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Analytical results for long-time behavior in anomalous diffusion
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2Instituto de Fı́sica e Centro Internacional de Fı́sica da Matéria Condensada, Universidade de Brası́lia, Caixa Postal 04513,
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We investigate through a generalized Langevin formalism the phenomenon of anomalous diffusion for
asymptotic times, and we generalized the concept of the diffusion exponent. A method is proposed to obtain the
diffusion coefficient analytically through the introduction of a time scaling factor λ. We obtain as well an exact
expression for λ for all kinds of diffusion. Moreover, we show that λ is a universal parameter determined by
the diffusion exponent. The results are then compared with numerical calculations and very good agreement is
observed. The method is general and may be applied to many types of stochastic problem.
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I. INTRODUCTION

The study of systems with long range memory reveals
some physical phenomena that are still not well understood,
especially in systems which are outside the state of equilibrium
or those in which the existence of anomalous diffusion is
verified [1–8]. Here we show a simple analytical method
which describes the behavior of the diffusion for large and
intermediate times. In order to do that, we first generalize
the concept of the diffusion exponent. Then we present a
conjecture to obtain, through the introduction of a time scaling
factor λ, an analytical asymptotic result for the diffusion
coefficient for long times. We obtain the scaling factor exactly
and we show as well its universal behavior. We derive
a numerical method to obtain the correlation function of
velocities for an ensemble of particles from any given memory.
We compare both methods and we obtain excellent agreement.
The method has general application in the study of stochastic
processes and it could be applied to several situations of
physical interest.

II. GENERALIZED LANGEVIN EQUATION
AND DIFFUSION

The generalized Langevin equation (GLE) is a stochastic
differential equation which can be used to model systems
driven by colored random forces. For the velocity operator
v(t) this equation can be written as

m
dv(t)

dt
= −m

∫ t

0
�(t − t ′)v(t ′)dt ′ + ξ (t), (1)

where �(t) is the retarded friction kernel of the system, or the
memory function. Here, ξ (t) is a stochastic noise subject to
the conditions 〈ξ (t)〉 = 0, 〈ξ (t)v(0)〉 = 0, and

Cξ (t) = 〈ξ (t)ξ (0)〉 = m2〈v2(t)〉�(t), (2)

where Cξ (t) is the correlation function for ξ (t), and the angular
brackets denote an average over the ensemble of particles.
Equation (2) is Kubo’s fluctuation dissipation theorem (FDT)
[9,10]. The presence of the kernel �(t) allows us to study a
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large number of correlated processes. In the real world, the
vast majority of problems are non-Markovian, i.e., there is
correlation between the various stages of dynamic evolution.
This property is what we call memory, and it makes remote
events of the past important to dynamic events in the present
time.

Using the GLE it is possible to study the asymptotic
behavior of the second moment of the particle movement,

lim
t→∞〈x2(t)〉 = 2D(t)t ∼ tα, (3)

which characterizes the type of diffusion presented by the
system. Here, D(t) is the diffusion coefficient as a function of
time.

Moreover, for an asymptotic behavior of the form

lim
t→∞〈x2(t)〉 ∼ tα[ln (t)]±1, (4)

we shall define respectively an α± diffusive behavior. Here the
exponent α = α± arises in analogy with the critical exponents
in a phase transition. For example, in the two-dimensional
Ising model the critical exponent for the specific heat is α = 0+
because it does not have a power law behavior; rather it has
ln |T − Tc| behavior for temperatures T close to the transition
temperature Tc. This generalized nomenclature is pertinent
here since there are quite a large number of possibilities of
combinations for logarithmic and power law behaviors.

In this way the behavior of D(t) can be determined using

lim
t→∞ D(t) = lim

t→∞ lim
z→0

∫ t

0
Cv(t ′) exp(−zt ′)dt ′ = lim

z→0
R̃(z),

(5)

where R(t) = Cv(t)/Cv(0), with Cv(0) = 1, and R̃(z) is the
Laplace transform of R(t). For t → ∞ and normal diffusion
this is the Kubo formula [10]. The limits can be justified using
the final value theorem (FVT) for a Laplace transform [11],
i.e., for any function g(t) with Laplace transform g̃(z) then
limt→∞ g(t) = limz→0 zg̃(z). Now a Laplace transform of the
integral gives D̃(z) = R̃(z)/z, and we end up with the equation
above.

