to
0 in the limit μ → 0 for d > 2 and for sufficiently small
ζT = O(R). Although one expects that ζT is small in the
vicinity of the FP, one has to take caution whether the zero-
temperature FP survives in three dimensions where ζT ∼ ε

is negative [30]. The stability of the FP can be checked by
computing the eigenvalues of the disorder flow equation (35)
linearized about the FP solution: R(φ) = R∗(φ) + ∑

i ti�i(φ).
Since one expects that for d > 4 (ε > 0) the FP R∗(φ)
describes the paramagnetic-ferromagnetic transition, it has to
be unstable in a single direction �1(φ) with eigenvalue λ1 > 0:
β[R∗ + t1�1] = λ1t1�1 + O(t2

1 ). In the vicinity of the zero-
temperature FP that controls the paramagnetic-ferromagnetic
transition, the FRG equation for the correlation length ξ can
be written as [

μ∂μ − λ1t1
∂

∂t1

]
ξ (μ,t1) = 0. (37)

Dimensional analysis implies that ξ (μ,t1) = μ−1ξ̄ (t1). This
reduces Eq. (37) to an ordinary differential equation (ODE)
whose solution is given by ξ ∼ μ−1t

−1/λ1
1 . The latter describes

divergence of the correlation length on the critical line at
zero temperature when the strength of disorder approaches
the critical value [51]. Assuming that along the transition line
at finite temperature t1 ∼ T − Tc, we find that the positive
eigenvalue λ1 gives the critical exponent of the correlation
length ν = 1/λ1. For d < 4 (ε < 0) the FP becomes stable and
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describes a QLRO phase. The fluctuations exhibit power-law
correlations in the whole QLRO phase so that the correlation
length ξ is always infinite down to the lower critical dimension
of the QLRO-paramagnetic transition.

Let us consider the solution of Eq. (30) for the connected
two-point correlation functions. The dangerous irrelevance of
the temperature manifests itself in the fact that the connected
(bulk or surface) two-point functions are proportional to T

in the low-temperature limit. This is explicitly shown in the
Appendix for the connected correlation function G(1,1) to
one-loop order. The linear behavior at low temperature can be
checked also in higher-loop diagrams taking into account that
each propagator line carries a factor of T while the one- and
two-replica vertices bring factors of T −1 and T −2, respectively.
Hence, setting h = h1 = 0 and R = R∗, we can rewrite
Eq. (30) as[

μ∂μ + 1

2
(L + K)ζ ∗

π + K

2
ζ ∗

1 + θ

]
G(L,K)

con = 0, (38)

where the asterisk denotes that the function is computed at the
zero-temperature FP. In Eq. (38) we have defined the exponent

θ = d − 2 − ζ ∗
T , (39)

which describes the flow of the temperature (36) in the vicinity
of the FP and has been introduced ad hoc in the modified
hyperscaling relation (7). Using the method of characteristics
and dimensional analysis, one can write the solution of
Eq. (38) in the form

G(L,K)
con (rb; R∗) = b−[(L+K)ζ ∗

π /2+Kζ ∗
1 /2+θ]fc(r; R∗). (40)

Considering the connected two-point functions (40) with
(L = 2,K = 0), (L = 1,K = 1), and (L = 0,K = 2), we
derive the critical exponents

η = ζ ∗
π − ζ ∗

T , (41)

η⊥ = ζ ∗
π + ζ ∗

1 /2 − ζ ∗
T , (42)

η‖ = ζ ∗
π + ζ ∗

1 − ζ ∗
T . (43)

We next turn to the disconnected two-point correlation
functions. At variance with the connected correlation func-
tions, they are not proportional to the temperature. Thus, at
h = h1 = T = 0 they satisfy the same Eq. (38) but without
the term θ in large square brackets. The solution of the latter
FRG equation is given by

