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Identification of noisy response latency
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In many physical systems there is a time delay before an applied input (stimulation) has an impact on the output
(response), and the quantification of this delay is of paramount interest. If the response can only be observed on
top of an indistinguishable background signal, the estimation can be highly unreliable, unless the background
signal is accounted for in the analysis. In fact, if the background signal is ignored, however small it is compared
to the response and however large the delay is, the estimate of the time delay will go to zero for any reasonable
estimator when increasing the number of observations. Here we propose a unified concept of response latency
identification in event data corrupted by a background signal. It is done in the context of information transfer
within a neural system, more specifically on spike trains from single neurons. The estimators are compared on
simulated data and the most suitable for specific situations are recommended.
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I. INTRODUCTION

The formal representation of series of uniform events
appearing randomly in time as a stochastic point process
is common in several branches of physics [1]. Here we
investigate one specific problem related to this representation
and discuss it in a common application of the theory, namely,
studies on information transfer in neural systems. However,
the methodology is applicable in any other field in which the
following scenario can be found. Assume a series of primary
events observable for a period of time. At a known time instant,
either controlled by an experimenter or induced by an external
event, an additional stream of indistinguishable events is added
to the original one. The question is what the waiting time is
to the first event coming from the new source. Obviously,
taking the time to the first event after the defined time instant
may give a very biased answer. The problem is common in
computational neuroscience and we use its terminology and
reasoning.

The only way a neuron can transmit information about
rapidly varying signals is by a series of all or none events:
the action potentials (spikes or firings). An action potential is
taken in the limit as a Dirac delta function and thus a spike train
may be considered as a realization of a stochastic point process
[2,3]. A characteristic of neuronal units of different types is the
existence of so-called spontaneous activity, i.e., the generation
of spikes without any (controlled) stimulation, usually with a
low firing rate. It can, as a first approximation, be described by a
Poisson process with constant intensity [3]. It is not possible to
analyze the transfer of information within the nervous system
without investigating the effect of changing conditions [4].
A common experimental approach, especially for studying the
sensory systems, is the presentation of a stimulus and checking
if and how the neuron responds to it. The general reason is that
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the information about the stimulus is encoded in the reaction. It
has been shown experimentally and theoretically that the spike
latency (vaguely described as the time between stimulation and
neuronal response) contains important information in auditory,
visual, olfactory, and somatosensory modalities [5–16]. In
Ref. [17] the latency is studied experimentally and described
by a mathematical function. Therefore, the precise definition
and determination of the response latency appear as important
problems.

An often applied technique for the stimulated neuronal
activity involves estimates of the firing rate profile. The
estimated latency to a response is the first instant following the
stimulus onset in which the firing rate changes significantly.
In statistical terminology, this is a change-point estimation in
the intensity (firing rate) function. Three alternative latency
estimation methods were provided in Ref. [18], all based on
detecting the time at which the firing rate increases from the
baseline. In Ref. [19] formal statistical tests for latency effects
were proposed and a detailed study of statistical properties of
estimation and testing methods was conducted. Also Ref. [20]
discussed whether the first-spike latency could be a candidate
neural code and an algorithm for detecting the first-spike
latency for a single neuron was presented. It was based on
detecting a change in the spontaneous discharge Poisson
process model caused by evoked spikes. All of these methods
are based on finding the point where the firing rate of the
underlying point process has changed [21–25]. However, many
behavioral responses are completed so fast that the underlying
sensory processes cannot rely on estimation of the neural firing
rate over an extended time window. Then the approach has
to be based on finding the first spike that appeared due to
the stimulation. Of course, this implicitly assumes that the
response is excitatory.

Another often applied approach is based on assuming that
the first spike after the stimulus onset is caused by the stimulus.
In Ref. [26] the first-spike latency is defined as the time
from the onset of a stimulus to the time of occurrence of the
first-response spike. In neurons without spontaneous activity,
the response latency can be easily determined. However, in
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neurons possessing spontaneous spiking, the assessment of
the response latency is more complicated. The first spike
after the stimulus may be caused by the spontaneous activity
rather than the stimulus itself. In Ref. [27] shifts in the
first-spike latencies in inferior colliculus neurons produced
by iontophoretically applied serotonin were demonstrated.
Neurons that showed spontaneous activity higher than a fixed
firing rate were excluded from that study. In this way, the
bias caused by the possibility that the first spike after the
stimulation is spontaneous rather than evoked was avoided. An
alternative to an estimator of the latency could be a constant
deduced from the physical properties of the system under
consideration [28].

As shown, the terminology of response latency is rather
broad. In the literature, with a few exceptions, the response
latency is identified with the first-spike latency or it is defined
as the delay between the stimulus onset and the evoked
modulation in neural activity. Our aim is to present a unified
concept of the response latency, which includes two types of
response latencies, absolute and relative. Furthermore, statisti-
cal procedures to deduce the properties of these quantities are
proposed and compared in simulated experiments, extending
the methods in Refs. [29,30].

II. CHARACTER OF EXPERIMENTAL DATA

In a typical neuronal recording session, a stimulus is pre-
sented and the spike generation times from the stimulus onset
are recorded. Unfortunately, also the spontaneous activity
(firing prior to the stimulation) is inevitably included in the
record. The trials are repeated after a period of time ensuring
that the effect of stimulation has disappeared. The situation is
illustrated in Fig. 1 together with definitions of quantities that
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FIG. 1. Schematic description of the single experimental trial.
Spikes are indicated with dots. At time 0 the measurements start
and at time ts a stimulus is applied. W (R) denotes the time to the
first spontaneous (evoked) spike after ts . For an observer, they cannot
be distinguished. Here T represents the time to the first spike after
the stimulus onset and is measured. In the presence of an absolute
response latency θ , the response latency R is given by θ + Z and no
evoked spikes can occur in [ts ,ts + θ ]. In contrast, spontaneous spikes
might occur in that time interval. The relative response latency Z

denotes the time to the first evoked spike after ts + θ , the spontaneous
ISIs are denoted by X, and the first spike after 0 is denoted by W0.
Finally, W− corresponds to the backward recurrence time, defined as
the time to the last spontaneous spike before ts .

can be measured during the experiment and the ones we wish
to deduce. The recorded spike train starts at time zero and is
composed of spontaneously fired action potentials up to time
ts when the stimulation is presented. After that, the recorded
spike train contains spontaneous spikes up to the moment
of the first evoked spike. We assume that the spontaneous
activity is not affected by the stimulus up to the first evoked
spike. What happens after the first evoked spike is outside the
scope of our study. The experiment is repeated n times and the
recorded spike trains create n statistically indistinguishable
trials.

