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Thermodynamic curvature from the critical point to the triple point
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I evaluate the thermodynamic curvature R for fourteen pure fluids along their liquid-vapor coexistence curves,
from the critical point to the triple point, using thermodynamic input from the NIST Chemistry WebBook. In this
broad overview, R is evaluated in both the coexisting liquid and vapor phases. R is an invariant whose magnitude
|R| is a measure of the size of mesoscopic organized structures in a fluid, and whose sign specifies whether
intermolecular interactions are effectively attractive (R < 0) or repulsive (R > 0). I discuss five principles for
R in pure fluids: (1) Near the critical point, the attractive part of the interactions forms loose structures of size
|R| proportional to the correlation volume ξ 3, and the sign of R is negative. (2) In the vapor phase, there are
instances of compact clusters of size |R| formed by the attractive part of the interactions and prevented from
collapse by the repulsive part of the interactions, and the sign of R is positive. (3) In the asymptotic critical point
regime, the R’s in the coexisting liquid and vapor phases are equal to each other, i.e., commensurate. (4) Outside
the asymptotic critical-point regime incommensurate R’s may be associated with metastability. (5) The compact
liquid phase has |R| on the order of the volume of a molecule, with the sign of R being negative for a liquidlike
state held together by attractive interactions and the sign of R being positive for a solidlike state held up by
repulsive interactions. These considerations amplify and extend the application of thermodynamic curvature in
pure fluids.
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I. INTRODUCTION

Statistical mechanics and thermodynamics are based nat-
urally in different domains. Statistical mechanics starts
at the microscopic level with known intermolecular interaction
potentials. Averaging with the Gibbs-Boltzmann distribution
leads from this microscopic domain to the macroscopic
domain where the laws of thermodynamics apply [1,2]. But
there is an intermediate mesoscopic domain where essential
fluctuation phenomena connected with phase transitions take
place. The theme of this paper is getting information in this
difficult domain using the thermodynamic curvature R.

At least conceptually, statistical mechanics allows us to
“build up” from the microscopic level to calculate properties in
this mesoscopic regime. But this operation is generally difficult
in practice. Less conceptually natural is thermodynamic
fluctuation theory [1,2], in which we “build down” to the
mesoscopic domain from the thermodynamic one. But infor-
mation gets lost in the averaging yielding thermodynamics
from statistical mechanics, and the idea of getting some of this
information back seems counterintuitive at first. Here, I do
this backtracking using R, which connects to intermolecular
interactions [3,4].

In this paper, I calculate R along the liquid-vapor coex-
istence curve from the critical point to the triple point for
fourteen pure fluids, in both the liquid and vapor phases. A
schematic fluid phase diagram is shown in Fig. 1, where (p,T )
denote pressure and temperature, respectively, with subscripts
c and t for critical and triple point properties, respectively.
The thermodynamic input for this broad survey calculation
comes from the NIST Chemistry WebBook [5], based on fits of
experimental data. Although the contents of this database will
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not always be optimal in any particular region, or necessarily
contain the latest experimental data, the NIST Chemistry
WebBook represents the state of the art in representing
data for many fluids over a large span of thermodynamic
states. The calculations in this paper mark the logical first
step in understanding the broad behavior of R in pure
fluids.

This paper is arranged as follows. First, I summarize the
method of calculation of R in a number of thermodynamic
coordinates. Second, I give an overview of the physical
interpretation of R in pure fluids. This overview includes both
what was known previously, and what was learned here. Third,
I give results for R calculated in fourteen pure fluids with the
NIST Chemistry WebBook. Fourth, I have an Appendix with
proofs of critical-point properties of R.

II. CALCULATION OF R

In this section, I summarize how R is calculated in fluids
in various coordinate systems. For a given thermodynamic
state, R is an invariant: it is the same when calculated in any
thermodynamic coordinate system. However, an appropriate
coordinate system can much simplify a calculation.

Consider a thermodynamic system consisting of one type
of molecule, and with fundamental equation U = U (S,N,V ),
where U is the internal energy, S is the entropy, N is the
number of molecules, and V is the volume [6]. Define as well
the temperature, chemical potential, and pressure: {T ,μ,p} ≡
{U,S,U,N ,−U,V }, where the comma notation indicates dif-
ferentiation. Defined in Table I are the Helmholtz free energy
A = A(T ,N,V ), the grand canonical potential �(T ,μ,V ), and
the Gibbs free energy G = G(T ,p,N ).

The thermodynamic entropy information metric (��)2 is
defined in terms of the fluctuation probability of an open
subsystem with fixed volume V of an infinite reservoir in a
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FIG. 1. (Color online) A typical phase diagram for a material
consisting of only one type of molecule. Three phases, solid, liquid,
and vapor, are separated by first-order phase transition lines. Of
interest in this paper is the liquid-vapor coexistence curve connecting
the triple point and the critical point. The asymptotic critical region
is indicated with an open circle.

reference state 0 [1,2]:

probability ∝ exp

[
−V

2
(��)2

]
. (1)

(��)2 is an invariant, positive definite quadratic form which in
the pair of independent thermodynamic parameters x1 and x2

may be written as

(��)2 ≡ g11(�x1)2 + 2g12�x1�x2 + g22(�x2)2, (2)

where �xα ≡ (xα − xα
0 ) (α = 1,2) denotes the difference

between the thermodynamic parameters xα of the subsystem
and their values xα

0 corresponding to (��)2 = 0. The ther-
modynamic metric elements gαβ are evaluated in the state
xα = xα

0 , and are tabulated in Table I for several coordinate
systems.