G
(L,K)
dis (rb; R∗) = b−[(L+K)ζ ∗

π /2+Kζ ∗
1 /2]fd (r; R∗). (44)

Repeating the analysis we did for the connected functions, we
arrive at

η̄ = 4 − d + ζ ∗
π = 2 + η − θ, (45)

η̄⊥ = 4 − d + ζ ∗
π + ζ ∗

1 /2 = 2 + η⊥ − θ, (46)

η̄‖ = 4 − d + ζ ∗
π + ζ ∗

1 = 2 + η‖ − θ. (47)

Note that the exponents (41)–(43) and (45)–(47) are related by

2η⊥ = η + η‖, 2η̄⊥ = η̄ + η̄‖. (48)

Finally, we study the profile of the spontaneous magneti-
zation below and at the paramagnetic-ferromagnetic transition
for d > dLC. The magnetization as a function of the distance
to the surface z, the reduced temperature t1, and the bulk and
surface magnetic fields h and h1 satisfies the flow equation

[
μ∂μ − ζ ∗

h h∂h − ζ ∗
h1

h1∂h1 + 1

2
ζ ∗
π + j

2
ζ ∗

1 − λ1t1
∂

∂t1

]
× σ (z,t1,h,h1) = 0. (49)

Here j = 0 and z > 0 corresponds to the bulk magnetization
σ while j = 1 and z = 0 gives the surface magnetization σ1.
The solution of Eq. (49) can be written as

σ (z,t1,h,h1) = b−[ζ ∗
π /2+(j/2)ζ ∗

1 ]σ (zb−1,t1b
λ1 ,hbζ ∗

h ,h1b
ζ ∗
h1 ).

(50)

We first consider the profile for h = h1 = 0. The solution (50)
allows one to obtain the scaling function of the magnetization
profile for z > 0. The magnetization approaches its bulk value
σ (t1,z) ∼ t

ζ ∗
π /2λ1

1 for z � ξ , but at small values of z the scaling
function develops a short-distance singularity that ensures
consistency with the temperature dependence of the surface
magnetization given by σ1(t1) ∼ t

(ζ ∗
π +ζ ∗

1 )/2λ1

1 . We now reexpress
the both magnetizations obtained in the limits of z → ∞ and
0 in terms of ν, η̄, and η̄‖. This yields the bulk and surface
magnetization exponents defined in Eq. (8):

β = 1
2ν(d − 4 + η̄), β1 = 1

2ν(d − 4 + η̄‖). (51)

At the critical point t1 = 0 and finite external fields we find
that σ (h) ∼ hζ ∗

π /(2ζ ∗
h ) in the bulk and σ1(h) ∼ h(ζ ∗

π +ζ ∗
1 )/2ζ ∗

h or

σ1(h1) ∼ h
(ζ ∗

π +ζ ∗
1 )/2ζ ∗

h1
1 at the surface. Thus the exponents δ,

δ1, and δ11 defined in Eqs. (9) and (10) satisfy the following
scaling relations:

δ − 1

2 − η
= ν

β
,

δ1 − β/β1

2 − η
= ν

β1
,

δ11 − 1

1 − η‖
= ν

β1
. (52)

These scaling relations are expected to be general for the RF
systems and thus can be applied to not only the O(N ) models
but also to the semi-infinite RFIM.

IV. SURFACE EXPONENTS TO ONE-LOOP ORDER

We now renormalize the both semi-infinite RF and RA
models to one-loop order and explicitly calculate the surface
critical exponents to first order in ε = d − 4. The factors Zπ ,
ZT . and ZR[R] defined in Eqs. (26)–(29) are the same that
appear in the case of the infinite systems. They have been
calculated in several works up to two-loop order [25,30–33].
To one-loop order they read

Zπ = 1 − (N − 1)
R′′(0)

ε
+ O(R2), (53)

ZT = 1 − (N − 2)
R′′(0)

ε
+ O(R2), (54)
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FIG. 1. One-loop diagrams contributing to the connected two-
point function G̊

(1,1)
1,a;1,a(z,p). The solid lines stand for the Neumann

propagator (23). The wavy and dashed lines are vertices defined in
Eqs. (A1)–(A3). The crossed circles denote the points on the surface.

