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We show that for quantum phase transitions with a single bosonic zero mode at the critical point, like the Dicke
model and the Lipkin-Meshkov-Glick model, metric quantities such as fidelity, that is, the overlap between two
ground states corresponding to two values λ1 and λ2 of the controlling parameter λ, depend only on the ratio
η = (λ1 − λc)/(λ2 − λc), where λ = λc at the critical point. This scaling property is valid also for time-dependent
quantities such as the Loschmidt echo, provided time is measured in units of the inverse frequency of the critical
mode.
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I. INTRODUCTION

Due to its quantum nature, a quantum phase transition
(QPT) [1], defined as a drastic change of fundamental
properties of ground states, may have properties quite different
from those of thermal phase transitions. This point has received
much attention in recent years. In particular, some concepts
and quantities in the field of quantum information, e.g.,
entanglement and fidelity, have been found quite useful in
characterizing the occurrence of a QPT. For example, the
overlap between two ground states corresponding to two
nearby values λ1 and λ2 of the controlling parameter λ,

Lp(λ1,λ2) = ∣∣〈0λ1

∣∣0λ2

〉∣∣, (1)

has been proposed as a probe of quantum criticality [2]:
the dramatic change of the wave function at a QPT implies
a decrease of the overlap Lp in the neighborhood of the
critical point. Hence, the fidelity Lp can be used to detect the
occurrence of a QPT (see Ref. [2–10] and references therein).

Similarly to thermal phase transitions, an important aspect
of QPTs is the dependence of relevant quantities on the
controlling parameter λ. For example, the characteristic energy
scale usually takes the form |λ − λc|ϕ , with λc indicating the
critical point and ϕ > 0 a critical exponent. This is for the case
in which only one value of the parameter λ is of relevance. For
quantities like fidelity, which instead depend on two values
λ1 and λ2 of the controlling parameter, one should understand
whether their behavior in the critical region encodes universal
properties about a QPT. With regard to the fidelity, the question
is whether its drop near a QPT can be used not only to detect
the QPT itself but also to determine the critical exponents [10].
In this context, understanding scaling properties is relevant.

When studying fidelity, either as the overlap (1) of ground
states or as the survival probability of an initial state prepared in
the ground state |0λ2〉 of Hamiltonian Ĥ (λ2) and evolved under
a different Hamiltonian Ĥ (λ1), two values λ1 and λ2 of the
controlling parameter are involved. For the sake of clarity, in
what follows, we use the name fidelity for the former quantity,
Lp(λ1,λ2), and use Loschmidt echo (LE) for the latter [11].
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An interesting question is about the dependence of the fidelity
and LE on λ1 and λ2. In the case that the fidelity Lp(λ1,λ2)
goes to zero when λ1 approaches λc for a fixed λ2, it is clear
that for each λ′

2 there exists a value λ′
1 such that Lp(λ1,λ2) =

Lp(λ′
1,λ

′
2). This implies that the relative positions of λ1 and λ2

with respect to λc, rather than their exact positions, play the
crucial role. Hence, the question arises of whether the fidelity
may be invariant under rescaling of the controlling parameter.

In this paper, we show that for QPTs possessing only one
bosonic zero mode at the critical point, metric quantities like
fidelity depend only on the ratio η = (λ1 − λc)/(λ2 − λc).
That is, these physical quantities are invariant under linear
rescaling of the controlling parameter with respect to the
critical point. We also show that this scaling property is
valid for time-dependent quantities such as the LE, provided
time is measured in units of the inverse frequency of the
critical mode. The class of QPTs possessing such features
includes important physical models, like the Dicke [12] and
the Lipkin-Meshkov-Glick (LMG) models [13].

The article is organized as follows. In Sec. II we discuss our
scaling argument for static metric quantities like the fidelity,
extending in Sec. III such scaling to time-dependent quantities
like the LE. The scaling for time-dependent quantities is then
illustrated by means of the semiclassical theory. We then
illustrate the fidelity and LE scaling in two relevant physical
models, the Dicke model (Sec. IV) and the LMG model
(Sec. V). We finish with concluding remarks in Sec. VI.

