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Subdiffusion in a system with thin membranes
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We study both theoretically and experimentally a process of subdiffusion in a system with two thin membranes.
The theoretical model uses Green’s functions obtained for the membrane system by means of the generalized
method of images. These Green’s functions are combinations of the fundamental solutions to a fractional
subdiffusion equation describing subdiffusion in a homogenous, unbounded system. Using Green’s functions
we find analytical formulas describing the time evolution of concentration profiles and the time evolution of
the amount of substance that remains in the region between the membranes. The concentration profiles fulfill
a new boundary condition at the membrane, in which the membrane permeability is assumed to change over
time according to the special formula presented in the paper. These concentration profiles fulfill a standard
subdiffusion equation with fractional Riemann-Liouville time derivative only approximately, but they coincide
very well with the experimental data. Fitting the theoretical functions in with the experimental results, we also
estimate the subdiffusion coefficient of polyethylene glycol 2000 in agarose hydrogel.
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I. INTRODUCTION

Subdiffusion qualitatively differs from normal diffusion. It
occurs in a medium where the mobility of particles is strongly
hindered due to the internal structure of the medium as, for
example, in porous media or gels [1–4]. Subdiffusion is char-
acterized by the relation where the mean square displacement
of a Brownian particle is a power function of time [1],

〈�x2(t)〉 = 2Dα

�(1 + α)
tα, (1)

where Dα is a subdiffusion coefficient measured in the units
of m2/sα and α is a subdiffusion parameter which obeys
0 < α < 1 (for normal diffusion there being α = 1). We
should add here that relation (1) is treated as the definition
of the parameters α and Dα , but it is not always used as
the definition of anomalous or normal diffusion (see the
discussion presented in [5]).

Subdiffusion in membrane systems occurs in such fields as
biophysics or technical sciences [6–9]. Membranes define the
geometry of the system, which is convenient for experimental
study of anomalous or normal diffusion, including experimen-
tal measurement of the parameters α and Dα . We mention
here the measurement of the time evolution of near-membrane
layers in a system with one thin membrane [3] and the time
evolution of an amount of substance released from a thick
membrane [10]. An application to a two-membrane system
extends the possibilities of such measurements. The crucial
role in modeling subdiffusion in a membrane system involves
the boundary conditions at the membrane (usually treated
as a partially absorbing or partially permeable wall); these
boundary conditions are not determined in a unique way.
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Various boundary conditions at a partially permeable wall for
subdiffusive systems have recently been considered [11–16].
In the papers in [17] the generalized method of images was
used in order to construct Green’s functions for membrane
systems for normal diffusion. These Green’s functions were
then used to determine the boundary conditions at a thin
membrane (the theory of this method will be presented
in Sec. III). We considered this under the assumption that
membrane permeability does not change over time. In our
paper we adopt this method to subdiffusive systems, taking into
account that membrane permeability can change over time.
We mention here that the procedure in which the stochastic
arguments at first provide Green’s functions, from which
boundary conditions were derived, was used by Chandrasekhar
in order to discern boundary conditions at a reflecting wall and
an absorbing one [18].

In this paper we will present a model of subdiffusion in a
system with two thin membranes in which the membranes’ per-
meability changes over time according to a special formula. We
will find analytical formulas describing the time evolution of
the concentration profiles obtained within a single-membrane
approximation of a multimembrane system and the time
evolution of an amount of the substance remaining in the region
bounded by the membranes. The theoretical functions fulfill
new boundary conditions at the thin membranes which—as far
as we know—have not yet been considered. The theoretical
concentration profiles will be compared with the experimental
ones. Experimental investigations concern a system with two
artificial thin membranes in which at the initial moment its
middle part is filled with a homogeneous solution and the
external parts contain a pure solvent; for technical reasons the
concentration profiles are measured in the middle part only.
We will show that theoretical results agree to a good extent
with experimental data. We will also estimate the subdiffusion
coefficient of polyethylene glycol 2000 in agarose hydrogel
by matching the theoretical functions with the experimental
results.
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FIG. 1. Schematic view of the system under consideration. The
concentration in the interval (a,b) is equal to the initial concentration
C0.