εδ(1)(R,R) = 1

2
R′′(φ)2 − R′′(0)R′′(φ)

− (N − 2)

{
R′′(0)[2R(φ) + R′(φ) cot φ]

− 1

2 sin2 φ

[
R′(φ)

]2
}
. (55)

The new factor Z1 that eliminates the poles resulting from
the presence of the surface can be determined from the
renormalization of the two-point function G̊(1,1)(p,z; h̊,T̊ ,R̊).
The one-loop diagrams contributing to this function are shown
in Fig. 1. The corresponding integrals are computed in the
Appendix and give

G̊(1,1)(p,z; h̊,T̊ ,R̊)

= T̊
e−p̄z

p̄

{
1 − Kd

4ε
R̊′′(0)

[
(N − 3)

(
h̊

p̄2
+ zh̊

p̄

)

+ 2(N + 1)

]
+ O(R̊2)

}
, (56)

where p̄ = (p2 + h̊2)1/2. The factor Z1 can be found from the
renormalization condition

Z−1
π Z

−1/2
1 G̊(1,1)(p,z; h̊,T̊ ,R̊) = finite for ε → 0, (57)

where the bare h̊, T̊ , and R̊ are replaced by
the renormalized h, T , and R according to
Eqs. (26)–(28). We obtain

Z1 = 1 − (N − 1)
R′′(0)

ε
+ O(R2). (58)

Thus, to one-loop order we have Z1 = Zπ + O(R2). Using
Eqs. (31) and (34) we calculate the scaling functions

ζT = −(N − 2)R′′(0) + O(R2), (59)

ζπ = ζ1 = −(N − 1)R′′(0) + O(R2) (60)

and the beta function

β[R] = −εR(φ) + 1

2
R′′(φ)2 − R′′(0)R′′(φ)

−(N − 2)

{
R′′(0)[2R(φ) + R′(φ) cot φ]

− 1

2 sin2 φ
[R′(φ)]2

}
+ O(R2) (61)

to one-loop order. The solution of the FP equation

β[R∗] = 0 (62)

with the β function (61) has been analyzed for different values
of N and different sign of ε in Refs. [30–33]. We first assume
that the flow has a FP R∗(φ) that is a π -periodic function for the
RA model and a 2π -periodic function for the RF model. Then
the surface critical exponents can be computed to one-loop
order using Eqs. (41)–(43) and (45)–(47), which yields

η = −R∗′′(0), η̄ = −ε − (N − 1)R∗′′(0), (63)

η⊥ = −N + 1

2
R∗′′(0), η̄⊥ = −ε − 3

2
(N − 1)R∗′′(0), (64)

η‖ = −NR∗′′(0), η̄‖ = −ε − 2(N − 1)R∗′′(0). (65)

The other surface exponents are related to Eqs. (63)–(65) by
the scaling relations (51) and (52).

Before we explicitly calculate the surface exponents for
the semi-infinite RF and RA models let us recall how the FRG
allows one to overcome the DR problem. The incorrect DR pre-
diction results from the assumption that the flow equation (35)
with the β function (61) has a FP that is an analytic function.
Indeed, in this case one can obtain a closed flow equation for
the R′′(0):

−μ∂μR′′(0) = −εR′′(0) − (N − 2)R′′(0)2. (66)

Equation (66) has a nontrivial FP solution R∗′′(0) = −ε/(N −
2) with the eigenvalue λ1 = ε. This FP is unstable for ε > 0,
as one expects for a FP corresponding to the transition, and
gives the DR exponents ν(DR) = 1/ε and

η(DR) = η̄(DR) = ε

N − 2
, (67)

η
(DR)
⊥ = η̄

(DR)
⊥ = N + 1

2(N − 2)
ε, (68)

η
(DR)
‖ = η̄

(DR)
‖ = N

N − 2
ε. (69)

The one-loop DR exponents for the magnetization read

β(DR) = N − 1

2(N − 2)
, β

(DR)
1 = N − 1

N − 2
. (70)

For ε < 0 the FP is stable but the η critical exponents become
negative and hence unphysical.