TABLE I. Thermodynamic potentials and the thermodynamic
metric elements in five coordinate systems. Fluctuations for open
subsystems take place at constant V , coinciding nicely with fixed
V in the derivatives in the first four coordinate systems. In {T ,p}
coordinates, however, N is held fixed on differentiating G(T ,p,N ).
Nevertheless, the form of the {T ,p} metric elements was picked to
reflect fluctuations at constant V [7]. Since R is an invariant, the
choice of coordinates for calculating it is purely one of convenience.

{x1,x2} Potential {g11,g12,g22}

{U,N} S(U,N,V ) − 1
kBV

{ ∂2S

∂U2 , ∂2S

∂U ∂N
, ∂2S

∂N2 }
{S,N} U (S,N,V ) 1

kBT V
{ ∂2U

∂S2 , ∂2U

∂S ∂N
, ∂2U

∂N2 }
{T ,N} A(T ,N,V ) = U − T S 1

kBT V
{− ∂2A

∂T 2 ,0, ∂2A

∂N2 }
{T ,μ} �(T ,μ,V ) = U − T S − μN − 1

kBT V
{ ∂2�

∂T 2 , ∂2�

∂T ∂μ
, ∂2�

∂μ2 }
{T ,p} G(T ,p,N ) = U − T S + pV − 1

kBT V
{ ∂2G

∂T 2 , ∂2G

∂T ∂p
, ∂2G

∂p2 }

The thermodynamic Riemannian curvature scalar (in the
sign convention of Weinberg [8]) may be written as1 [3]

R = − 1√
g

[
∂

∂x1

(
g12

g11
√

g

∂g11

∂x2
− 1√

g

∂g22

∂x1

)

+ ∂

∂x2

(
2√
g

∂g12

∂x1
− 1√

g

∂g11

∂x2
− g12

g11
√

g

∂g11

∂x1

)]
, (3)

where

g ≡ g11g22 − g2
12. (4)

R is an intensive thermodynamic variable with units of
volume per molecule. Although the thermodynamic metric
elements change their form on transforming coordinates, the
value of R for a given thermodynamic state does not change
since it is an invariant, by the rules of Riemannian geometry.
For calculating R, the choice of coordinates is one purely of
convenience.

To conclude this section, I point out that Weinhold [9]
originated thermodynamic energy metrics in the form of inner
products based on the Hessian of the internal energy. The
positive-definite nature of these inner products represents the
second law of thermodynamics. But Weinhold’s geometry
lacks a true Riemannian metric structure since it has no
underlying physical notion of distance, such as is offered
by the fluctuation motivated entropy metric [10]. An entropy
metric was also used by Andresen, Salamon, and Berry [11]
as a measure of the dissipated availability in finite-time
thermodynamics. There have also been numerous calculations
of R for black hole thermodynamics; see Åman et al. [12] for
a review.

III. PHYSICAL INTERPRETATION OF R

In this section, I present the basic thermodynamic curvature
themes occurring in fluids. The discussion here expands the
physical interpretation of R over what has been attempted
previously.

A. |R| ∝ ξ 3 in the asymptotic critical region

For the single-component ideal gas, R = 0 whether the
ideal gas is monatomic or molecular. This finding originally
motivated the hypothesis that R measures intermolecular
interactions [10]. The calculation of R in model systems
quickly revealed a proportionality between |R| and the
correlation volume: |R| ∝ ξd , with ξ the correlation length and
d the spatial dimensionality, particularly near the critical point
where ξ diverges [3,10,13,14]. |R| ∝ ξd in the asymptotic
critical region is consistent with all the fluid data examined in
this paper.

To evaluate the dimensionless proportionality constant
between |R| and ξd , model calculations in which both R and
ξ are evaluated are required. Several calculations of this type
have been carried out in critical regions with large ξ : (1) four

1This equation is in footnote 53 of Ref. [3]. There is a small
typographical error in Ref. [3] as the term ∂g12/∂x2 should be
∂g12/∂x1. The equation is given correctly in (T ,p) coordinates in
Ref. [7].
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pure fluids near the critical point [10], (2) the one-dimensional
ferromagnetic Ising model [15], and (3) the one-dimensional
Takahashi gas [7]. In all these cases, the same proportionality
constant was obtained:

ξd = |R|
2

. (5)

R < 0 in each case. Based on these limited calculations, the
proportionality constant 1/2 would appear to be universal. I
am not aware of any proof of this universality, and this is a
matter which would seem to deserve some future attention.

Following this start based on model calculations, the con-
nection |R| ∝ ξd was later confirmed on general grounds with
a covariant thermodynamic fluctuation theory first developed
by Ruppeiner [16,17] and completed by Diósi and Lukács
[18] who explicitly added the conservation laws. The idea
is that at a large volume V the Gaussian thermodynamic
fluctuation theory Eq. (1) works very well, but with decreasing
V the fluctuating subsystem eventually samples a correlated
environment, which Eq. (1) cannot model. The covariant
thermodynamic fluctuation theory predicts that Gaussian
fluctuation theory ceases to work at a volume [3,4]

Ṽ ∼ |R|
6

. (6)

In the asymptotic critical region, Ṽ is physically interpreted as
being roughly ξd . Clearly, this interpretation is consistent with
the result Eq. (5) based on direct calculation. For calculating
the volumes of organized mesoscopic fluctuating structures
below, I will use Eq. (6) since its derivation is based on general
arguments.