In each trial we assume that there is at least a single spike
prior to the stimulation, so there is an observable time interval
W0, defined as the time from 0 to the first spontaneous spike
before ts . Commonly, there is a set of complete interspike
intervals (ISIs) between time 0 and ts , denoted by X (see
Fig. 1). In the theory of stochastic point processes, the quantity
W0 is called the forward recurrence time. The stimulation
at time ts divides the current interspike interval into two
subintervals: the time from the last spontaneous spike to
the instant of stimulation W− (in the theory of stochastic
point processes denoted as the backward recurrence time)
and the time between the stimulation and the first spike after
it, denoted by T . In most of the literature on stimulated
neuronal activity, this time is called latency or response time
or first-spike latency. However, imagine that the first spike
after the stimulation onset is still not influenced or generated
by the stimulation itself and would be there even in the
absence of stimulation. Thus the spikes after the stimulation
are either spontaneous or evoked, and for an observer these
are indistinguishable. The situation is illustrated in Fig. 1. We
denote the time to the evoked spike by R and call it response
latency. We assume that the response latency is the sum of
two components: absolute and relative response latency. The
absolute response latency is denoted by θ and is defined as the
time from the stimulation where no evoked spike can occur.
The primary aim of the paper is to determine this delay. If
the first spike after the stimulation is part of the prevailing
spontaneous activity (which ends by the first evoked spike),
this interval is denoted by W . Note that neither W nor R is
observed, only their minimum T ,

T = min(R,W ). (1)

We assume that W and R are independent, i.e., the spontaneous
and the stimulated activities are not related before the first
evoked spike.

It follows from Eq. (1) and the independence of R and W

that

P (T > t) = P [min(R,W ) > t] = P (R > t)P (W > t). (2)

We are interested in understanding the role of the spontaneous
activity in the response latency. In particular, we want to
calculate the risk of failure when assuming T = R. This is
the second aim of the paper. Consider therefore

p = P (W < R) = P (T = W ), (3)

i.e., the probability that the first observed spike after the stim-
ulus onset is spontaneous. Obviously, P (T = R) = 1 − p.

Throughout the paper, capital letters are used to stress
that the quantities are random variables and lowercase
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letters indicate their realizations. The cumulative distribution
function (CDF) of a generic random variable Y is denoted by
FY (t) = P (Y � t), its survival function 1 − FY (t) by F̄Y (t), its
probability density function (PDF) by fY (t), and the empirical
CDF (ECDF) by FY ;n(t) = 1

n

∑n
i=1 1{Yi�t}, where 1A is the

indicator function of the set A. The average is denoted by
ȳ = 1

n

∑n
i=1 yi . Finally, we use subindex i (i = 1, . . . ,n) for

the serial number of the trial and subindex j (j = 1, . . . ,mi)
for the spontaneous ISIs in the time interval [0,ts] in the ith
repetition.

III. MODEL

A. Spontaneous activity

If the spontaneous firing follows a renewal process model,
the Xij (i = 1, . . . ,n; j = 1, . . . ,mi) are independent and iden-
tically distributed random variables. Then the CDF of W is
given by [31]

FW (t) =
∫ t

0 [1 − FX(x)]dx

E[X]
(4)

and it follows that the mean of W is

E[W ] = E[X2]

2E[X]
. (5)

In fact, Eq. (4) is also true under a less restrictive assumption.
It is sufficient that the data are stationary, but when they are
not independent, it can be difficult to estimate FX. If the data
are stationary, then the forward and the backward recurrence
times W− and W follow the same distribution [32]. Under this
assumption, it is enough to know ts and the involved pair of
spikes in each trial. Even if the process is not stationary, it will
be approximately true as long as the process is only slowly
drifting.

Therefore, we consider two sampling strategies in the paper.
Either all ISIs, i.e., the Xij ’s, prior to the stimulation enter in
the statistical evaluation of the latency or only the time from
the last spike prior to the stimulation, namely, W−, can be
used.

The simplest model to describe the spontaneous firing
activity, often supported by experimental data [2,3], is a
Poisson process and we will not consider other parametric
models. Then X follows an exponential distribution with mean
ISI equal to 1/λ > 0 and PDF

fX(t) = λe−λt , t > 0. (6)

In this case, as directly follows from Eq. (4), fW0 (·) =
fW−(·) = fW (·) = fX(·).

To summarize, throughout the paper we consider separately
the following three assumptions about the distribution of the
ISIs before stimulation: (a) the renewal assumption, using all
data prior to the stimulation in the analysis; (b) the stationarity
assumption (or only slowly drifting), using only the backward
recurrence time W− in the analysis; and (c) the parametric
assumption, i.e., independent and exponentially distributed
ISIs, using all data prior to the stimulation in the analysis.

B. Neural response to a stimulus

Let the absolute response latency θ � 0 be a constant
and assume that no evoked spike can occur before time
ts + θ . Under the approach employed here, the total time from
stimulation to the first evoked spike can be rewritten as

R = θ + Z,

where the relative response latency Z is a random variable
accounting for the time between the end of the delay and
the first evoked spike. The primary aim of this article is to
determine the absolute response latency θ .

By definition, FR is a shifted distribution with delay (or
shift) θ , i.e.,

FR(t) = 0 if t ∈ [0,θ ], FR(t) > 0 if t > θ.