II. THE SYSTEM

The system under consideration consists of three homo-
geneous parts which are separated from each other by two
thin partially permeable membranes located at x1 and x2 (see
Figs. 1 and 2); the membranes are treated here as infinitely
thin partially permeable walls. In each part there are the same
subdiffusion parameter α and subdiffusion coefficient Dα . In
the following these parts will be denoted as 1 for x < x1, M

for x1 < x < x2, and 2 for x > x2. The system is assumed to
be homogeneous in a plane perpendicular to the x axis, which
is perpendicular to the membrane surfaces. Thus, the system is
effectively one-dimensional. We study the system in which the
concentration C(x,t) of a transported substance at the initial
moment is

C(x,0) =
⎧⎨
⎩

0, x < x1,

C0, x1 < x < x2,

0, x > x2.

(2)

The method of experimental measurements of concen-
tration profiles will be presented in Sec. V. Guided by
the experimental results we adopt the following assumption
which facilitates the problem: when t � tg , where tg is the
average time when a particle passes the distance between
the thin membranes, the solutions to an equation describing
subdiffusion in near-membrane regions can be obtained in
the same way as for the system with one membrane. The
motivation for this assumption is that, for a sufficiently small
time, a particle localized in the vicinity of the membrane “does

FIG. 2. Scheme of the experimental setup. (See the text for a more
detailed description.)

not feel” the presence of the other membrane. According to
the above assumption, the concentration in the middle part of
the system changes only in relatively small near-membrane
intervals, (x1,a) and (b,x2) shown in Fig. 1. Points a and b

play only auxiliary and illustrative roles in our consideration
and we do not consider their exact localization, which actually
changes over time. The concentration for x ∈ (a,b) remains
unchanged: CM (x,t) = C0. The parameter tg can be estimated
from relation (1) in which we identify d2 = (x2 − x1)2 with
〈�x2(t)〉, which gives tg = (d2�(1 + α)/2Dα)1/α . We will
solve a diffusion or subdiffusion equation for a system with
plural membranes by dividing this system up into subsystems,
each of which has one membrane. This procedure we shall
name the single-membrane approximation of a multimembrane
system.

III. FRACTIONAL MODEL

An equation which describes subdiffusion and is well
justified through physics is one with a Reimmann-Liouville
fractional time derivative [1,19],

∂C(x,t)

∂t
= Dα

∂1−α

∂t1−α

∂2C(x,t)

∂x2
. (3)

This equation is derived by means of continuous-time
random-walk formalism under the assumption that the par-
ticles move independently of each another and the system is
homogeneous. Within this formalism one obtains a probability
density (Green’s function) G(x,t ; x0) of finding a single
particle at the point x at time t under the condition that the
particle is located at x0 at the initial moment; the Green’s
function provides Eq. (3). Next, using the following integral
formula:

C(x,t) =
∫ ∞

−∞
C(x0,0)G(x,t ; x0)dx0, (4)

one can find that the concentration C fulfils Eq. (3).
The Green’s function (GF) is usually defined as a solution

to an appropriate differential equation with the initial condition
G(x,0; x0) = δ(x − x0) (where δ denotes the Dirac delta func-
tion) and boundary conditions characteristic for the system.
When the particles are transported independently and all of
them start their movement at x0 at the initial moment t = 0,
the Green’s function can be interpreted as a concentration of
the particles normalized to one (i.e., divided by the number of
particles).

To find Green’s functions for all regions (see Fig. 1) one
needs six boundary conditions, two of which require the
disappearance of Green’s functions at ±∞:

G1(−∞,t ; x0) = 0, G2(∞,t ; x0) = 0, (5)

and two others demand the continuity of the fluxes at the
membrane surfaces:

J1(x−
1 ,t ; x0) = JM (x+

1 ,t ; x0), (6)

JM (x−
2 ,t ; x0) = J2(x+

2 ,t ; x0), (7)

where the subdiffusion flux is given by the formula

Ji(x,t ; x0) = −Dα

∂1−α

∂t1−α

∂Gi(x,t ; x0)

∂x
, (8)
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i = 1,M,2. The problem consists of determining the missing
boundary conditions at the membranes. According to the
assumptions presented in Sec. II we assume that, for t � tg ,
the concentration in the interval (−∞,a) is determined by
the particles which are located at the initial moment quite far
from the membrane located at x2. Thus, in order to calculate
the concentration profiles in this region, the Green’s function
for the system with one membrane located at x1 can be used.
A similar assumption can be made in order to calculate the
concentration in the interval (b,∞).