II. SCALING ARGUMENT

As only the lowest energy levels are concerned close to
the critical point, we assume that the Hamiltonian describing
a QPT can be approximately written in terms of n harmonic
oscillators:

Ĥ (λ) =
n∑

i=1

ei(λ)ĉ†i (λ)ĉi(λ), (2)

where ĉ
†
i (λ) and ĉi(λ) are bosonic creation and annihilation

operators for the ith mode. The ground state |0λ〉 for the
parameter λ is defined by ĉi(λ)|0λ〉 = 0. For two parameter
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values λ1 and λ2, one may write

ĉ
†
i (λ1) =

n∑
j=1

[Pij ĉ
†
j (λ2) + Qij ĉj (λ2)], (3)

where Pij and Qij are functions of λ1 and λ2, with Pij = δij

and Qij = 0 for λ1 = λ2. We discuss the case in which there
is only one zero mode at the critical point: e1(λ) ∼ |λ − λc|ϕ
for λ close to λc, while ei(λc) �= 0 for i �= 1. In this case,
Eq. (3) reduces to

ĉ
†
1(λ1) = P11ĉ

†
1(λ2) + Q11ĉ1(λ2), (4)

with a corresponding expression for ĉ1(λ1). From the bosonic
commutation relations it follows that |P11|2 − |Q11|2 = 1.
Let us write explicitly the phases of P11 and Q11, as
P11 = |P11|ei(θc+θr ) and Q11 = |Q11|ei(θc−θr ). In the repre-
sentation of Ĥ (λ2), the change of the pair (ĉ1(λ2),ĉ†1(λ2))
to (e−iθr ĉ1(λ2),eiθr ĉ

†
1(λ2)) does not bring any change to the

physics; hence, the phase θr can be absorbed by ĉ1(λ2)
and ĉ

†
1(λ2). The phase θc is the relative phase between

the pair of operators (ĉ1(λ2),ĉ†1(λ2)) at λ2 and the pair
(ĉ1(λ1),ĉ†1(λ1)) at λ1, which generates relative phases between
the set of basis states |nλ1〉 = [ĉ†1(λ1)]n|0λ1〉|/

√
n! and |mλ2〉 =

[ĉ†1(λ2)]m|0λ2〉|/
√

m!.
Let us consider a physical quantity A depending on two

values λ1 and λ2 of the controlling parameter (for instance,
A might be the fidelity), written in the vicinity of the critical
point as a function of the annihilation operators for the zero
mode:

A = 〈
0λi

∣∣Â(ĉ1(λ1),ĉ1(λ2))
∣∣0λj

〉
(i,j = 1,2). (5)

In what follows, we focus on quantities A that do not depend on
the phase θc [14]. In particular, metric quantities, like Cnm ≡
|〈nλ1 |mλ2〉|, belong to this class. Such quantities include, for
instance, the fidelity Lp = C00 and the participation ratio χ

of an eigenstate of, e.g., Ĥ (λ2), |mλ2〉 = ∑
n〈nλ1 |mλ2〉|nλ1〉,

with respect to the basis of the eigenstates of Ĥ (λ1); by
definition, χ = 1/

∑
n |〈nλ1 |mλ2〉|4 = 1/

∑
n C4

mn. In the study
of these quantities, we can take θc = 0. Then, since the phase
θr can be absorbed by ĉ1(λ2) and ĉ

†
1(λ2), P11 and Q11 are

just their absolute values, with P11 � 1. Using the ground
state definition ĉ1(λ1)|0λ1〉 = 0, Eq. (4), and the expansion
|0λ1〉 = ∑

m〈mλ2 |0λ1〉|mλ2〉, we can express |0λ1〉 as a function
of P11, Q11, ĉ

†
1(λ2), and |0λ2〉. After inserting the obtained

expression for |0λ1〉 into Eq. (5), we find that A is a function
of P11 and Q11 only.