The presence of the absolute response latency implies P (T >

t) = P (Z > t − θ )P (W > t) and the CDF of R becomes

FR(t) = FZ(t − θ ) =
{

0 if t ∈ [0,θ ]

1 − 1−FT (t)
1−FW (t) if t > θ.

Therefore, R follows a shifted distribution with shift θ and
distribution family FZ . Likewise, the CDF of T is

FT (t) = 1 − [1 − FZ(t − θ )][1 − FW (t)]

=
{
FW (t) if t ∈ [0,θ ]

FW (t) + FZ(t − θ )[1 − FW (t)] if t > θ.
(7)

Thus θ satisfies

θ = inf{t > 0 : FT (t) �= FW (t)}, (8)

which we will use to define a nonparametric estimator of θ . If
it is reasonable to assume specific distributions, the following
result will be useful to define parametric estimators of θ . For
any (shifted or nonshifted) distribution family of R with θ � 0,
the nth moment of T is given by (see Appendix A)

E[T n]=E[Wn]

⎧⎨⎩1−e−λθ

n−1∑
j=0

λj

j !

j∑
h=0

(
j − h

h

)
θhL(j−h)

Z (λ)

⎫⎬⎭ .

(9)

Here LZ(s) denotes the Laplace transform of fZ , i.e., LZ(s) =
E[e−sZ] = ∫ ∞

0 e−stfZ(t)dt . The kth derivative is denoted by

L(k)
Z (·). In particular, the first two moments are

E[T ] = E[W ][1 − e−λθLZ(λ)], (10)

E[T 2] = E[W 2]
{
1 − e−λθ

[
(1 + λθ )LZ(λ) + λL(1)

Z (λ)
]}

.

(11)

The second aim of this paper is to estimate the probability p,
given by Eq. (3). In Appendix B it is shown that

p = 1 − e−λθLZ(λ) = E[T ]

E[W ]
, (12)

where the last equality follows from Eq. (10). Note that trivially
p � P (W � θ ) = 1 − e−λθ and we therefore always have

θ � − ln(1 − p)

λ
(13)
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with equality if and only if P (R = θ ) = 1. This can also be
seen from Eq. (12) since the Laplace transform of a degenerate
variable in 0 equals 1 and otherwise is strictly smaller than 1.

In contrast to the spontaneous activity, we have no exper-
imental evidence about the distribution of R. A commonly
applied model to describe spike data is the gamma distribution
[33,34] and we apply it to describe the relative response
latency. Thus Z ∼ �(α,β) and therefore R follows a shifted
gamma distribution R ∼ �sh(θ,α,β). The gamma distribution
has the PDF

fZ;�(t) = 1

αβ�(β)
tβ−1e−t/α, t > 0 (14)

and mean E[Z] = αβ, implying E[R] = θ + αβ. Here β > 0
and α > 0 denote the shape and the scale parameters, respec-
tively, and �(β) denotes the gamma function. In particular, the
exponential distribution R ∼ expsh(θ,ω) can be obtained as a
special case if in Eq. (14) β = 1 and ω = 1/α. Then ω reflects
the firing frequency. Other distributions, such as the inverse
Gaussian, Weibull, or log-normal, can also be employed. For
many distributions, L(1)

Z (·) = gZ(·)LZ(·) for a function gZ . In
particular, for the gamma distribution

LZ(λ) = (1 + λα)−β, gZ(λ) = αβ

1 + λα
. (15)

IV. PARAMETER IDENTIFICATION

The aim of this paper is the estimation of θ and p. Note
that whereas θ is a parameter of the model, p is not. Indeed,
p is a probability characterizing the properties of the model,
in particular, giving information about the risk of failure when
assuming T = R.

A. Estimation of the probability that the first spike after
stimulus onset is spontaneous

To estimate p expressed by Eq. (12) we need estimators of
E[T ] andE[W ]. Since T is observed, we simply estimateE[T ]
by t̄ . Under the stationarity assumption when the spontaneous
ISIs cannot be used for the statistical evaluation, E[W ] can
be estimated by the empirical mean of W−, w−. Under the
renewal assumption the Xij ’s can be used, but first we make no
assumptions about the parametric form of FX. Using Eq. (5),
the mean of W might be estimated from the empirical moments
of X, namely, x̄ and x2. However, due to the predefined finite
sampling interval [0,ts], x̄ underestimates E[X], since only
ISIs shorter than ts can be observed, and the density function

is proportional to the observation length ts . The bias can be
very large if ts is not large compared to the mean of X, as can
be confirmed by simulations (results not shown; see Ref. [33]).
The density of the distribution of the sampled ISIs is η−1(ts −
t)fX(t) for t ∈ [0,ts] and 0 otherwise, where η = ∫ ts

0 (ts −
t)fX(t)dt = ∫ ts

0 FX(t)dt is the normalizing constant [33].
Therefore, the following sample averages have approximate
means E[X̄] ≈ η−1(tsE[X] − E[X2]) and E[X2/(ts − X)] ≈
η−1E[X2], where we have assumed ts large enough to use the
approximation

∫ ts
0 tfX(t)dt ≈ ∫ ∞

0 tfX(t)dt = E[X]. Isolating
E[X2] and E[X] we obtain the estimators

x̃2 = η
1∑n

i=1 mi

n∑
i=1

mi∑
j=1

x2
ij

ts − xij

, x̃ = η
x̄ + x̃2

ts

and E[W ] can be estimated by x̃2/2x̃. Note that the normal-
izing constant η cancels out. When ts → ∞, the estimator
converges to the usual empirical estimator. If the parametric
approach is applied, i.e., X follows Eq. (6), then the likelihood
estimator of λ is [35]

λ̂ =
∑n

i=1(mi + 1)

nts
. (16)

To summarize, we have the following estimators of p:

p̂a = 2x̃ t̄

x̃2
, p̂b = t̄

w− , p̂c = t̄ λ̂, (17)

under the renewal, the stationarity, and the parametric assump-
tions, respectively.