There are two different boundary conditions at a thin
membrane which have mainly been used in modeling normal
diffusion in a membrane system. In the first boundary condition
it is assumed that the flux flowing through the membrane is pro-
portional to the concentration difference between membrane
surfaces:

J (xW ,t ; x0) = γ (G(x−
W,t ; x0) − G(x+

W,t ; x0)), (9)

where xW is a membrane position. For normal diffusion this
boundary condition is satisfactorily justified as a generalization
of standard Fick’s law, J = −D1∂C/∂x. However, due to
Eq. (8) such a generalization is not evident in the case of sub-
diffusion. The second boundary condition is obtained within
the generalized method of images [17]. Let us treat the Green’s
function as a concentration normalized to one, generated by
a source of N particles located at x0 (N � 1). For the fully
impenetrable membrane located at xW the flux at the membrane
is equal to zero: J (xW ,t ; x0) = 0. Within the method of images
the wall is replaced by an additional source of N particles
located symmetrically to point x0 with respect to the wall (i.e.,
at the point 2xW − x0). Thus, the Green’s function for this
system reads G(x,t ; x0) = G0(x,t ; x0) + G0(x,t ; 2xW − x0)
for x,x0 < xW , where G0 denotes the Green’s function for
the system without a membrane. Due to the symmetry of the
sources’ locations, the same number of particles flow in the
opposite directions through the point x = xW in any given
time interval. Therefore, the flux disappears at the membrane.
To achieve the situation where the membrane is partially
permeable, the additional source representing the membrane
should be weakened by the factor σ and should contain σN

particles, 0 � σ � 1, which gives for x,x0 < xW

G(x,t ; x0) = G0(x,t ; x0) + σG0(x,t ; 2xW − x0). (10)

Let us note that Eq. (10) was derived without any assumption
concerning the specific form of the function G0. For the
subdiffusion equation (3) there is

G0(x,t ; x0) = 1

2
√

Dα

fα/2−1,α/2

(
t ;

|x − x0|√
Dα

)
, (11)

where

fν,ρ(t ; a) = 1

t1+ν

∞∑
k=0

1

k!� (−kρ − ν)

(
− a

tρ

)k

. (12)

The function fν,ρ(t ; a) can also be expressed in the terms
of the Fox H -function [20]. The coefficient σ has a simple
stochastic interpretation [17]. Namely, it is the probability of
finding a particle in a region of x < xW in a system with a
thin membrane under the condition that the particle would be
found at the same time in the region of x > xW in the analogous

system with a removed membrane (here x0 < xW ). So, σ can
be interpreted as a “reflection coefficient” and 1 − σ as a
“permeable coefficient” of the membrane. Taking into account
the boundary condition J (x−

W ,t ; x0) = J (x+
W,t ; x0) and Eqs. (8)

and (10) we obtain for x > xW

G(x,t ; x0) = (1 − σ )G0(x,t ; x0). (13)

By using (4), it is easy to see that the functions (10) and (13)
generate the boundary condition which ensures the constant
ratio of the concentration at the membrane surfaces:

C(x−
W,t) = λC(x+

W,t), (14)

where λ = (1 − σ )/(1 + σ ). We add that condition (14)
qualitatively differs from (9) for 0 < σ < 1 because the latter
generates solutions whose differences between membrane
surfaces reach zero over time. Since real systems are finite,
the concentrations in a membrane system balance out after a
sufficiently long time, which suggests that boundary condition
(14) is incorrect. Let us note that, in deriving (10) and (13),
we have assumed that the domain is unrestricted (which, in
practice, means that the influence of external walls is negligibly
small), so boundary condition (14) can be considered within
the single-membrane approximation of a two-membrane
system.