A more accurate analysis of the RG flow shows that R′′′(0)
diverges at a finite scale μ. Thus no analytic FP can exist and
one has to look for a nonanalytic FP with R∗′′′(0+) �= 0 that
would violate the DR predictions. This requires solution of the
boundary-value problem for the nonlinear ODE with periodic
boundary conditions, which depend on the universality class.
We assume that the small φ expansion of the FP solution R∗(φ)
has the form

R∗(φ) = a0 + a2φ
2 + a3|φ|3 + a4φ

4 + a5|φ|5 + · · · , (71)

meaning that R∗′′(φ) has a cusp at the origin with R∗′′′(0+) �= 0.
Substituting the ansatz (71) into the FP equation, we find that
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FIG. 2. (Color online) Critical exponents ηi and η̄i (divided by ε),
which describe the paramagnetic-ferromagnetic transition of the RF
model above the lower critical dimension, as functions of N for N >

Nc. The inset shows the corresponding bulk magnetization exponent
β and the surface magnetization exponent β1 as functions of N .

the first coefficients are given by

a0 = − 2a2
2(N − 1)

4(N − 2)a2 + ε
, a2 = R∗′′(0)

2
, (72)

a3 = −sgn(ε)

√
2εa2 + 4a2

2(N − 2)

9(N + 2)
. (73)

The value of R∗′′(0) and the sign of a3 are constrained by
the boundary conditions; R∗′′(0) can be determined using
the shooting method to fulfill the appropriate periodicity
requirement.

A. Random-field O(N) model

1. Paramagnetic-ferromagnetic transition for d > 4 (ε > 0)

The RF model is described by R(φ), which is a 2π -
periodic function. Numerical solution of the FP equation (62)
shows that for d > 4 a 2π -periodic solution of the form
(71)–(73) exists only for N > Nc = 2.834 74. It has R∗′′(0) <

0 and it disappears when N → N+
c . This cuspy FP is

once unstable with the positive eigenvalue λ1 = ε. Thus
the correlation-length exponent ν = 1/ε + O(ε0) coincides
with the DR prediction to one-loop order. Remarkably, the
nonzero R∗′′′(0+) vanishes for N > N∗ = 18 + O(ε). The
nonanalyticity becomes weaker as N increases and starts
with R∗[2p(N)+1](0+) �= 0, where p ∼ N [32,33,57]. Weaker
nonanalyticity results in restoring the DR critical exponents
for N > N∗. The critical exponents ηi and η̄i computed
using Eqs. (63)–(65) as functions of N are shown in Fig. 2.
With increasing N they monotonically decay approaching the
DR values at N = N∗ and satisfying the inequalities η <

η̄ < η⊥ < η̄⊥ < η‖ < η̄‖. The bulk and surface magnetization
exponents β and β1 calculated for different N are shown
in inset of Fig. 2. To one-loop order they obey the relation
β1 = 2β. Up to now both magnetization exponents have been
studied only for the 3D RFIM, where numerical simulations
give β = 0.0017 ± 0.005 [58] and β1 = 0.23 ± 0.03 [48].

FIG. 3. (Color online) Critical exponents ηi and η̄i (divided by
|ε|), which describe the power-law decay of correlations in the
QLRO phase of the RF model below the lower critical dimension,
as functions of N for N < Nc.

Thus the ratio β1/β for the RF O(N ) systems in d > 4 is
much smaller than for the 3D RFIM.