B. Estimation of the absolute response latency

We propose several estimators for the absolute response
latency θ . The first group makes no assumptions about the
distribution of the time to the first evoked spike. One estimator
is based on the identification of θ with one of the measured
times to the first spike after stimulation. Taking the shortest
of them indirectly assumes that there is no spontaneous spike
after stimulation. Those that are larger takes into account that
there are also some spontaneous spikes mixed with the evoked
activity and should depend on n, as will be shown. Another
employs Eq. (8) for a nonparametric identification of θ . The
other group of estimators assumes that the parametric forms
of the distributions of W and R are known, i.e., the method of
moments and maximum likelihood inference. The proposed
estimators and their assumptions are summarized in Table I.

TABLE I. Proposed estimators of the absolute response latency θ under different assumptions for the spontaneous and
evoked activities.

Estimator Method Assumption on W Assumption on R

θ̂1 θ̂1 = min{t1, . . . ,tn} model free model free
θ̂2 θ̂2 = t (k), k = �np̂	 + 1 θ̂2a , renewal; θ̂2b, stationary; θ̂2c, FW known model free
θ̂3 based on CDFs θ̂3a , renewal; θ̂3b, stationary; θ̂3c, FW known model free
θ̂4 maximum likelihood FW known FR known
θ̂5 moment estimation FW known FR known
θ̂6 maximum likelihood FW known R ∼ expsh(θ,ω)
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1. Naive estimator of θ

The first estimator θ̂1 is defined as

θ̂1 = min{t1, . . . ,tn}.
It represents a simple estimator that can be used in a
preliminary analysis, ignoring the presence of spontaneous
activity, i.e., assuming T = R. Any other estimator should
improve the performance by including the spontaneous activity
in the analysis.

Note that any estimator that is defined as the kth-order
statistic of (t1, . . . ,tn), denoted by t (k) (e.g., θ̂1 = t (1)), will
necessarily go to zero for any fixed k when the sample size
increases since the number of spontaneous spikes before time
ts + θ in the sample will increase with n. In particular, if
Z ∼ exp(ω) the mean of θ̂1 is given by

E[θ̂1] = −θe−nλθ + 1

n
(1 − e−nλθ ) + n

n + 1
θe−(n+1)λθ−ωθ

+ n

(n + 1)(n + 2)(λ + ω)
e−(n+2)λθ−2ωθ (18)

(see Appendix C). Note that it goes to zero as n → ∞
independently of the value of θ and therefore it is not
consistent. Thus any estimator based on an order statistic
should depend on n.

2. Estimator of θ based on the proportion of spontaneous
spikes in the sample

To improve θ̂1, we propose an order statistic estimator
depending on n and taking into account the presence of
spontaneous activity. The probability that the first spike after
the stimulus onset is spontaneous, P (T = W ) = p, is the
expected proportion of spontaneous spikes. We therefore
expect np spontaneous spikes and n(1 − p) evoked spikes
in a sample of size n. Thus we propose to estimate θ as the
kth-order statistic given by

θ̂2 = t (k), k = �np̂	 + 1, (19)

where �x	 denotes the integer part of x and p̂ is any of
the estimators of p. This corresponds to assuming that all
the observations ti < t (k) are spontaneous and all ti � t (k) are
evoked, while in fact the two distributions overlap, especially
if θ is small. Consequently, we expect θ to be overestimated
with decreasing bias as θ increases and also not consistent.

3. Estimator of θ based on cumulative distribution functions

A different approach to the estimation of the absolute
response latency is to use Eq. (8). Obviously, the estimated
distributions are different and we need to define a criterion
to distinguish between statistical fluctuation and systematic
difference. We propose to use the standard deviation of the
difference between F̂T (t) and F̂W (t) when t � θ , denoted by
σ (t), as a measure of the statistical fluctuation. On [0,θ ], no
evoked activity is present and therefore σ (t) does not depend
on R. Then we estimate θ as the maximum time such that
the difference between the two distributions is smaller than
the statistical fluctuation σ (t), i.e., F̂T (t) and F̂W (t) cannot be
statistically distinguished. Thus θ̂3 is defined as

θ̂3 = max{t ∈ [0,t̃] : [F̂T (t) − F̂W (t)] � σ̂ (t)}, (20)

where t̃ is chosen as the time that maximizes the distance
between F̂T (t) and F̂W (t), i.e.,

t̃ = arg max
t∈[0,t (n)]

[F̂T (t) − F̂W (t)],

and t (n) = max(t1, . . . ,tn). We estimate FT by the ECDF
FT ;n(t). The choice of F̂W (t) depends on the underlying
assumptions and determines σ (t). To obtain closed and
manageable expressions for the level σ (t), we will assume
that W is exponential and then under this assumption find
the distribution of σ (t) for the different estimators of λ. In
Appendix D it is shown that σ (t) is estimated by

σb(t) =
√

2

n
e−t/w− (1 − e−t/w− ), (21)

σc(t) =
√

1

n
e−λ̂t (1 − e−λ̂t ) + eλ̂nts (e−2t/nts −1) − e2λ̂nts (e−t/nts −1)

(22)

under the stationarity and parametric assumptions, respec-
tively. Under the renewal assumption, the calculation of σ (t)
becomes more complicated. We therefore approximate σ (t) by
σc(t), estimating λ by 2x̃/x̃2. We expect θ̂3 to be consistent,
as observed from simulations, since F̂T ;n and F̂W converge to
the true distributions FT and FW and σb and σc go to zero as
n → ∞.

4. Parametric approach: Maximum likelihood estimation of θ

The density of the distribution of T derived from Eq. (7)
assuming FW (t) = 1 − e−λt is

fT (t) = e−λtfZ(t − θ )1{t>θ} + λe−λt [1 − FZ(t − θ )1{t>θ}],
(23)

where we have introduced the indicator function in the
expression to emphasize the allowed values of t , which
will be useful when evaluating the log-likelihood function∑n

i=1 lnfT (ti) at the sampled values. The presence of θ

complicates the inference because the likelihood function is
not differentiable with respect to θ . Therefore, we should
maximize directly the log-likelihood function to obtain an
estimator of θ . We denote by θ̂4 the maximum likelihood
estimator (MLE) of θ .