However, as we will see in Sec. V, the experimental
concentration profiles cannot be described satisfactorily by
the theoretical functions derived from Eqs. (4), (10), and (13).
Therefore, we need a more general model. The fundamental
change is that the permeability coefficient σ might depend on
time.

IV. BEYOND THE FRACTIONAL MODEL

Let us assume that the membrane permeability changes
over time. Then, guided by Eqs. (10) and (13), we postulate
the following Green’s functions for x0 < xW :

G(x,t ; x0)

=
{
G0(x,t ; x0) + σ (t)G0(x,t ; 2xW − x0), x < xW ,

(1 − σ (t))G0(x,t ; x0), x > xW .

(15)

For x0 > xW the Green’s function is still given by Eq. (15)
after replacing the relations x < xW ↔ x > xW . From (15)
we obtain the following boundary condition at the membrane:

G(x−
W,t ; x0) = λ(t)G(x+

W,t ; x0), (16)

where

λ(t) = 1 − σ (t)

1 + σ (t)
. (17)

Taking into account Eqs. (4) and (15), we obtain within the
single-membrane approximation the following:

C1(x,t) = C0λ1(t)

1 + λ1(t)
f−1,γ /2

(
t ;

x1 − x√
Dγ

)
, (18)
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CM (x,t)

=

⎧⎪⎨
⎪⎩

C0
[
1 − λ1(t)

1+λ1(t)f−1,α/2
(
t ; x−x1√

Dα

)]
, x ∈ (x1,a),

C0, x ∈ (a,b),

C0
[
1 − λ2(t)

1+λ2(t)f−1,α/2
(
t ; x2−x√

Dα

)]
, x ∈ (b,x2),

(19)

C2(x,t) = C0λ2(t)

1 + λ2(t)
f−1,α/2

(
t ;

x − x2√
Dα

)
. (20)

It is easy to see that the functions (18)–(20) obey the
following boundary conditions at the membranes:

C1(x−
1 ,t) = λ1(t)CM (x+

1 ,t), (21)

C2(x+
2 ,t) = λ2(t)CM (x−

2 ,t), (22)

as well as (see the Appendix)

J1(x−
1 ,t) = JM (x+

1 ,t), (23)

JM (x−
2 ,t) = J2(x+

2 ,t), (24)

where λj (t) = [1 − σj (t)]/[1 + σj (t)], j = 1,2, controls the
membranes’ permeability, and Ji is the flux generated by
concentration Ci according to formula (8). The variation of
the membrane permeabilities over time can be explained
as the temporary blocking of the membrane channels by
the particles which are too numerous in the near-membrane
region to pass through the membrane without additional
complications. However, the functions (18)–(20) fulfill (3)
only approximately. The condition under which the solution of
Eq. (3) can be satisfactorily approximated by (18)–(20) reads

λ′
j (t)

1 + λj (t)
� λj (t)

t
, (25)

where λ′
j denotes the time derivative of λj . (See the Appendix

for the derivation.)
Until now, the form of the functions λ1(t) and λ2(t) has

not yet been assumed. As we will show in the next section,
the experimental results are clearly described by the functions
(18)–(20) if we assume that

λ1(t) = a1 − b1e
−w1t , λ2(t) = a2 − b2e

−w2t , (26)

where a1 and a2 are positive and b1, b2, w1, and w2 are
nonnegative constants. The functions (26) were found by trial
and error to match the experimental results. Combining (26)
with (25) we obtain the following formula for j = 1,2:

bjωj t � (aeωj t − bj )(1 + aj − bj e
−ωj t ). (27)

The experimentally measured function, which is more
frequently used then the concentration profiles, is the time
evolution of the amount of substance released from the
sample, R(t) [10]. In our system R(t) = A[

∫ x1

−∞ C1(x,t) dx +∫ ∞
x2

C2(x,t) dx], where A is the area of the membrane;
so, the amount of substance which remains in the sample,
RM (t), is equal to RM (t) = A[C0d − R(t)]. After simple
calculations from Eqs. (18) and (20) we obtain for a long-time

approximation

RM (t) = C0A

[
d −

(
λ1(t)

1 + λ1(t)
+ λ2(t)

1 + λ2(t)

) √
Dαtα/2

�(1 + α/2)

]
.