A pictorial depiction of the meaning of the correlation
length, due to Widom [19], is given in Fig. 2. Spontaneous
density fluctuations cause the local density ρ (�r) at a point �r in a
single phase fluid to deviate from the overall density ρ0 in some
complex, time-dependent manner. Mathematically, ρ (�r) = ρ0

corresponds to an intricate contour surface separating two sides
with local mean densities ρ (�r) > ρ0 and ρ (�r) < ρ0. A straight
line through the fluid intersects this surface at points spaced an

FIG. 2. A surface in three dimensions on which the local density
ρ (�r) equals the overall density ρ0. Also shown is an arbitrary line
intersecting the surface at the dotted points, and a “droplet” of linear
dimension ξ equal to the mean distance between those intersections.

average distance ξ apart. ξ is generally small in a disorganized
system like an ideal gas, but diverges at the critical point for real
fluids. This figure also shows a “droplet” of linear dimension ξ

which offers schematic depictions of large spatially organized
density fluctuations. Such a schematic droplet near the critical
point is shown in Fig. 5(a).

B. The sign of R

A tabulation of results in a number of systems [4]
suggests that the sign of R reveals the basic character of the
intermolecular interactions; R is negative for thermodynamic
states where attractive interactions dominate, and R is positive
for states where repulsive interactions dominate. The clearest
case is offered by the canonical examples of the Bose and
Fermi ideal gasses, where quantum statistics causes atoms
to either bunch closer together or further apart than in the
corresponding classical ideal gas, mimicking the effect of
attractive and repulsive interactions. Janyszek and Mrugała
[20], and Oshima, Obata, and Hara [21], showed that (in
Weinberg’s sign convention [8]) R is always negative for
the Bose gas and always positive for the Fermi gas. Mirza
and Mohammadzadeh [22] worked out the ideal q-deformed
boson and fermion gasses, which also show the appropriate
sign. Brody and Ritz [14] examined the sign of R in finite
Ising models as a function of the system size.

Fluids are more complicated than ideal quantum gasses
since the fluid intermolecular interaction potential typically
has two parts: a repulsive part at short range and an attractive
part at long range; see Fig. 3. Sorting out which part dominates
in a given thermodynamic state can be difficult. One statistical
mechanical guide is offered by the pair correlation function

G(r) =
[
ρ(r) − ρ0

ρ0

]
, (7)

where I have assumed that the position vector �r , with
magnitude r , starts on a molecule within the bulk fluid. Fisher
and Widom [23] argued that attractive interactions dominate
if the long-range decay of G(r) is monotonic, and repulsive
interactions dominate if this decay is oscillatory. These authors
[23] were the first to calculate the Fisher-Widom curve along

FIG. 3. (Color online) Fluid intermolecular interaction potential
φ(r) showing a repulsive force at short range, an attractive force at
long range, and a potential well where molecules in the compact
liquid or solid phases typically reside.
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which the long-range decay of G(r) changes from monotonic
to oscillatory.

It is natural to ask whether the Fisher-Widom curve might
coincide with the curve R = 0, since both these curves mark
a transition from attractive to repulsive interactions. Near
the liquid-vapor critical point, the long-range decay of G(r)
is monotonic. The basic lore is that attractive interactions
dominate, and organize fluctuations over long distances. One
would thus expect negative R in the asymptotic critical region,
and this is found in all the fluids examined here. As we move
along the coexistence curve from the critical point towards
the triple point, cases with R switching sign from negative
to positive are found with the NIST Chemistry WebBook [5]
in both the liquid and the vapor phases. However, convincing
results concerning the long-range decay of G(r) are harder
to come by. The possible correspondence between the R = 0
curve and the Fisher-Widom curve is under investigation.

C. Commensurate R’s along the coexistence curve

Key in this research is the argument [24] that the R’s in the
coexisting liquid and vapor phases are equal to each other in
the asymptotic critical region. The structural underpinnings for
this idea originated with Sahay, Sarkar, and Sengupta [25] who
calculated R for the van der Waals model, and observed that,
for isotherms with temperatures less than (but not too far from)
the critical temperature, there must be an R-crossing point
where the curvatures in the liquid and vapor phases equal each
other. This observation, augmented with a physical argument
by Widom [19], led to the proposal by Ruppeiner et al. [24] that
this R-crossing point coincides with the coexistence curve. In
the Appendix, I offer a proof of this commensurate R theorem
in the context of the currently accepted asymptotic scaling
description of fluid criticality.

The physical argument [24] for commensurate R’s envi-
sions approaching some point on the coexistence curve from
either the liquid phase or the vapor phase; see Fig. 4, where v

is the molar volume. Widom [19] proposed that the correlation
length in either of these bulk phases equals the thickness of the
interface between the incipient coexisting phases. Since this
interface thickness is the same at some point on the coexistence
curve, no matter from which direction we approach it, the
correlation lengths, and hence the R’s, should be equal in
the coexisting liquid and vapor phases. This is the case even
though the critical point joining the liquid and vapor phases
is a singular point, and even though the coexisting liquid and

FIG. 4. (Color online) The liquid-vapor coexistence curve and
the critical point. According to the commensurate R theorem, at a
given temperature T , the R’s in the two coexisting phases are equal,
even though their molar volumes v might differ considerably.

vapor densities can be quite different from each other. I add that
Evans et al. [26] showed with density functional theory using
a short-range intermolecular fluid potential that the character
of the density decay, including the correlation length, at the
interface matches that in the bulk, lending even further support
to the Widom argument.