Assume R ∼ expsh(θ,ω) and thus Z ∼ exp(ω). The likeli-
hood equation for ω is

0 =
n∑

i=1

1 − (λ + ω)(ti − θ )

λ + ω
1{ti>θ}. (24)

Note that from Eq. (24), only the sum λ + ω can be estimated.
Estimate λ by Eq. (16) and obtain ω̂ as the solution of Eq. (24)
for fixed θ as

̂ω + λ =
∑n

i=1 1{ti>θ}∑n
i=1(ti − θ )1{ti>θ}

, ω̂ = ̂ω + λ − λ̂.
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The profile likelihood becomes

l̃t (θ ) = −λ̂

n∑
i=1

ti +
n∑

i=1

[λ̂(ti − θ ) − 1]1{ti>θ}

+
n∑

i=1

ln(ω̂1{ti>θ} + λ̂).

Since l̃t (θ ) is strictly increasing for θ ∈ (ti ,ti+1), with i =
1, . . . ,n − 1, it follows that θ can be estimated as the time
ti − ε maximizing lt (θ ), with ε > 0 small enough, which can
be maximized numerically to obtain θ̂ .

Now assume R ∼ �sh(θ,α,β) and thus Z ∼ �(α,β). The
log-likelihood function becomes

lt (θ,α,β) = −λ̂

n∑
i=1

ti +
n∑

i=1

ln{fZ;�(ti − θ )1{ti>θ}

+ λ̂[1 − FZ;�(ti − θ )1{ti>θ}]},
which can be maximized numerically to obtain the unknown
parameters θ,α, and β. Here FZ;�(t) = γ (β,t/α)/�(β), where
γ (β,t/α) is the lower incomplete gamma function. Even if
the likelihood function is not differentiable with respect to
θ , we expect that the MLE is consistent, as observed from
simulations.

5. Parametric approach: Moment estimator of θ

A different approach when X ∼ exp(λ) and the distribution
family of R is given consists in equating the theoretical
moments of T given by Eq. (9) with the empirical moments.
In particular, we solve a system of equations given by the
first two or three moments in the two or three unknown
parameters, namely, (θ,ω) when Z ∼ exp(ω) or (θ,α,β) when
Z ∼ �(α,β). We denote by θ̂5 the moment estimator (ME)
of θ .

Assume R ∼ expsh(θ,ω) and estimate λ by Eq. (16). From
Eqs. (10), (11), (15), and (E3) for β = 1 and α = 1/ω we
obtain

θ =
p − E[T 2]

E[W 2]

λ(1 − p)
− 1

λ + ω
, 1 − p − e−λθ ω

ω + λ
= 0.

Replacing p,E[T 2],λ, and E[W 2] by p̂,t2,λ̂, and 2/λ̂2 we can
solve the system with respect to ω and θ .

Now assume R ∼ �sh(θ,α,β). From Eqs. (10) and (15) we
get

β = − ln(1 − p) + λθ

ln(1 + λα)
.

Plugging β into Eq. (11) we get

θ =
(
p − E[T 2]

E[W 2]

)
(1 + λα)ln(1 + λα) + λα(1 − p)ln(1 − p)

λ(1 − p)[(1 + λα)ln(1 + λα) − λα]
.

Substituting β and θ into Eq. (9) for n = 3, we obtain an
equation in α that can be solved numerically.

Unfortunately, the moment equations do not always have a
solution with positive parameters for a given sample. This is

due to the following inequality, which is shown in Appendix E:

E[T 2]

E[W 2]
> p + (1 − p)ln(1 − p). (25)

It is always fulfilled from a theoretical point of view, but, as we
will see later, the empirical counterpart might not be satisfied
in a particular sample, especially if n is small or θ is large, in
which case the moment estimator is not well defined. From the
law of large numbers, the ME is consistent since it is expressed
as a differentiable function of averages.

V. SIMULATION STUDY

A. Setup

We simulated a spontaneous spike train following a Poisson
process with firing rate λ = 1s−1 for a time period up to the
first spike after 10s and thus E[W ] = 1s. At time ts = 10s,
the evoked activity was simulated by shifted exponentially
(ω = 10s−1) or gamma distributed (α = 0.05s and β = 2)
random variables R such that E[Z] = 0.1s. Then we obtained
a realization of T using Eq. (1). The empirical data end with
the first spike after stimulus and therefore the recording of
spikes ended at T . This was repeated to obtain samples of
size n, where n varied between 10 and 150 in steps of 10, and
each sample was repeated for different values of θ between
0.05 and 0.4 in steps of 0.025. For these values of θ , p was
varying from 0.14 to 0.39. Finally, for each value of n and
θ , we repeated this procedure 10 000 times, obtaining 10 000
statistically indistinguishable and independent trials.

We denote by θ̂a,θ̂b, and θ̂c the estimators of θ under
the renewal, the stationarity, and the parametric assumptions
and likewise for p. It is also of interest to evaluate how
a misspecification of the model influences the statistical
inference. We denote by θ̂6 the misspecified estimator of θ ,
computed as θ̂4 under the wrong assumption Z ∼ exp(ω),
when in fact it is gamma distributed, Z ∼ �(α,β).

To compare different estimators, we use the relative mean
error RME to evaluate the bias and the relative mean square
error RMSE, which incorporates both the variance and the bias.
They are defined as the average over the 10 000 repetitions of
the quantities

Erel(θ̂ ) = θ̂ − θ

θ
, Erel sq(θ̂ ) = (θ̂ − θ )2

θ2

and likewise for p.