The dependence of P11 on λ1 and λ2 can be written
as P11 = F (�λ1,�λ2), where �λi = λi − λc (i = 1,2). We
study λ1 and λ2 belonging to the same phase, so that η =
�λ1/�λ2 > 0. We assume, as is natural for a QPT with
an infinitely degenerate zero mode at the critical point, that
F (�λ1,�λ2) goes to infinity in the limit �λ1 → 0 with
�λ2 �= 0, as well as in the limit �λ2 → 0 with �λ1 �= 0.
For the sake of simplicity, we assume that F is a monotonic
function of �λ2, when �λ2 changes from a given �λ1 to 0
[15]. Then, given F (�λ1,�λ2) = d, for any λ′

1 there must exist
a λ′

2 such that F (�λ′
1,�λ′

2) = d. This implies that there exists
a function �λ2 = g(�λ1,d), such that F (�λ1,g(�λ1,d)) = d

for any �λ1; hence,

∂F/∂�λ1 + (∂F/∂�λ2)(∂g/∂�λ1) = 0. (6)

For a given d and a sufficiently small �λ1, the Taylor
expansion reads g = g0 + g′�λ1, where g′ = ∂g/∂�λ1 with
d fixed. We recall that in the limit �λ1 → 0, F (�λ1,�λ2) goes
to infinity if �λ2 is nonzero. Hence, for any given d, �λ2 must
go to zero in order that lim�λ1→0 F (�λ1,�λ2) = d. That is,
lim�λ1→0 g(�λ1,d) = 0; as a result, g0 = 0. Therefore, when
the above Taylor expansion works for all fixed values of d, we
have ∂g/∂�λ1 = g/�λ1 = �λ2/�λ1. Substituting this result
into Eq. (6), we find

�λ1 ∂F/∂�λ1 + �λ2 ∂F/∂�λ2 = 0. (7)

This equation has the solution F = F (ln �λ1 − ln �λ2) =
F (ln η). Hence, P11 is a function of η. Then, due to the relation
P 2

11 − Q2
11 = 1, Q11 is also a function of η. Since the quantity

A is a function of P11 and Q11, we can conclude that A depends
only on the ratio η = (λ1 − λc)/(λ2 − λc)

III. TIME-DEPENDENT QUANTITIES

We now consider time-dependent metric quantities A(t),
with the dynamics described by the Hamiltonian (2). Since the
frequencies ωi(λ) = ei(λ)/h̄ depend on λ, A(t) usually cannot
be a function of η only. However, for systems with a single zero
mode at the critical point, the η scaling still applies, provided
time is rescaled: t → τ ≡ ω1(λ)t .

As an illustration we show in the following that in the
vicinity of a QPT with a single zero mode at the critical point
the decay of the quantum Loschmidt echo depends only on the
scaling parameter η and the rescaled time τ . The LE gives a
measure for the stability of the quantum motion under slight
variation of the Hamiltonian [16–18]. It is defined by ML(t) =
|m(t)|2, where

m(t) = 〈�0|exp[iĤ (λ2)t/h̄]exp[−iĤ (λ1)t/h̄]|�0〉. (8)

Here, Ĥ (λ1) = Ĥ (λ2) + εV̂ , with ε = λ1 − λ2. Extensive in-
vestigations have been performed in recent years to understand
the decaying behavior of the LE in different regimes, depend-
ing on the chaotic or integrable nature of the dynamics, on
the system’s dimensionality, and on the perturbation strength
(see Refs. [19–34] and references therein). Furthermore, recent
investigations have shown that the LE may be employed to
characterize QPTs, since it exhibits extrafast decay in the
vicinity of critical points [34–39].