This idea offers a practical new way of dealing with
first-order phase transitions. As is well known, ξ can be
difficult to calculate or to measure but R follows readily from
thermodynamic properties. In the van der Waals model, the
commensurate R theorem was used in place of the physically
problematic Maxwell equal area construction to derive the
liquid-vapor coexistence curve [24]. May and Mausbach [27]
followed up by calculating the liquid-vapor coexistence curve
for Lennard-Jones computer simulation data. In both cases,
strong results were obtained in this otherwise difficult problem.

Widom [19] also argued that if we have a majority phase
of vapor on the verge of a first-order phase transition, then
the fluctuating droplets within it have the density of the liquid
phase which is to be made. Likewise for the majority liquid
phase preparing to make the vapor phase. Fig. 5(c) illustrates
both this idea and the commensurate R theorem.

FIG. 5. (Color online) Schematic figures illustrating several
mesoscopic fluid concepts: (a) a loose organization of molecules with
volume |R| pulled together by the attractive part of the intermolecular
interactions (R < 0); (b) a compact cluster of molecules of volume
|R|, pulled together by the attractive part of the intermolecular
interactions, but prevented from collapse by the repulsive part of the
intermolecular interactions (R > 0); (c) a fluid in two phases near the
critical point, with the bottom half the liquid phase containing vapor
droplets with volume |Rl |, under a coexisting commensurate vapor
phase containing liquid droplets with the same volume Rv = Rl as
those in the liquid; (d) liquid and vapor phases with incommensurate
droplet sizes; (e) a disorganized compact liquid phase held together
by attractive intermolecular interactions (R < 0); and (f) an organized
compact solid phase held up by the repulsive part of the intermolecular
interactions (R > 0).
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D. Low |R| limit

Outside the asymptotic critical region, a limiting theme
enters the picture [24]. With decreasing |R|, the correlation
volume could become less than the molecular volume v,
particularly in the vapor phase where v typically becomes
very large as the triple point is approached. In this low
|R| limit, with |R|/v � 1, we run short of statistics to do
thermodynamics with at volume scales of |R|, and attempts
at physical interpretation of R might appear unreasonable.
Although such physical interpretations are attempted here
anyway, the possibility that our use of R might be stretched
beyond its limits must always be considered.

E. Incommensurate R’s along the coexistence curve

The commensurate R picture associates liquid-vapor phase
coexistence with mesoscopic structures of naturally the same
spatial size ξ in the two phases. I conjecture that if these
structures were of dissimilar sizes, as shown in Fig. 5(d), and
as is typically the case outside the asymptotic critical region,
then it might be difficult for one phase to form the other,
corresponding to metastability.

Particularly difficult to treat theoretically is the onset of
boiling as a liquid is warmed. The classical homogeneous
nucleation theory [28] is shown in Fig. 6. A bulk liquid at
temperature T contains a vapor bubble of radius r and pressure
pv attempting to expand against the sum of the liquid pressure
pl and the pressure caused by the bubble’s surface tension
S̃ (S̃ > 0). It is generally assumed in this theory that all
thermodynamic properties relate in the same way as in the
thermodynamic limit, which is questionable at length scales
approaching the order of intermolecular distances.

For the bubble to grow, and form a macroscopic vapor
phase, we require [28]

pv > pl + 2S̃

r
, (8)

FIG. 6. (Color online) Homogeneous nucleation theory picture of
boiling. A bubble of vapor with radius r and pressure pv attempts to
expand inside a liquid at temperature T . To expand, the bubble must
overcome the sum of the bulk liquid pressure pl and the pressure
2S̃/r contributed by the surface tension S̃.

where pl is set by some external constraint, such as atmo-
spheric pressure. As the bulk liquid is warmed to the coex-
istence curve, pv(T ) → pl . This limit cannot satisfy Eq. (8),
and, for the liquid to boil, we must superheat by warming to a
T higher than the phase transition point, with a larger pv .

The homogeneous nucleation theory clearly cannot work
for tiny bubbles, since 2S̃/r increases without limit as
r → 0. Therefore, we usually assume that the bubbles are
initially larger than some critical radius r = rc by forming on
nucleation sites in the bulk liquid or on the container walls. S̃

generally decreases to zero at the critical point [19], and so we
would not expect much superheating in the asymptotic critical
region.

Temperatures below which superheating might become
significant have been associated with corresponding isotherms
having negative pressures in the metastable liquid regime. In
such a case, the liquid is able to withstand a pulling stress in
the related cavitation problem [28]. In simple fluid models,
such negative pressures typically take place at T < 0.9Tc [28]
(for van der Waals, T < 27 Tc/32 [29]).

The homogeneous nucleation theory of boiling is con-
ceptually challenged since, as becomes clear in Sec. IV, for
T ∼ 0.9 Tc, typically |R| ∼ 1 nm3 in the liquid phase. Such a
volume contains roughly one vapor molecule, and it is hard to
see how the macroscopic rules of thermodynamics assumed
in this bubble model could possibly hold. Zeng and Oxtoby
[30] gave a critical analysis and concluded that “although
the standard classical theory has been quite successful in
predicting droplet formation for many materials, it should fail
completely in the process of bubble formation.”