B. Results for p

In Fig. 2 we report the RME(p̂) and RMSE(p̂) when R is
shifted exponential or gamma distributed with E[Z] = 0.1s
for different values of n and θ . As expected, all RME(p̂)
and RMSE(p̂) decrease as n increases. For fixed n, RME(p̂)
is approximately constant, i.e., the performance of p̂ does not
depend on θ . This is expected because the bias is primarily
due to the estimator of λ, which does not depend on θ . Also
the RMSE(p̂) is approximately constant for fixed n, which
is explained by the mean of T that is changing with θ ,
and estimated by a simple average and thus unbiased. The
variance is primarily determined by the sample size and is only
slowly varying with θ . The parametric estimator p̂c largely
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FIG. 2. Dependence of RME(p̂) and RMSE(p̂) (average over 10 000 simulations) on the number of observations and the absolute response
latency when W is exponential with rate λ = 1s−1. Top panels: Z is exponential with rate ω = 10s−1. Bottom panels: Z is gamma with
α = 0.05s and β = 2. In both cases E[Z] = 0.1s. Left panels: Different values of n for fixed θ = 0.2s, with p ≈ 0.26. Right panels: Different
values of θ for fixed n = 50. Here p varies between 0.14 and 0.39. Also shown are the estimators of p under the renewal assumption p̂a (solid
line), the stationarity assumption p̂b (dashed line), and the parametric assumption p̂c (dot-dashed line), given by Eq. (17).

outperforms the other two, it has no bias, and RMSE is less
than 1%, even for a sample size as small as n = 30. The other
two overestimate p, which is also expected, since they are
ratios of positive estimators, which tend to have heavy right
tails. Furthermore, p̂a performs better than p̂b with respect to
both RME and RMSE. This happens because p̂a and p̂c use all
ISIs sampled before the stimulation, whereas p̂b uses only the
time from the last spike before stimulation, W−. Thus p̂a and
p̂c are based on a larger sample size, reducing the estimation
error, compared to p̂b. To conclude, with only a sample size
of n = 50 the error is less than 3% and p appears to be well
estimated by any of the proposed estimators, even for small
sample sizes.

C. Results for θ

It follows from Eq. (18) that θ̂1 has an RME between
−70% and −100% when R belongs to a shifted exponential
distribution family with θ ∈ (0,0.4] and n between 10 and
150. This is confirmed in simulations (results not shown) and
emphasizes the importance of not ignoring the spontaneous
activity in the analysis. Since the other estimators take the
spontaneous activity into account, we expect that |RME(θ̂)| �
|RME(θ̂1)| and we do not consider θ̂1 further.

Figure 3 shows RME(θ̂ ) and Fig. 4 shows RMSE(θ̂), focusing
only on those estimators, which have errors less than 10%. For
this reason, the ME of the gamma distribution is not shown.
Indeed, it performs better than θ̂1, but is still unacceptable,
probably due to the large number of samples where the estima-
tor is not well defined (see below). Considerable improvement
is observed with θ̂2, which is the best nonparametric estimator
when n is small or θ is large and always has a smaller variance
than θ̂3. When n increases, RME(θ̂2) reaches an asymptotic
level away from 0 that depends on how much the distributions
FW and FR overlap. This is due to the assumption that all
the spontaneous spikes come before the evoked spikes. A
good feature of θ̂2 is that it does not seem to depend on the
underlying assumption for FW since the RME and RMSE of

θ̂2;a , θ̂2;b, and θ̂2;c are almost identical. When n is large or θ is
small θ̂3 is the best nonparametric estimator. Simulations show
that it depends only slightly on the underlying assumptions for

ME

FIG. 3. Dependence of RME(θ̂ ) (average over 10 000 simulations)
on the number of observations and the absolute response latency when
W is exponential with rate λ = 1s−1 for estimators with errors less
than 10%. Top panels: Z is exponential with rate ω = 10s−1. Bottom
panels: Z is gamma with α = 0.05s and β = 2. In both cases E[Z] =
0.1s. Left panels: Different values of n and θ = 0.2s. Right panels:
Different values of θ and n = 50. The following estimators are shown:
the p estimator θ̂2;c under the parametric assumption (solid line); the
CDF estimators θ̂3 under the renewal assumption (dot-dashed line),
the stationarity assumption (dotted line), or the parametric assumption
(long-dashed line); the MLE θ̂4 (circles); the ME θ̂5 (crosses) (only
in the top panels); and the misspecified estimator θ̂6 (gray circles)
(only in the bottom panels). The estimators θ̂2 under the renewal and
stationarity assumptions θ̂2;a and θ̂2;b are not reported since they are
almost identical to θ̂2;c.
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MSE

FIG. 4. Dependence of RMSE(θ̂ ) (average over 10 000 simula-
tions) on the number of observations and the absolute response latency
when W is exponential with rate λ = 1s−1 for estimators with errors
less than 10%. Top panels: Z is exponential with rate ω = 10s−1.
Bottom panels: Z is gamma with α = 0.05s and β = 2. Left panels:
Different values of n and θ = 0.2s. Right panels: Different values of
θ and n = 50. The following estimators are shown: the p estimator
θ̂2;c under the parametric assumption (solid line); the CDF estimators
θ̂3 under the renewal assumption (dot-dashed line), the stationarity
assumption (dotted line), or the parametric assumption (long-dashed
line); the MLE θ̂4 (circles); the ME θ̂5 (crosses) (only in the top
panels); and the misspecified estimator θ̂6 (gray circles) (only in the
bottom panels). The estimators θ̂2 under the renewal and stationarity
assumptions θ̂2;a and θ̂2;b are not reported since they are almost
identical to θ̂2;c.

FW . The error is in all cases small even for moderate sample
sizes.

As expected, the MLE provides the best estimates of θ .
The ME is acceptable only when Z follows an exponential
distribution. The MLE is more reliable than the ME approach,
as is usually observed comparing MEs and MLEs. In particular,
for n = 50 fixed the RME(θ̂5) gets worse for large θ . This is
probably due to the fact that the estimator is defined only if
the parameter condition (25) is satisfied, which is often not
the case, especially for large θ or small n. The percentages
of the simulated samples where the estimator is undefined are
reported in Fig. 5. Note that the right-hand side of Eq. (25)
is increasing in p. Therefore an estimate p̂ much larger than
the true p tends to violate condition (25) and the ME is not
defined.