Here we consider a system initially prepared in the ground
state |0λ2〉 of Ĥ (λ2). Then the LE is in fact the survival
probability,

ML(t) = ∣∣〈0λ2

∣∣e−iĤ (λ1)t/h̄
∣∣0λ2

〉∣∣2. (9)

In the critical region, Ĥ (λ2) represents a harmonic oscillator
and, therefore, its ground state can be written as a Gaussian
wave packet. As shown in Ref. [31], when the classical motion
is periodic with a period Tp, semiclassical theory predicts that
for t > Tp the LE has an initial Gaussian decay followed by
a power law decay. Indeed, to a second-order term of the
perturbation expansion,

ML(t) 
 b0(1 + ξ 2t2)−1/2e−�t2/(1+ξ 2t2), (10)
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where b0 ∼ 1, � = ( εW
h̄

∂U
∂p0

)2/2, and ξ = | εW 2

2h̄
∂2U

∂p2
0
|, with the

derivatives evaluated at the center p0 of the initial Gaussian
wave packet. Here, U = 1

Tp

∫ Tp

0 V dt and W is a measure of the
width of the initial Gaussian packet in the momentum space.
It is seen that ML has a Gaussian decay e−�t2

for short times
and a 1/ξ t decay for long times.

Let us consider the case in which Ĥ has, close to the
critical point, two lowest-energy relevant modes, of which
only the first one has zero frequency at the critical point. The
first mode moves very slowly, so that effectively the system
moves periodically with the frequency of the second mode.
That is, for times much shorter than the period T1 of the
first mode (which diverges at the critical point), the classical
motion is approximately periodic with the period of the second
mode. Hence, the period Tp = 2π/ω2(λ1). Note that for long
times the first mode dominates and the LE oscillates with a
period related to T1 = 2π/ω1(λ1) (detailed later). Therefore,
the above semiclassical prediction works within times longer
than Tp and shorter than T1.

Starting from the classical expression of the Hamiltonian,

H (λ) = ω1(λ)I1(λ) + ω2(λ)I2(λ), (11)

we obtain

ξ t = ξ

ω1(λ1)
τ ∼ ∂2

∂p2
0

〈
H (λ1) − H (λ2)

e1(λ1)

〉
τ (12)


 ∂2

∂p2
0

〈
I1(λ1)

h̄
− e1(λ2)

e1(λ1)

I1(λ2)

h̄
+ �H2

e1(λ1)

〉
τ, (13)

where �H2 = I2(λ1)ω2(λ1) − I2(λ2)ω2(λ2). The second mode
has no singularity at λc; hence from Taylor expansion of �H2

we obtain �H2 ∼ (λ1 − λ2). Thus, �H2
e1(λ1) ∼ |1 − η−1|ϕ|λ1 −

λ2|1−ϕ . Therefore, when λ1 is sufficiently close to λ2, �H2
e1(λ1)

can be neglected for ϕ < 1 and η �= 0. Then, since I1(λ1) and
I1(λ2) have no singularity at λc and e1(λ2)

e1(λ1) = η−ϕ , we find that

in the very neighborhood of λc, ξ t 
 F (η)τ . Similarly, �t2

can be written as G(η)τ 2. We can therefore conclude that

ML(t) 
 b0{1 + [F (η)τ ]2}−1/2e−G(η)τ 2/{1+[F (η)τ ]2} (14)

is a function of η and of the rescaled time τ .

IV. SCALING FOR THE DICKE MODEL

This model [12] provides a physically significant example
of our scaling behavior. It describes the interaction between
a single bosonic mode and a collection of N two-level atoms
and finds applications in quantum optics, condensed matter
physics, and quantum information. In terms of the collective
operator Ĵ for the N atoms, the Dicke Hamiltonian is written
as (hereafter we take h̄ = 1)

Ĥ (λ) = ω0Ĵz + ωâ†â + (λ/
√

N )(â† + â)(Ĵ+ + Ĵ−). (15)