The suggestion in this paper that incommensurate R’s form
a barrier to the onset of the liquid-vapor phase transition
puts the focus on fluctuating mesoscopic structures, without
assuming anything about their particular character.

F. R in the compact liquid phase

The NIST Chemistry WebBook data presented in Sec. IV
indicates that the compact liquid phase near the triple point
has small |R|, on the order of the volume of a molecule. The
sign of R is mostly negative; the few instances with positive
R coincide with having a curve with R = 0 intersecting the
liquid phase.

The only continuum fluid model where results for R in
the compact liquid regime have been reported is the one-
dimensional Takahashi gas [7]. These results support small
|R| of the character found here. I add to this calculation with a
simple hard-sphere liquid model having Helmholtz free energy

A(T ,N,V ) = NkBT ln

(
N

ρ̃ V

)
+ Ne(T )

− NkBT ln

(
1 − bN

V

)
, (9)

where ρ̃ is a constant with units of density, e(T ) is a function
of T with negative second derivative, and the constant b gives
the hard-packing limit. The particle density is ρ ≡ N/V , the
pressure p = ρkBT /(1 − bρ), and the heat capacity at constant
volume Cv = −NT e′′(T ). By Table I and Eq. (3),

R = −b(1 − bρ). (10)
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Clearly, −b � R < 0 in the regime of physical densities 0 �
ρ < 1/b.

In the covariant version of the theory, |R| sets the lower limit
of applicability of thermodynamic fluctuation theory [16].
Since, for the hard-sphere gas, thermodynamic fluctuation
theory is expected to work down to length scales on the order
of the volume of a molecule b, the result |R| ∼ b is expected.

This somewhat primitive model gives little insight into the
sign of R, which in this model is uniformly negative. To discuss
the sign of R, I return to real fluids. Near the critical point R

is always negative in the liquid state. As I show with the real
fluid data in Sec. IV, as we cool the liquid state towards the
triple point, |R| typically decreases until it takes on a value
of the order of the volume of a molecule. Figure 5(e) pictures
such a compact liquid state with R < 0, loosely held together
by attractive interactions. We now have the question: As we
cool further, could this state organize itself into a “solidlike”
structure where hard-sphere repulsive interactions dominate
and where R changes sign to R > 0, as shown schematically
in Fig. 5(f)? As seen in Sec. IV, such a sign change is indeed
present in a few fluids. I add that Widom [31] contrasted the liq-
uid behavior at the critical point and the triple point, and made
the point that the former is dominated by long-range attractive
interactions, and the later by short-range repulsive interactions.

G. R in the vapor phase

For the vapor phase R is negative in the asymptotic critical
region. As we cool along the coexistence curve from the critical
point to the triple point, we expect |R| to decrease at first, and
eventually end up negative near the triple point. Negative R is
to be expected in any vapor regime where the molar volume
is large, the molecules far apart, and the long-range attractive
part of the intermolecular potential dominant over the repulsive
part. Negative R’s near the triple point are indeed seen in all
the vapors considered in Sec. IV.

The magnitude of R in the vapor phase at the triple point is,
however, harder to interpret physically than its sign. The fluids
in Sec. IV show that either the vapor R settles down to about
−1 nm3 or decreases to large negative values. The later case
generally occurs in vapors with very large triple-point molar
volumes. In either of these scenarios, the triple point |R|/v �
1, and we are clearly below the length scale set by the low |R|
limit. It would thus be easy to dismiss these vapor-phase triple-
point results as being devoid of physical significance. However,
these results do not stand alone since qualitatively similar
results were obtained for the one-dimensional Takahashi gas
at large molecular volumes [7]. But I attempt no physical
interpretation here.

As we cool from the critical point, an interesting new feature
presents itself in the vapor phases of a few fluids, such as water.
In water near the critical point, but outside the asymptotic
critical region, R crosses zero twice, with a peak at a positive
value R ∼ +1 nm3. I associate the resulting regime of R > 0
with the cluster forming scenario pictured in Fig. 5(b).

IV. NIST CHEMISTRY WEB BOOK RESULTS

In this Section I report results of calculations of R using
fluid data from the NIST Chemistry WebBook [5]. The fluids I

examined are made of molecules of four types: (1) monatomic
molecules: helium [32], neon [33], argon [34], krypton [35],
xenon [35], and methane [36], with methane placed in this
category because it is quasispherical [37]; (2) linear diatomic
molecules: normal hydrogen [38], nitrogen [39], and oxygen
[40]; (3) other linear molecules: carbon dioxide [41] and
carbon monoxide [35]; and (4) more complicated molecules:
water [42], methanol [43], and hydrogen sulfide [35].

My calculations represent a broad-based approach to
significant themes for thermodynamic curvature in fluids.
Such a broad approach certainly fits the spirit of the NIST
Chemistry WebBook, which is built on correlations, averaging,
and extrapolations using numerous data sets in many fluids.
The NIST Chemistry WebBook is, however, not optimal in
all circumstances. For example, near the critical point it is
not based on the scaled critical equations of state, and I will
thus attempt no detailed critical-point analysis, such as the
evaluation of the critical-point exponent of R. But, fortunately,
such analysis is not necessary in a first approach, given the
critical-point theorems presented in the Appendix.