2. Quasi-long-range order for d < 4 (ε < 0)

Below the lower critical dimension the flow equation for
the disorder correlator (35) has an attractive 2π -periodic FP
solution of the form (71)–(73). This cuspy FP appears only for
2 � N < Nc, where it controls the scaling behavior of spin
fluctuations in the QLRO phase. The corresponding exponents
ηi and η̄i as functions of N are shown in Fig. 3. In the case
N = 2 the FP equation admits for an explicit nonanalytic
φ0-periodic solution given by

R∗(φ) = |ε|φ4
0

72

[
1

36
−

(
φ

φ0

)2 (
1 − φ

φ0

)2
]

. (74)

Using Eqs. (63)–(65) one obtains

η = φ2
0

36
|ε|, η̄ =

(
1 + φ2

0

36

)
|ε|, (75)

η⊥ = φ2
0

24
|ε|, η̄⊥ =

(
1 + φ2

0

24

)
|ε|, (76)

η‖ = φ2
0

18
|ε|, η̄‖ =

(
1 + φ2

0

18

)
|ε|, (77)

with φ0 = 2π for the RF system.
The semi-infinite RF O(2) model can be mapped onto a

semi-infinite periodic disordered elastic system with a free
surface. There is one to one correspondence between the Bragg
glass phase of the elastic system and the QLRO phase of the
studied spin model [38]. The power-law decay of the spin
correlations in the QLRO phase corresponds to the logarithmic
growth of the displacements in the disordered elastic system.
Moreover, the exponents η, η⊥, and η‖ provide the universal
amplitudes of the logarithmic growth of the displacements in
the bulk, at the surface, and along the surface, respectively.
For a φ0-periodic elastic system with a free surface these
amplitudes are given by Eqs. (75)–(77). In particular, we find
that the logarithmic growth of the displacements along the
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FIG. 4. (Color online) Critical exponents ηi and η̄i (divided by ε),
which describe the paramagnetic-ferromagnetic transition of the RA
model above the lower critical dimension, as functions of N for N >

Nc. The inset shows the corresponding bulk magnetization exponent
β and the surface magnetization exponent β1 as functions of N .

surface is twice as large as the logarithmic growth in the
bulk. In the case when only one point is on the surface the
growth is enhanced by 50%. The presence of a free surface
can be considered as an extended defect of a special kind. The
influence of potential-like extended defects on the Bragg glass
has been recently studied in Refs. [34,59].

B. Random anisotropy O(N) model

1. Paramagnetic-ferromagnetic transition for d > 4 (ε > 0)

The FP equation (62) has a cuspy π -periodic solution of the
form (71)–(73) that is singly unstable giving the correlation
length exponent ν = 1/ε + O(ε0). It exists for any N > Nc =
9.4412 with a nonzero R∗′′′(0+). Therefore, at variance with
the RF case in the RA model, the DR breaks down for all values
N > Nc, i.e., N∗ = ∞ [33]. The N dependence of the critical
exponents ηi and η̄i is shown in Fig. 4. For large N one can
find the asymptotic behavior of the FP solution [32,33,57,60].
Following Ref. [32], we look for the π -periodic solution
of the FP equation β[R] = 0 with the β function (61) of
the form

R∗′(φ) = −3

2
δε sin

(
π − 2φ

3

)
[2x(φ) − 1]G(x). (78)

Here we have introduced a small parameter δ = 1/(N − 2)
and defined variable x(φ) = cos(π−2φ

3 ). Substituting the ansatz
(78) into the FP equation and expanding the function G(x) in
small δ, one finds that the coefficients are polynomials in x:

G(x) = 1 + 2

9
(95 − 44x − 16x2)δ − 4

81
(11 737 − 5040x

− 3624x2 − 3104x3 − 768x4)δ2 + 8

10 935

× (103 378 933 − 45 854 072x − 23 128 624x2

− 16 172 328x3 − 9 791 216x4 − 4 642 048x5

− 901 120x6)δ3 + O(δ4). (79)

This implies that [60]

R∗′′(0)

εδ
= −3

2
− 23δ + 1750

3
δ2 − 2 129 692

27
δ3 + O(δ4).