In the thermodynamic limit N → ∞, the system undergoes
a QPT at λc = 1

2

√
ωω0, with a normal phase for λ < λc and

a super-radiant phase for λ > λc. The Hamiltonian can be
diagonalized in this limit [12], taking, up to a constant energy
term, the form Eq. (2), with n = 2 modes. In the normal phase,

FIG. 1. (Color online) Dependence of the fidelity Lp on the
scaling parameter η for different values of λ1 and λ2. Note that the
values of η on both sides of the zero point are positive. Symbols on
the left-hand side of η = 0 represent fidelity in the normal phase, with
the superscript N of λ2 standing for normal phase (open symbols).
Symbols on the right-hand side of η = 0 are for the super-radiant
phase (superscript S of λ2, full symbols). Data are in agreement with
the analytical result of Eq. (18) (solid curve).

the energies of the two harmonic oscillators read

e1,2(λ) = {
1
2

[(
ω2 + ω2

0

) ±
√(

ω2
0 − ω2

)2 + 16λ2ωω0
]}1/2

,

(16)
ordered so that e1(λ) < e2(λ). It is seen that e1(λ) = 0
for λ = λc; hence, the ground level of Ĥ (λc) is infinitely
degenerate and the system undergoes a QPT at λc. On the
other hand, e2(λ) �= 0 at the critical point. In the super-radiant
phase, the Dicke Hamiltonian can still be diagonalized in the
thermodynamic limit, resulting in a two-mode form, with the
energies

e1,2(λ) =
⎧⎨
⎩1

2

⎡
⎣ω2 + ω2

0

μ2
±
√(

ω2
0

μ2
− ω2

)2

+ 4ω2ω2
0

⎤
⎦
⎫⎬
⎭

1/2

,

(17)
where μ ≡ ωω0/4λ2 and e1(λ) < e2(λ). It is easy to see that
e1(λ) = 0 and e2(λ) �= 0 for λ = λc. Thus, the ground level
of Ĥ (λc) is also infinitely degenerate (and with a single zero
mode) at the critical point from the super-radiant-phase side.

As can be shown both analytically and numerically the fi-
delity in this model uniquely depends on the scaling parameter
η. Indeed, in both phases, it has been found (see the Appendix)
that

Lp =
√

2 4
√

ηϕ

√
ηϕ + 1

=
√

2 8
√

η√√
η + 1

, (18)

with the critical exponent ϕ = 1/2, [ω1(λ) ∼ |λ − λc|1/2]
[40]. For η � 1, Lp ∝ ηϕ/4. The analytical result (18) is in
agreement with numerical simulations shown in Fig. 1: data
for different values of λ1 and λ2 collapse on a single universal
curve.

In the derivation of Eq. (18), we have used Eq. (16), which
is obtained by diagonalizing an effective form of the exact
Dicke Hamiltonian (15), given by Eq. (2), with n = 2 modes.
It is therefore important to assess the validity of the effective
Hamiltonian in computing the fidelity Lp. The effective
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FIG. 2. The quantity ln D versus ln N in the Dicke model, with
parameters ω0 = ω = 1, λ1 = 0.495, and λ2 = 0.45 (λc = 0.5).

Hamiltonian leads to an error inversely proportional to N ,
where N is the number of atoms. For those quantities, for which
there exist some contributions proportional to N , the effective
Hamiltonian gives poor predictions [41–43]. However, for
quantities like the fidelity Lp of ground states, there is
no such contribution. Hence, the effective Hamiltonian is
expected to correctly describe the behavior of Lp in the critical
region. To substantiate this expectation, we have compared
the prediction Lp(λ1,λ2) of Eq. (18) with LN

p (λ1,λ2), which
is the corresponding fidelity numerically computed by direct
diagonalization of the exact Hamiltonian (15) in a truncated
Hilbert space. The truncated Hilbert space is obtained for a
finite number N of the atoms and by taking the lowest N

levels of the bosonic mode. We have studied the variation of
D with N , where

D = ∣∣LN
p (λ1,λ2) − Lp(λ1,λ2)

∣∣. (19)

With increasing N , the quantity D exhibits a decay faster than
power law (see Fig. 2) and slower than exponential. Therefore,
it is reasonable to expect that the effective Dicke Hamiltonian
provides the correct physical picture when computing the
fidelity of ground states in the large-N limit.