The basis of the calculation of R is the Helmholtz free
energy per volume

f (T ,ρ) ≡ A(T ,N,V )

V
, (11)

whose numerical values may be looked up in the NIST
Chemistry WebBook [5].2 The NIST Chemistry WebBook is
based on fitting experimental data to smooth multiparameter
formulas, yielding precise numbers very well suited to cal-
culating numerical derivatives with finite difference formulas
[44]. In (T ,ρ) coordinates, Table I yields immediately the
thermodynamic line element ��2 = gT T �T 2 + gρρ�ρ2, with

{gT T ,gρρ} =
{

− 1

kBT

(
∂2f

∂T 2

)
ρ

,
1

kBT

(
∂2f

∂ρ2

)
T

}
. (12)

In these coordinates, Eq. (3) becomes

R = 1√
g

[
∂

∂T

(
1√
g

∂gρρ

∂T

)
+ ∂

∂ρ

(
1√
g

∂gT T

∂ρ

)]
, (13)

with

g ≡ gT T gρρ. (14)

Hydrogen offers a nice first case, with its thermodynamic
properties recently being reanalyzed [38]. Figure 7(a) shows
R for hydrogen along the coexistence curve in both the liquid
and the vapor phases, from the critical point to the triple point.
A log-log plot of R versus (Tc − T )/Tc shows a power-law
divergence (R → −∞) at the critical point with slope near 2
in both the liquid and vapor phases [24]. Such a divergence
is seen at least approximately for all the fluids examined in
this paper, and is expected from Eq. (A14). R for the liquid
and vapor phases agree with each other to better than 1%
in the temperature range 0.96 < T/Tc < 1, consistent with
the commensurate R theorem. By contrast, at T/Tc = 0.96,

2Since the data tabulations are in quantities per mole, a multiplica-
tion by ρ is required to convert to quantities per volume.
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FIG. 7. (Color online) R for six representative fluids along their coexistence curves: (a) hydrogen, (b) helium, (c) argon, (d) methane,
(e) oxygen, and (f) water. The data go from the critical point, with temperature Tc, to the triple point, with temperature Tt (except for helium
which starts at the lambda point with temperature Tλ). Each case shows R diverging to −∞ at the critical point, with the R’s more or less
commensurate in the two phases in the asymptotic critical region.

the molar densities of the coexisting liquid and vapor phases
differ from each other by a factor of ∼3.

For Hydrogen |R| in the liquid phase decreases on cooling
towards the triple point, with R changing sign and remain-
ing positive below T = 18.8 K. At the triple point, R =

+8.3 × 10−3 nm3; see Table II. A corresponding sphere with
volume |R|/6 would have radius 0.69 Å, of the same general
order as the van der Waals radius of a Hydrogen atom, 1.2 Å.
An organized structure with this size is in accord with the
expectations from Sec. III F for the compact liquid phase.
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TABLE II. Triple-point table showing the triple-point temperature Tt in Kelvin, the molar volumes in the liquid and vapor phases, vl and
vv , in liters per mole, the liquid Rl and the vapor Rv in nm3 per molecule, and Rl/vl and Rv/vv dimensionless.

Fluid Tt vl vv Rl Rv Rl/vl Rv/vv

Neon 24.56 0.016 11 4.549 −0.1654 −0.379 −6.182 −0.050
Argon 83.81 0.028 20 9.852 −0.0259 −0.983 −0.552 −0.060
Krypton 115.78 0.034 25 12.742 −0.0286 −1.697 −0.502 −0.080
Xenon 161.41 0.044 26 15.962 −0.0373 −2.236 −0.508 −0.084
Methane 90.69 0.035 53 63.925 −0.0113 −1.049 −0.192 −0.010
Hydrogen 13.96 0.026 18 15.501 + 0.0083 −0.5407 + 0.190 −0.021
Nitrogen 63.15 0.032 30 41.483 −0.0162 −0.7671 −0.303 −0.011
Oxygen 54.36 0.024 50 3,081.0 + 0.0012 −141.99 + 0.029 −0.028
CO2 216.59 0.037 35 3.1972 −0.0694 −0.6276 −1.119 −0.118
CO 68.16 0.032 97 36.091 −0.0177 −0.9041 −0.322 −0.015
Water 273.16 0.018 02 3,710.9 −0.0018 −114.01 −0.059 −0.019
Methanol 175.61 0.035 42 7,834,000 −0.0130 −689,430 −0.221 −0.053
H2S 187.70 0.034 34 66.557 −0.0155 −1.2778 −0.272 −0.012

As is clear from Table II, such liquid phase triple-point
values of |R| are typical for all the fluids. Most of the liquid
phase triple-point R’s are negative, characteristic of compact
disorganized structures, as in Fig. 5(e), but there are three fluids
with positive R, characteristic of the order in the solidlike
states, as in Fig. 5(f).

In the vapor phase for hydrogen, R is uniformly negative.
This is reasonable, since in the asymptotic critical regime R is
negative, and as we cool towards the triple point the molecules
become ever more widely spaced, and the attractive part of the
interactions will thus increasingly gain in significance over the
repulsive part. Negative R in the vapor phase is characteristic
of all the fluids I looked at except water and methanol. (Neon
vapor has positive R near the triple point, but this may be
spurious.)

R for helium, shown in Fig. 7(b), looks qualitatively similar
to that for hydrogen, though the coexistence curve for helium
ends not at a triple point but at a lambda point at temperature
Tλ = 2.177 K. Again, in the asymptotic critical region,
we see strong agreement with the commensurate R rule. In the
vapor phase, R is uniformly negative, but in the liquid phase
R changes sign and become positive below T = 3.80 K.