(28)

V. EXPERIMENTAL RESULTS

We will apply our theoretical model to describing subd-
iffusion of PEG2000 in agarose hydrogel. The measurement
has been conducted in a membrane system shown in Fig. 2.
The membrane system under study is a cell with three
glass cuvettes separated by horizontally located membranes.
Initially, we fill the lower and upper cuvettes with pure
agarose hydrogel (a 2% water solution of agarose) while
in the middle cuvette there is the same agarose hydrogel
dripped by the solute of the transported substance (PEG2000).
Then, the substance diffuses from the middle cuvette to the
exterior ones through the membranes. We assume that the
subdiffusion parameters α and Dα are the same in each
cuvette. This assumption is supported by an experiment which
shows that the subdiffusion parameters do not depend on
the solute concentration (at least for low concentrations) for
some substances transported in agarose hydrogel [3]. Since
the concentration gradients are in the vertical direction only,
the diffusion is expected to be one-dimensional (along the
x axis). The substance concentration is measured by means
of laser interferometry [3,21]. The experimental setup was
already used to study transport in a system with one thin
membrane and it is described in detail in the papers of
[21]. Here we only mention that it consists of the cuvette
with two thin membranes, the Mach-Zehnder interferometer
including the He-Ne laser, a television–charge-coupled device
camera, and the computerized data acquisition system. For
each measurement we prepared two gel samples: the pure gel
2% (%w/v) water solution of agarose and the same gel dripped
by the solute of PEG2000. The concentration of solutes in
the gel was fixed to be 0.0075 mol/dm3. The agarose gel
water solvent was prepared by dissolving agarose powder
(Sigma) in 90 ◦C water. All experiments were performed
at room temperature [(22 ± 0.5) ◦C]. The agarose gels are
assumed to be inert to the solute at our experimental conditions.
The polymer membranes (which are 20 μm thick) initially
separated the homogenous gel solution in one cuvette from
the pure gels in other ones. At the beginning of the experiment
the cuvettes were pressed against each other in close contact
so that diffusion across the membranes was initiated. For
technical reasons the measurement of the concentrations can
be performed in only one part of the system.

In Fig. 3 we present the experimentally measured
concentrations in the middle part of the system for several
times from 0 to 7200 s. The errors of the concentrations are
estimated as 7% of its value. The subdiffusion parameter
α = 0.88 ± 0.02 was found in another experiment when the
time evolution of the near-membrane layer was analyzed
by means of the method presented in [22]. The theoretical
functions, which are also shown in Fig. 3, are calculated for
C0 = 0.0075 mol/dm3, Dα = (2.43 ± 0.9) × 10−10 m2/s0.88,
λ1(t) = 0.320 − 0.302e−3.024×10−4t , and λ2(t) = 0.329−
0.305e−3.371×10−4t , where the coefficients in the exponents are
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FIG. 3. Concentration profiles for the times (in seconds) given in
the legend. The symbols represent the experimental data, and solid
lines represent the theoretical functions. For clarity of the plot the
error bars and the concentrations in the interval (2.5,7.5) are not
shown (since inside this interval the experimental curves contained
the constant function C = C0 present for all times).

given in units of s−1. The subdiffusion coefficient Dα , which
is assumed to be independent of concentration, was treated as
a fit parameter which ensures the best matching of theoretical
and experimental results using the least-squares method. The
functions λ1(t) and λ2(t) were found in the following manner.
For each time the values of λ1 and λ2 give the best match of
function (19) to the experimental data. Next, the values of λ1

and λ2, presented in Fig. 4, were matched to the functions
(26).