Next, we discuss the LE. For the Dicke model, it can be
analytically proved that the LE is an oscillating function of
time with period T = π/ω1(λ1) = T1/2. This period diverges
when λ1 approaches the critical point λc, and for times shorter
than T/2 the LE decays according to the above semiclassical
prediction. Indeed, numerical simulations in Fig. 3 show that
the LE is a function of η and of the rescaled time τ = ω1(λ1)t .
Moreover, in the super-radiant phase the LE decays in the same
manner as in the normal phase. Finally, we have studied the
minimum value of the LE, denoted by Mp, as a function of
λ1 and λ2. Since this quantity is time independent, according
to previous scaling arguments it should be a function of the
ratio η only. This expectation is confirmed by our numerical
simulations (see the inset of Fig. 3).

V. SCALING FOR THE LMG MODEL

In the two-orbital Lipkin-Meshkov-Glick model for N

interacting particles, in terms of the total spin operator for
its collective motion, Sα (α = x,y,z), the Hamiltonian can be

FIG. 3. (Color online) Dependence of the Loschmidt echo ML

on the rescaled time τ = ω1(λ1)t , for various values of λ1 and λ2,
with different symbols representing different pairs (λ1,λ2). The three
curves correspond, from top to bottom, to η = 10−2, 10−3, and 10−4.
An initial Gaussian decay is followed by 1/t decay, as predicted in
Eq. (14). Inset: Dependence of the minimum value Mp of ML on η

for various values of λ1 and λ2 (open symbols stand for the normal
phase and solid ones for the super-radiant phase). The fitting curves
are given by Mp = 2

√
η/(1 + η) in both phases.

written as

H (γ,h) = − 2

N

(
S2

x + γ S2
y

) − 2hSz + (1 + γ )/2. (20)

As shown in Ref. [44], in the thermodynamic limit, making
use of the Holstein-Primakoff transformation and of a standard
Bogoliubov transformation, the Hamiltonian can be diagonal-
ized,

H (γ,h) = �a
†
�a�, (21)

where

� = 2[(h − 1)(h − γ )]1/2, tanh � = 1 − γ

2h − 1 − γ
(22)

for h > 1,

� = 2[(1 − h2)(1 − γ )]1/2, tanh � = h2 − γ

2 − h2 − γ
(23)

for h < 1, and a
†
� and a� are bosonic creation and annihilation

operators.
Equations (22) and (23) show that when h approaches

1 from either side, � → 0. This implies that the system
undergoes a quantum phase transition at the critical point
hc = 1. The phase with h > 1 is usually called the symmetric
phase and the phase with h < 1 the broken phase [44].

In the thermodynamic limit, the same scaling law as in
Eq. (18) can be derived analytically in the vicinity of the
critical point. In fact, for a fixed γ the ground state |0〉�2

for h = h2 has the following expansion on the basis |n〉�1 of
the eigenstates of Hamiltonian (21) at h = h1 [45]:

|0〉�2 = 1√
C

∞∑
n=0

√
(2n − 1)!!

(2n)!!
tanhn

(
�2 − �1

2

)
|2n〉�1 ,

(24)
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where C is a normalization constant,

C =
[

1 − tanh2

(
�2 − �1

2

)]−1/2

. (25)

Then, it is easy to find that

Lp(h1,h2) =
[

1 − tanh2

(
�2 − �1

2

)]1/4

. (26)

In the vicinity of the critical point hc = 1, the right-hand side
of Eq. (26) can be simplified further. In fact, in the symmetric
phase, from Eq. (22), one obtains, up to terms of higher order
in h − hc,

tanh
�

2
= 1 − 2

(
h − 1

1 − γ

)1/2

. (27)

This gives

tanh

(
�2 − �1

2

)
= η1/2 − 1

η1/2 + 1
, (28)

where η = (h1 − 1)/(h2 − 1). After inserting (28) into
Eq. (26), we obtain the same expression (18) for Lp as for
the Dicke model.