Interestingly, the misspecified θ̂6 that wrongly assumes
Z exponentially distributed when R ∼ �sh(θ,α,β) gives ac-
ceptable estimates of θ , even if more biased, but with
approximately the same RMSE as the correct MLE. This would
of course not be the case for the other parameters α and β.

The results might depend on the particular choice of the
distribution for Z and its parameter values. Simulations were
also conducted for the inverse Gaussian distribution and for
β = 0.8 and 10 in the gamma distribution (results not shown).
The results for the estimation of θ are similar, though a larger
sample size is needed when β = 10.

n

0
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20
30

20 60 100 140

Exponential
Gamma

θ
0.1 0.2 0.3 0.4

%

FIG. 5. Percentage of repetitions out of 10 000 that do not fulfill
condition (25). For these data sets, the ME θ̂5 cannot be evaluated.
Here W is exponential with rate λ = 1s−1; Z is exponential with rate
ω = 10s−1 (solid line) or Z is gamma with α = 0.05s and β = 2
(dashed line). Left panels: Different values of n for fixed θ = 0.2s.
Right panels: Different values of θ for fixed n = 50.

VI. CONCLUSION

It can be discussed if the model in this paper reflects the
biology correctly, more specifically, whether the spontaneous
and the evoked activity can be distinguished once the stimulus
is applied, since both are being produced by the same neuron.
First, during the absolute latency no spike is influenced by
the stimulus and the activity is thus well described by the
spontaneous spikes. Second, during the response latency, our
aim is simply to estimate how the time dynamics of spikes is
changed by the stimulus. Further, the model can be considered
a more general model. Assume that the observed output comes
from a cluster of processing units, e.g., neurons, and some of
these are changed by the stimulus and others are not, but
they cannot be distinguished. This scenario would originate an
observed response as described by our model.

A shortcoming of the analysis is the limitation of using only
the first spike after the stimulus onset, ignoring the possible
information carried by the entire spike train. The approach
pursued here of first-spike coding is an alternative to the
frequency coding principle. It would be interesting to extend
the methods developed in this paper over the entire spike train
after stimulus onset.

To conclude, numerical simulations emphasize the impor-
tance of taking into account the spontaneous activity W when
estimating θ in order to avoid a serious bias. We suggest
choosing the MLE if it is reasonable to assume that the evoked
activity follows an exponential or gamma distribution, leading
to a parametric estimation of θ . If no information about the
distribution of R is available, we suggest applying the p

estimator θ̂2, which always estimates θ reasonably well, is
easy to compute, and gives the same performance for any
of the underlying assumptions for FW . For simplicity, or from
lack of knowledge of R, we also suggest using the misspecified
estimator θ̂6, assuming an evoked activity exponential, which
does not appear to introduce a large error in the estimation of θ .
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APPENDIX A: MOMENTS OF T

Assume that X ∼ exp(λ) and R belongs to a shifted distribution family. Then the nth moment of T can be calculated using
Eq. (23) as follows:

E[T n] =
∫ ∞

0
tnfT (t)dt =

∫ θ

0
tnfW (t)dt +

∫ ∞

θ

tn{fZ(t − θ )[1 − FW (t)] + fW (t)[1 − FZ(t − θ )]}dt dt

=
∫ ∞

0
tnfW (t)dt −

∫ ∞

0
(y + θ )nfW (y + θ )FZ(y)dy +

∫ ∞

0
(y + θ )nfZ(y)[1 − FW (y + θ )]dt

= E[Wn] −
∫ ∞

0
(y + θ )nλe−λ(y+θ)FZ(y)dy +

∫ ∞

0
(y + θ )nfZ(y)e−λ(y+θ). (A1)

The second term can be solved by integration by parts:∫ ∞

0
(y + θ )nλe−λ(y+θ)FZ(y)dy

=
n∑

k=0

n!

(n − k)!

1

λk

∫ ∞

0
(y + θ )n−kfZ(y)e−λ(y+θ)dy. (A2)

Using the binomial theorem, the (n − k)th power of (y + θ )
can be expanded as

(y + θ )n−k =
n−k∑
h=0

(
n − k

h

)
yn−k−hθh.

Therefore, the integral in Eq. (A2) becomes∫ ∞

0
(y + θ )n−kfZ(y)e−λ(y+θ)

= e−λθ

n−k∑
h=0

(
n − k

h

)
θh

∫ ∞

0
yn−k−he−λyfZ(y)dy

= e−λθ

n−k∑
h=0

(
n − k

h

)
θhL(n−k−h)

Z (λ), (A3)

where L(j )
Z (λ) is the j th derivative of the Laplace transform of

Z evaluated in λ. By plugging Eq. (A3) into Eq. (A2) and then
into Eq. (A1), noting that the term for k = 0 cancels out with
the last integral in Eq. (A1), we finally obtain

E[T n] = E[Wn]

⎧⎨⎩1 − e−λθ

n∑
k=1

λn−k

(n − k)!

n−k∑
h=0

(
n − k

h

)

× θhL(n−k−h)
Z (λ)

⎫⎬⎭,

where we have used that E[Wn] = n!/λn. The final expression
(9) is obtained by the change of index j = n − k.