In Fig. 5 we present the time evolution of the amount of
substance which remains in the middle part of the system.
The experimental values were calculated for the data given in
Fig. 3 by means of numerical integration and the theoretical
ones were obtained from Eq. (28) (where, for our experimental

0 2000 4000 6000 8000
t, s

0

0.1

0.2

0.3

λ 1,
2

λ1
λ2

FIG. 4. Time dependence of λ1 and λ2 obtained as fit parameters
(symbols) and their approximation given by Eq. (26) (solid lines) for
the parameters presented in the text.
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R
M
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)

<

FIG. 5. The amount of substance which remains in the middle part
of the system, R̂M ≡ RM (t)/A, given here in units of mol mm/dm3.
The symbols represent the data obtained from the experiment, and
the solid line represents the function (28) for the parameters given in
the text. The error bars, which are estimated as 5% of the value of
RM , are not shown in the plot.

setup, A = 70 mm2). We observe consistent agreement be-
tween the theoretical and experimental functions.

VI. FINAL REMARKS

We have proposed a model of subdiffusion in a system
with two thin membranes. The model is considered within
the approximation in which a two-membrane system is
treated as two one-membrane systems, which are considered
independent of each other. To find the concentration profiles
of transported substance we have used the Green’s functions
for a one-membrane system. The Green’s functions have been
constructed by means of the generalized methods of images
as combinations of GFs (11) derived from the subdiffusion
equation (3) with the fractional Riemann-Liouville time
derivative. We have assumed that the membrane permeability
coefficients depend on time according to the special formula
(26). The theoretical results are in consistent agreement with
the experimental ones, which initially confirms the usefulness
of the model.

Our analysis allows us to extract the subdiffusion coefficient
of the released substance from the experimental data. For
PEG2000 transported in 2% agarose hydrogel we find Dα =
(2.43 ± 0.9) × 10−10 m2/s0.88. Let us note that for sufficiently
long times the amount of substance, R, leaving the region
between the membranes evolves in time as R(t) ∼ tα/2 [see
(28)]. Thus, measuring the time evolution of R allows us to find
the subdiffusion parameter α. We add that the results presented
in [3,22] suggest that the subdiffusion parameter α of a water
solution of agarose depends on the agarose concentration;
namely, for a 1.5% solution of agarose α = 0.90 ± 0.02 [3]
whereas for a 2% solution we have α = 0.88 ± 0.02 [22].

It seems that six free parameters—a1, a2, b1, b2, ω1, and ω2

[Eq. (26)]—which control the membrane permeability should
be determined during a fitting procedure. Such a large number

021123-5



KOSZTOŁOWICZ, DWORECKI, AND LEWANDOWSKA PHYSICAL REVIEW E 86, 021123 (2012)

of parameters which are determined experimentally can be
considered as too many to effectively construct a theoretical
model. However, within the single-membrane approximation,
which we apply in our considerations, the regions (x1,a) and
(b,x2) are treated separately. This means that the boundary
conditions are controlled by the three parameters in each of
the regions. Therefore, when we fit theoretical curves to the
experimental data we use only three fitting parameters for each
region.

The parameters extracted from the experimental data give
tg ∼ 106 s. This confirms that the functions (18)–(20) can
be used to model the concentrations for times used in the
experiment. When t is of the order of tg (or larger) λ1 and
λ2 are almost constants, then the analytical solutions with
constant ratio of substance concentrations on both sides of the
membrane surface, presented in [23], can be used to describe
this process.