R for argon, shown in Fig. 7(c), has the commensurate
R theorem not as conspicuously satisfied as it was for
hydrogen and helium. Whether this reflects the real behavior,
or shortcomings in the fitting formula in this regime, is
not clear. For argon, both the liquid and the vapor R’s
are uniformly negative along the entire coexistence curve.
The basic pattern for argon is repeated for krypton, xenon,
methane [see Fig. 7(d)], nitrogen, carbon dioxide, carbon
monoxide, and hydrogen sulfide. Neon shows similar behavior
as well, except for a regime of small positive R in the liquid
phase near the triple point. Neon terminates in an anomalously
large liquid |R|/v, as shown in Table II.

R for oxygen, shown in Fig. 7(e), has the liquid phase
terminate with a positive R at the triple point. R changes
sign at T = 57.9 K, with |R|/v at the triple point being
anomalously small; see Table II. Whether or not this is a
real effect, or reflects a problem with the data fit, is unclear.
The vapor phase shows a new feature, with R decreasing

abruptly on approaching the triple point. As is indicated in
Table II, such large vapor phase |R| values are typically
associated with corresponding large increases in the vapor
molar volume. Water shows a similar feature, which may be
related to metastability.

R for water, shown in Fig. 7(f), shows typical liquid phase
behavior. However, the vapor phase shows a new feature
which may be physically significant: a positive peak for R at
T = 616 K, with R = 0.341 nm3. (For this state R/v = 1.1.) I
associate this feature with cluster formation of the type shown
in Fig. 5(b), where water molecules are in a condensed solidlike
state held up by the repulsive part of the intermolecular inter-
actions. It is straightforward to estimate the average number
of water molecules in a cluster at the peak R. By Eq. (6),
the cluster volume is roughly |R|/6 = 0.0568 nm3. Assume
that each water molecule occupies a spherical volume with
van der Waals radius: (4π/3)(0.17nm)3 = 0.021 nm3, leading
to a number of molecules in the cluster of 0.0568/0.021 ∼ 3
molecules. Computer simulations by Johansson et al. [45] have
found a significant number of water clusters in the coexisting
vapor corresponding roughly to this peak R. These clusters
were found to be dominated by dimers, though clusters as
large as seven molecules were identified.

Methanol shows a similar feature of positive R in the vapor
phase near the critical point, but the quality of the NIST fit
may not be as good as for water. If this connection between
positive R and physical clusters is correct, then calculating
R offers a method of identifying fluids and thermodynamic
regimes where we might find clusters. This idea will be pursued
elsewhere.

For water, there is a point at T = 529 K where the
vapor curve for R crosses the liquid curve, and a rapid
divergence between the values of R in the two phases occurs
as we cool to the triple point. If we interpret these large
R differences in terms of metastability, then we clearly
see that, as we warm from the triple point, metastability
should end at T = 529 K. Brennen [28] gives the maximum
temperature of superheating experimentally observed in Water
as about 550 K, with corresponding van der Waals value T =
27/32Tc = 546 K.
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V. CONCLUSION

In conclusion, this overview of the thermodynamic curva-
ture R on the liquid-vapor coexistence curve of fourteen pure
fluids has confirmed some old expectations, but also brought
forth some new features. The broad trend is negative values
of R, as the attractive part of the intermolecular interactions
usually dominates for pure fluids, with the exception of
compact situations where the molecules are in close contact.
In the asymptotic critical region, |R| ∝ ξ 3 with the liquid and
vapor values of R in the coexisting phases being equal by
theorem. On cooling towards the triple point, |R| typically
decreases until it is of the order of molecular sizes in the liquid
phase, but less well defined in the vapor phase.

Interesting new features are of three types. The first is
incommensurate R’s outside the asymptotic critical regime,
with fluids of largely different R’s in the liquid and vapor
phases. I associate this with metastability, where the majority
phase has a difficult time making the minority phase because
the mesoscopic fluctuating structures in the phases are of
different sizes. Although I present no detailed experimental
examination supporting this conjecture, it would appear to be
at least logical. Second, I associate isolated regimes of positive
R in the vapor phase near the critical point with the formation
of solid clusters. Third, fluids with R changing sign through
R = 0 in the compact liquid phase may be associated with the
Fisher-Widom curve marking the transition in the long-range
decay of the correlation function from a monotonic fluidlike
character to an oscillatory solidlike character.

Generally, further study of R might provide insight not only
into the nature of thermodynamic curvature, but add another
set of criteria to use in judging the quality of fits of fluid data
to fitting models.
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APPENDIX: COMMENSURATE R THEOREM

Significant aspects of this paper hinge on the behavior
of R in the asymptotic critical region. Below, I work in
the context of the scaled form of the free energy, with the
Rehr and Mermin [46] mixing of scaling variables to deal
with asymmetry. This constitutes the “currently accepted
asymptotic scaling description of fluid criticality” [47]. In this
Appendix, I prove that R has the same critical exponent as ξ 3

along the coexistence curve and its analytic extension into the
supercritical regime. I also prove the commensurate R theorem
that R in the coexisting liquid and vapor phases are equal.