(80)

Substituting the solution (80) into Eqs. (63)–(65), we find the
correlation function exponents to leading order in 1/N as

η = 3ε

2N

(
1 + 52

3N
+ · · ·

)
, η̄ = ε

2

(
1 + 49

N
+ · · ·

)
,

(81)

η⊥ = 3ε

4

(
1 + 55

3N
+ · · ·

)
, η̄⊥ = 5ε

4

(
1 + 147

5N
+ · · ·

)
,

(82)

η‖ = 3ε

2

(
1 + 52

3N
+ · · ·

)
, η̄‖ = 2ε

(
1 + 49

2N
+ · · ·

)
,

(83)

β = 3

4

(
1 + 49

3N
+ · · ·

)
, β1 = 3

2

(
1 + 49

3N
+ · · ·

)
,

(84)

where in the last line are the bulk and the surface magnetization
exponents.

2. Quasi-long-range order for d < 4 (ε < 0)

For 2 � N < Nc the flow equation (35) has a stable π -
periodic FP solution of the form (71)–(73) that controls the
scaling behavior of spin fluctuations in the QLRO phase of the
RA model for d < 4. The correlation function exponents ηi

and η̄i computed for different N are shown in Fig. 5. For N = 2
the FP equation has an explicit nonanalytic π -periodic solution
given by Eq. (74) with φ0 = π . The critical exponents of the
RA O(2) model are given by Eqs. (75)–(77) with φ0 = π .

FIG. 5. (Color online) Critical exponents ηi and η̄i (divided
by |ε|), which describe the power-law decay of correlations in the
QLRO phase of the RA model below the lower critical dimension, as
functions of N for N < Nc.
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V. CONCLUSION

In this paper we have studied the RF and RA semi-infinite
O(N ) models with a free surface. The both models have the
lower critical dimension dLC = 4. Above dLC they undergo
a paramagnetic-ferromagnetic transition for N > Nc, while
below dLC and for N < Nc they exhibit a QLRO phase
with zero magnetization and a power-law decay of spin
correlations. The critical value Nc is Nc = 2.835 for the
RF and Nc = 9.441 for the RA models. Using a FRG, we
have studied the surface scaling behavior of these models
at criticality as well as in the QLRO phase. We have shown
that the connected and disconnected correlation functions
have different scaling behavior in the vicinity of the surface
due to dangerous irrelevance of the temperature. The DR
prediction fails to describe a surface scaling behavior similar
to what happens in the bulk. We have derived the exact scaling
relations between different surface exponents and computed
the critical exponents to first order in ε = d − 4.

Whereas the critical behavior of the systems in d > 4 is of
pure theoretical interest, the surface scaling behavior of the
QLRO phase in d < 4 is of relevance for several experimental
systems. In particular, the surface scaling behavior found for
the 3D RF O(2) model describes the growth of displacements
in disordered periodic elastic systems near a free surface, e.g.,
in the Bragg glass phase of disordered superconductors [39].
The results obtained for the Heisenberg (N = 3) RA model
are relevant for the surface scaling behavior of amorphous
magnets [14,61]. Another interesting example of a system with
continuous symmetry in the presence of RA disorder is the
anisotropic superfluid 3He-A in aerogel. The silicon strands
of aerogel play the role of quenched RA disorder acting on
the orbital anisotropy vector l̂ characterizing the superfluid
properties of 3He-A [20,21].