For the LE, making use of analytical results in the
symmetric phase [45] and its generalization to the broken
phase, similar scaling behaviors as shown in Fig. 3 have also
been found.

VI. CONCLUSIONS

To summarize, we have proved a scaling property for
time-independent metric quantities such as the fidelity and
the participation ratio. The scaling is valid for models like
the Dicke model and the LMG model, whose QPT can be
described in terms of a single bosonic zero mode. Moreover,
time-dependent quantities such as the Loschmidt echo also
exhibit the same scaling provided time is measured in units of
the inverse frequency of the critical mode.

Our scaling arguments showing the η dependence of static
quantities can be generalized to the cases of more than
one zero mode, provided appropriate new restrictions on the
coefficients Pij and Qij in Eq. (3) are introduced. On the
other hand, the scaling for time-dependent quantities cannot
be extended in a straightforward way to the case of more than
one zero mode, when the corresponding frequencies ωi(λ)
have different scaling behaviors and, in contrast to the case of
a single zero mode, there is no natural rescaling of time by
means of a single frequency.

Finally, we remark that in our theory we compute the fidelity
in the thermodynamic limit. The results obtained imply that
many-body systems whose QPT can be described in terms
of a single bosonic zero mode do not exhibit the Anderson
orthogonality catastrophe [46]. That is to say, the ground
states corresponding to two nearby values of the controlling
parameter are not orthogonal at the thermodynamic limit,
provided these two values belong to the same phase.
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APPENDIX: DERIVATION OF Eq. (18)

In this Appendix, we give a derivation of Eq. (18) in the
main text for the fidelity of two ground states at λ1 and λ2. For
this purpose, we use the following expression of the fidelity
given in Ref. [2]:

Lp = 2
{[

det Aλ2

]
/
[

det Aλ1

]}1/4[
det

(
1 + A−1

λ1
Aλ2

)]1/2 , (A1)

where Aλ = U−1MλU , Mλ = diag[eλ
1 ,e

λ
2 ], and U is an orthog-

onal matrix,

U =
[

c −s

s c

]
.

Here, c = cos γ and s = sin γ , with

γ = 1
2 arctan

[
4λ

√
ωω0

/(
ω2 + ω2

0

)]
.

It is straightforward to verify the following relations:

det Aλ = eλ
1e

λ
2 , (A2)

det
(
1 + A−1

λ1
Aλ2

) = 1 + Tr
(
A−1

λ1
Aλ2

) + [
det Aλ1

]−1
det Aλ2 ,

(A3)

and

Tr
(
A−1

λ1
Aλ2

) = e
λ2
1

e
λ1
1

+ e
λ2
2

e
λ1
2

. (A4)

In the normal phase of the Dicke model, the energies eλ
1,2

are given by Eq. (16). In the neighborhood of the critical point
λc, from Eq. (16) we get, up to terms of higher order in λc − λ,

eλ
1 =

[
8λc(λc − λ)ωω0

ω2
0 + ω2

]1/2

. (A5)

Then, we have e
λ2
1 /e

λ1
1 = (1/η)1/2. Using again Eq. (A5), we

obtain

det Aλ2

det Aλ1

=
√

1/η, (A6)

Tr
(
A−1

λ1
Aλ2

) =
√

1/η + 1, (A7)

where e
λ2
2 /e

λ1
2 = 1 has been used in the vicinity of the critical

point. Substituting the above results into Eq. (A1), one finds
Eq. (18). By the same method, the same expression of the
fidelity can be obtained in the super-radiant phase.
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