The theoretically calculated concentration profiles (18)–
(20) fulfill the boundary conditions (21)–(24) but they obey the
subdiffusion equation (3) only approximately. The reason is
that Eq. (3) is derived by taking into account the movement of a
single particle [1], which is extended to the equation describing
particle concentrations by means of formula (4). So, the
movement of a particle is independent of other particles. The
collective effects of the particles’ movement cause deviation
from the assumptions mentioned above and they also mean
that the subdiffusion equation is not exactly fulfilled. We
note that saturation occurring at a membrane surface can also
cause collective effects in some thin near-membrane layers.
Therefore, it is worth considering finding a more relevant
equation to describe subdiffusion in this layer. The natural way
to do this would be to assume that the subdiffusion coefficient
Dα depends on the concentration in the subdiffusion equation,
which provides an equation which is very difficult to treat
theoretically (see, for example, [24]). Let us note that the
equation for which functions (18)–(20) are exact solutions
seems to be somewhat unclear and difficult to interpret
physically [see Eqs. (A8)–(A12) in the Appendix]. In such
a situation, to find the concentration profiles of a subdiffusive
substance in a membrane system we can use Eqs. (4), (15),
(17), and (26). Despite the difficulties mentioned above we
can also use Eq. (3) with the following ansatz: We solve
Eq. (3) with the initial condition (2) and the boundary ones
(21)–(24) for λ1 and λ2, which are assumed to be independent
of time, and next we replace λ1 and λ2 with λ1(t) and λ2(t)
according to Eq. (26), respectively, in the obtained solutions.
We suppose that Eq. (3) with the ansatz could be useful for
modeling subdiffusion in various membrane systems including
inhomogeneous ones with both thin and thick membranes.
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APPENDIX

Differentiating (12) term by term and using the formula

dγ

dtγ
tν = �(ν + 1)

�(ν − γ + 1)
tν−γ , (A1)

we get

∂

∂t
f−1,α/2

(
t ;

|x1 − x|√
Dα

)
= f0,α/2

(
t ;

|x1 − x|√
Dα

)
, (A2)

∂1−α−j

∂t1−α−j

∂2

∂2x
f−1,α/2

(
t ;

|x1 − x|√
Dα

)

= 1

Dα

f−j,α/2

(
t ;

|x1 − x|√
Dα

)
, (A3)

∂1−α−j

∂t1−α−j

∂

∂x
f−1,α/2

(
t ;

|x1 − x|√
Dα

)

= sgn(x1 − x)√
Dα

f−j−α/2,α/2

(
t ;

|x1 − x|√
Dα

)
. (A4)

By using Leibniz’s formula for fractional derivatives [25],

dαf (t)g(t)

dtα
=

∞∑
j=0

�(α + 1)

j !�(α − j + 1)

dα−j f (t)

dtα−j

djg(t)

dtj
, (A5)

the fluxes generated by (18) and (19) [the latest one for x ∈
(x1,a)] read

Ji(x,t) = −C0

√
Dα

∞∑
j=0

�(2 − α)

�(2 − α − j )
f−j−α/2,α/2

×
(

t ;
|x1 − x|√

Dα

)
dj

dtj

λ1(t)

1 + λ1(t)
, (A6)

i = 1,M , and thus

J1(x1,t) = JM (x1,t). (A7)

Substituting (18) into (3) we obtain

F1(x,t) + F2(x,t) = F3(x,t) + F4(x,t), (A8)

where

F1(x,t) = C0
λ1(t)

1 + λ1(t)

∂

∂t
f−1,α/2

(
t ;

|x1 − x|√
Dα

)
, (A9)

F2(x,t) = C0f−1,α/2

(
t ;

x1 − x√
Dα

)
∂

∂t

λ1(t)

1 + λ1(t)
, (A10)

F3(x,t) = DαC0
λ1(t)

1 + λ1(t)

∂1−α

∂t1−α

∂2

∂x2
f−1,α/2

(
t ;

x1 − x√
Dα

)
,

(A11)

F4(x,t) = DαC0

∞∑
j=1

�(2 − α)

�(2 − α − j )

∂1−α−j

∂t1−α−j

∂2

∂x2
f−1,α/2

×
(

t ;
x1 − x√

Dα

)
∂j

∂tj

λ1(t)

1 + λ1(t)
. (A12)

Let us note that F1 ≡ F3 [see (A2) and (A3)] and F2 and
F4 vanish when λ is independent of time. The function
(18) approximately fulfills Eq. (3) if F2 � F1 and F4 � F3.
Taking into account the above relations and the leading terms
of Eqs. (A2)–(A4) [which correspond to terms of smallest
number j in (A5) and k in (12)] we find that above inequalities
are fulfilled when relation (25) works.
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