Finally, let us mention several issues that have been left
beyond the scope of this paper. A natural extension of this work
would be to study the special and extraordinary surface tran-
sitions. Another interesting problem is the presence of surface
disorder. According to Ref. [49], the RF disorder restricted to
the surface of a system with continuous symmetry destroys true
long-range order in the bulk for d � 3. Moreover, it generates
a QLRO phase that is different from the QLRO phase studied
here. It would be interesting to study competitions between the
two different QLRO phases in the case when both the bulk and
surface RF disorder are present in the system. In this paper we
assumed that the bulk O(N ) symmetry persists on the surface.
However, in some physical systems one could expect surface
spin anisotropies, e.g., the formation of an easy axis on the
surface. In pure systems the surface anisotropies are irrelevant
at the ordinary phase transition considered here but allow
for different universality classes of the anisotropic special
transition [62]. In the presence of RF disorder the surface

anisotropies may be relevant even at the ordinary transition
and also in the QLRO phase.
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APPENDIX: ONE-LOOP DIAGRAMS
CONTRIBUTING TO G̊(1,1)

In this Appendix we calculate the correlation function
G̊

(1,1)
1,a;1,a to one-loop order. Expanding the action (17) in small

πa , we find that the only vertices we need are

= − 1

8T̊
δ(z1 − z2)[q2 + ∂z1∂z2 + h̊], (A1)

= − 1

2T̊ 2
R̊′′(0), (A2)

= − 1

8T̊ 2
R̊′′(0). (A3)

The one-loop diagrams contributing to the correlation function
G̊

(1,1)
1,a;1,a are shown in Fig. 1. The solid line corresponds to

the Neumann propagator (23) with h1 = 0 and the wavy
and dashed lines correspond to vertices (A1)–(A3). The first
diagram (a) in Fig. 1 gives

(a) = N − 1

2T̊ 3
R̊′′(0)

∫
q

∫ ∞

0
dz1

∫ ∞

0
dz2

∫ ∞

0
dz3 δ(z2 − z1)

× [∂z1∂z2 + h̊]Ĝ0
p(0,z1)Ĝ0

p(z1,z)
[
Ĝ0

q(z2,z3)
]2

= N − 1

16p̄
T̊ R̊′′(0)e−p̄z

(
zh̊

p̄
+ h̊

p̄2
+ 2

)
I2 + finite, (A4)

where we have used p̄ = (p2 + h̊2)1/2 and omitted the terms
finite in the limit ε → 0. The logarithmically divergent one-
loop integral reads

I2 =
∫

q

1

q̄(p̄ + q̄)2
= Kd−1

∫ ∞

0

qd−2dq

(q2 + h̊2)3/2
+ O(ε0)

= −4Kd

ε
+ O(ε0). (A5)

The second (b) and third (c) diagrams in Fig. 1 yield

(b) = 1

T̊ 3
R̊′′(0)

∫
q

∫ ∞

0
dz1

∫ ∞

0
dz2

∫ ∞

0
dz3δ(z2 − z1)[(p + q)2 + ∂z1∂z2 + h̊]Ĝ0

p(0,z1)Ĝ0
p(z2,z)Ĝ0

q(z1,z3)Ĝ0
q(z3,z2)

= − 1

8p̄
T̊ R̊′′(0)e−p̄z

[(
zh̊

p̄
+ h̊

p̄2
− 2p̄z − 7

)
I2 − 2I3

]
+ finite, (A6)

(c) = − 1

T̊ 2
R̊′′(0)

∫
q

∫ ∞

0
dz1Ĝ

0
p(0,z1)Ĝ0

q(z1,z1)Ĝ0
p(z1,z) = − 1

8p̄
T̊ R̊′′(0)e−p̄z[(2p̄z + 5)I2 + 2I3] + finite, (A7)
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respectively, where we have defined the algebraically divergent integral

I3(p̄,z) =
∫

q

3p̄ + q̄ + (2p̄ + q̄)p̄z

p̄2(p̄ + q̄)2
. (A8)

Summing up the three diagrams, we find that the algebraically divergent integral (A8) cancels and we obtain Eq. (56).
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