APPENDIX B: CALCULATION OF p

Assume that X follows Eq. (6) and R belongs to a shifted
distribution family. To compute the probability p that the first
spike after the stimulus onset is spontaneous, we proceed as
follows. Define U = R + (−W ). Then

p = P (W < R) = P (U > 0) =
∫ ∞

0
fU (t)dt,

where fU is the convolution of fR and f(−W ). Here f(−W ) is
defined by

f(−W )(s) = fW (−s)1{s�0} = λeλs1{s�0}

and fR(t) = fZ(t − θ )1{t�0}. Then the density fU is given by

fU (t) =
∫ ∞

−∞
fR(u)f(−W )(t − u)du

=
∫ ∞

t

fZ(u − θ )1{u>θ}λeλ(t−u)du

= λeλt−λθ

[
LZ(λ)1{0�t�θ} + 1{t>θ}

∫ ∞

t−θ

fZ(x)e−λxdx

]
and therefore p becomes

p = λe−λθLZ(λ)
∫ θ

0
eλtdt + λe−λθ

∫ ∞

θ

∫ ∞

t−θ

eλ(t−u)fZ(u)du dt

= (1 − e−λθ )LZ(λ)+e−λθ

∫ ∞

0

(∫ u+θ

θ

λeλtdt

)
e−λufZ(u)du

= (1 − e−λθ )LZ(λ) +
∫ ∞

0
(1 − e−λu)fZ(u)du,

which implies Eq. (12).

APPENDIX C: MEAN OF θ̂1

Assume that X follows Eq. (6) and R belongs to a shifted
exponential family. We have

P (θ̂1 > t) = P (t1 > t, . . . ,tn > t)

=
n∏

i=1

[1 − FT (t)] = [1 − FT (t)]n

and therefore P (θ̂1 � t) = 1 − [1 − FT (t)]n with density
n [1 − FT (t)]n−1 fT (t). From Eq. (7) we obtain

E[θ̂1] =
∫ θ

0
nt[1 − FW (t)]n−1(t)fW (t)dt

+
∫ ∞

θ

nt[1 − FW (t)]n[1 − FZ(t − θ )]n− 1fZ(t − θ )dt

+
∫ ∞

θ

nt[1 − FW (t)]n−1[1 − FZ(t − θ )]nfW (t)dt,

which implies Eq. (18).
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APPENDIX D: STATISTICAL FLUCTUATION OF
F̂T (t) − F̂W (t)

Assume t ∈ [0,θ ]. The variance of the difference between
F̂T (t) and F̂W (t), denoted by σ 2(t), is defined as

σ 2(t) = Var[F̂T (t) − F̂W (t)]

= Var[F̂T (t)] + Var[F̂W (t)] − 2 Cov[F̂T (t),F̂W (t)].

(D1)

Define An;t = ∑n
i=1 1{ti�t}; then F̂T ;n = An;t /n. Here An;t

counts the number of observations ti � t . Under the station-
arity assumption F̂W (t) = F̂W−;n(t) = Bn;t /n, where Bn;t =
1{w−

i �t}. Since FT (t) = FW−(t) for all t ∈ [0,θ ], it follows that
An;t and Bn;t are identically distributed random variables with
covariance given by

Cov(An;t ,Bn;t ) =
n∑

i=1

n∑
j=1

Cov
(
1{ti�t},1{w−

j �t}
)

= n Cov
(
1{tj �t},1{w−

j �t}
)

= n[P (W � t,W− � t) − FW (t)2]. (D2)

In the second equality we have used that ti and w−
j are

independent for i �= j . If X follows Eq. (6), then the joint
PDF of W and W− at time (r,s), denoted by fW−;W (r,s), is
given by λ2e−λ(r+s) [36]. Therefore,

P (W− � t,W � t) =
∫ t

0

∫ t

0
fW−;W (r,s)dr ds

=
∫ t

0
λe−λrdr

∫ t

0
λe−λsds = FW (t)2.

Thus, by Eq. (D2), Cov(An;t ,Bn;t ) = 0. Note that this is not
generally true; it is due to the memoryless property of the
exponential distribution. In general, the backward and the
forward recurrence times are negatively correlated. Plugging
FT ;n(t) and FW−;n(t) into Eq. (D1), we obtain

σ 2
b (t) = Var[FT ;n(t) − FW−;n(t)] = 2

n2
Var(An;t )

= 2

n
FW (t)[1 − FW (t)].

Then the standard deviation σb(t) equals Eq. (21).

Under the parametric assumption F̂W = 1 − e−λ̂t . Then
Eq. (D1) becomes

σ 2
c (t) = 1

n
FW (t)[1 − FW (t)] + Var(e−λ̂t ) + 2

n
Cov(An;t ,e

−λ̂t )

= 1

n
(1 − e−λt )e−λt + Var(e−λ̂t ), (D3)

where the covariance is null because of the same reasons as
above. Rewrite Eq. (16) as

λ̂ =
∑n

i=1 Ni(ts)

nts
= N (ts)

nts
,

where Ni(ts) is the random variable counting the number of
spontaneous spikes in [0,ts] in the ith trial. By assumption
N (ts) follows a Poisson distribution with rate λnts . Therefore,

Var(e−λ̂t ) = E[e−N(ts )(2t/nts )] − E[e−N(ts )(t/nts )]2

= LN(ts )

(
2t

nts

)
− L2

N(ts )

(
t

nts

)
= eλnts (e−2t/nts −1) − e2λnts (e−t/nts −1), (D4)

where LN(ts ) denotes the Laplace transform of fN(ts ). Plugging
Eq. (D4) into Eq. (D3) and taking the square root, we finally
obtain Eq. (22).

APPENDIX E: CONDITIONS ON THE PARAMETERS OF R

From Eq. (12) we have that

e−λθLZ(λ) = 1 − p (E1)

and it follows

θ = − ln(1 − p)

λ
+ lnLZ(λ)

λ
. (E2)

Assume Z ∼ �(α,β) and write L(1)
Z (λ) = gZ(λ)LZ(λ) given

by Eq. (15). Using Eq. (E1), rewrite Eq. (11) as

E[T 2]

E[W 2]
= p − (1 − p)λ[θ + gZ(λ)]. (E3)

Plugging Eq. (E2) into Eq. (E3), we get

E[T 2]

E[W 2]
= p + (1 − p)ln(1 − p)

+ β(1 − p)

1 + λα
[ln(1 + λα)(1 + λα) − λα].

Condition (25) follows by noting that the expression in square
brackets on the right-hand side is larger than 0.
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