My proofs assume that along the coexistence curve μ =
μ(T ) is analytic approaching the critical point from below. This
assumption has been questioned in the context of the Yang-
Yang anomaly where the second derivative μ′′(T ) diverges at
the critical point. There is some experimental evidence [48]
for this point of view which requires “complete scaling” to

address theoretically. In this scenario, my proofs would require
revisions.

Write the pressure as [46]

p(T ,μ) = p0(T ,μ) + |τ |aY±(z), (A1)

where p0(T ,μ) is the regular analytic part, and the term
containing the function Y±(z) is the singular part,

z ≡ ζ

|τ |b , (A2)

(a,b) are two critical exponents,

τ ≡ (T − Tc)/Tc + c1(μ − μc)/kBTc, (A3)

ζ ≡ (μ − μc)/kBTc + c2(T − Tc)/Tc, (A4)

(Tc,μc) are the values of (T ,μ) at the critical point, and c1 and
c2 are two constants. I assume |c1c2| < 1, the case if the fluid
is not too antisymmetric. The function Y±(z) has no explicit
dependence on c1 and c2, and has two branches (±) depending
on the sign of τ . These branches join smoothly along the curve
τ = 0, except at the critical point {τ,ζ } = {0,0}. The critical
exponents a and b are related to the standard critical exponents
α and β by a = 2 − α and b = βδ [46,49].

It is assumed that Y±(z) is an even function of z. This
assumption, and the goal of modeling a first-order phase tran-
sition terminating in a second-order critical point, requires [46]

Y ′
+(0) = 0, (A5)

Y
(3)
+ (0) = 0, (A6)

Y−(0+) = Y−(0−) �= 0, (A7)

Y ′
−(0+) = −Y ′

−(0−) �= 0, (A8)

Y ′′
−(0+) = Y ′′

−(0−) �= 0, (A9)

and

Y
(3)
− (0+) = −Y

(3)
− (0−) �= 0, (A10)

where the subscripts + and − on 0 refer to the sign of z as
either ζ → 0+ or ζ → 0−.

For τ < 0, ζ = 0± represents the two phases on the coex-
istence curve because, for given (T ,μ), we have p(τ,0+) =
p(τ,0−), by Eqs. (A1) and (A7). This continuity of (T ,p,μ),
and the corresponding discontinuities of the density ρ =
(∂p/∂μ)T and entropy per volume s = (∂p/∂T )μ resulting
from Eqs. (A1) and (A8), are the conditions for a first-order
phase transition. Note that setting ζ = 0± in Eq. (A4) yields
(μ − μc)/kBTc = −c2 t and τ = (1 − c1c2)t in Eq. (A3),
where the reduced temperature

t ≡ T − Tc

Tc

. (A11)

Thus, on the coexistence curve, t is negative and (μ −
μc)/kBTc has the same sign as c2.

In (T ,μ) coordinates the thermodynamic line element can
be read off from Table I:

��2 = 1

kBTc

[
∂2p

∂T 2
�T 2 + 2

∂2p

∂T ∂μ
�T �μ + ∂2p

∂μ2
�μ2

]
,

(A12)
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where I have set � = −pV , and T = Tc in the prefactor since
we are in the asymptotic critical region. It is straightforward to
show that the term containing Y±(z) in Eq. (A1) causes each
second derivative in the thermodynamic line element Eq. (A12)
to diverge on approaching the critical point, assuming critical
exponent values in the vicinity of the pure fluid ones (a ∼
1.9,b ∼ 1.6 [49]). Therefore, since the regular part of the
pressure p0(T ,μ) produces only finite second derivatives in
the metric elements, we can drop it in calculating R in the
asymptotic critical region.

For τ > 0, and along the line ζ = 0 representing the
analytic continuation of the coexistence curve, Eq. (3)
yields

R+(t,0) = −kBTc(b − 1)(2b − a)(1 − c1c2)−a

a(a − 1)Y+(0)
t−a,

(A13)

demonstrating that R+(t,0) diverges with exponent a = 2 − α.
This exponent is the same as that of ξ 3 [49]. To assure a positive
heat capacity, we must have Y+(0) > 0, yielding R+(t,0) <

0 for fluids. This is found in every case considered in this
paper.

Along the coexistence curve we have exactly

R−(t,0±) =

−kBTc(b − 1)(1 − c1c2)−a

×[−(a − b)2 (1 + b − a) Y ′
−(0±)2Y ′′

−(0±)
+ 2a(a − 1)(2b − a)Y−(0±)Y ′′

−(0±)2

+ a(a − 1)(a − b)Y−(0±)Y ′
−(0±)Y (3)

− (0±)] |t |−a

2[(a − b)2Y ′−(0±)2 − a(a − 1)Y−(0±)Y ′′−(0±)]2
.

(A14)

Every product of Y−(0±) and its derivatives has the
same value in either phase by Eqs. (A7)–(A10), establishing
immediately the commensurate R theorem:

R−(t,0−) = R−(t,0+). (A15)

Note also that R− diverges with exponent a = 2 − α, the same
as that of ξ 3. The presence of the term Y

(3)
− (0±) in Eq. (A14),

with sign unset by thermodynamic stability, means that Eq.
(A14) does not clearly set the sign of R−(t,0±). But it was
found to be negative in the asymptotic critical region in all
fluids examined in this paper.

Other than T , p, μ, and R, most thermodynamic functions
will not be equal in the coexisting phases. For example, the
metric elements gαβ , related to heat capacities and compress-
ibilities, consist of a mixed sum of terms, some changing sign
on switching phases and some not changing sign.
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