Now we multiply Eq. (1) by v(0) and take the average over
the ensemble, with 〈ξ (t)v(0)〉 = 0, to obtain a self-consistent
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equation for R(t) in the form

Ṙ(t) = −
∫ t

0
�(t − t ′)R(t ′)dt ′. (6)

We then Laplace transform Eq. (6) to get

R̃(z) = 1

z + �̃(z)
. (7)

Time correlation functions play a central role in nonequi-
librium statistical mechanics in many areas, such as the
dynamics of polymeric chains [12], metallic liquids [13],
Lennard-Jones liquids [14], ratchet devices [15,16], spin
waves [17], Heisenberg ferromagnets, and dense fluids [18].
Consequently to invert this transform, or a similar one, is
crucial. Unfortunately, in most cases it is not an easy task. In
those situations, the use of numerical methods is an alternative
to overcome this problem. Our main objective here is to
show a process to obtain the asymptotic behavior analytically.
Although the method can be applied to several situations, we
concentrate here on the analysis of diffusion.

III. THE CONJECTURE

We claim that after a “transient time” τ , i.e., for t > τ ,
the leading term for D(t) will fulfill Eq. (5) within a given
approximation. In this context t → ∞ is equivalent to t 	 τ .
Now we imposed the scaling

z → λ/t. (8)

In order to determine λ we rewrite Eq. (5) as

lim
t→∞ D(t) = lim

t→∞ R̃(z = λ/t) = lim
t→∞

t

f (t)
, (9)

where

f (t) = λ + t �̃(λ/t). (10)

The derivative of Eq. (9) yields

lim
t→∞ R1(t) = lim

t→∞
d

dt
D(t) = lim

t→∞

[
1 − t

d

dt
ln [f (t)]

] /
f (t),

(11)

while from the FVT we have

lim
t→∞ R2(t) = lim

z→0
zR̃(z) = lim

t→∞
λ

f (t)
. (12)

The relative difference

�R(t) = R2 − R1

R2
=

[
λ − 1 + t

d

dt
ln [f (t)]

] /
λ (13)

should evolve to zero as t → ∞. For λ 
= 0 this yields the
exact value

λ = 1 − lim
t→∞ t

d

dt
ln [f (t)]. (14)

The scaling works as long as the GLE, Eq. (7), works. To
obtain λ we need more information about �̃(z), which may
be different for every system. However, since our interest is
in the asymptotic behavior, we can expand �̃(z), in Taylor or
Laurent series around z = 0, in the form

�̃(z) ∼ zν[a − b ln(z) − c/ ln(z)], (15)

where a, b, and c are positive constants. Note that we give
especial attention to ln(z), since it will give us the behavior
pointed out in Eq. (4). For b = 0 this gives a diffusion with
exponent α; for b 
= 0 this gives an α−, and for a = b = 0 and
c 
= 0 we get an α+ diffusion. If �̃(z) has another contribution,
besides ln(z), that cannot be expanded at the origin we keep it
and expand the other parts. However, most of the memories in
the literature can be cast in the form Eq. (15) for small z. Now
we introduce Eq. (15) into Eq. (14) to obtain λ = ν for ν < 1
and λ = 1 for ν � 1. Notice that it does not depend on a, b,
or c, which suggests a universal behavior.

In our conjecture some points deserve attention: First, we
are considering integrals, of the form Eq. (5), where the
function R(t) is well behaved, and limited to −1 < R(t) < 1,
since Cv(t) � Cv(0). R(t) is such that it always has a well-
defined behavior for finite t , even when the integral diverges
as t → ∞, as in superdifusion. Second, D(t) must have a
leading term as t → ∞, which determines the diffusion. For
example, the inverse Laplace transform of R̃(z) is

R(t) = 1

2πi

∫ +i∞+η

−i∞+η

R̃(z) exp(zt)dz. (16)

Here the real number η is such that all the singularities lie at
the left of the line joining the limits. Consider now Eq. (15)
with b = c = 0 and ν � 1; then limz→0 R̃(z) ∼ z−ν , and

lim
t→∞ R(t) ∝ tν−1

∫ +i∞+η′

−i∞+η′
s−ν exp(s)ds ∝ tν−1, (17)

where we have done the transformations s = zt and η′ = η/t .
For ν > 0 the only pole is at s = 0, and the condition in η′ will
be automatically satisfied. Now by direct integration on Eq. (5)
we obtain D(t) ∝ tν . From the scaling we get the equivalent
result

lim
t→∞ D(t) = lim

z→0
R̃(z = λ/t) ∼ lim

t→∞ R̃(λ/t) ∼ tν . (18)

Note that the above exact result is not only for power laws,
but for any function behaving as a power law for large t . We
confirm as well the relation α = ν + 1, obtained by Morgado
et al. [1]. Our results can be readily expressed as

λ = α − 1 = α± − 1 =
{

ν, −1 < ν < 1,

1, ν � 1
(19)

The factor λ depends only on the diffusion exponent α;
consequently it is universal. Moreover it will be the same
for α or α±. For normal diffusion α = 1, or for α = 1±,
λ = 0. However, we still can obtain the final value. Consider as
example the Langevin equation without memory; for that we
have R(t) = exp (−γ t) and R̃(z) = (γ + z)−1. From Eq. (9)
we get

lim
t→ ∞ D(t) = lim

t→ ∞ R̃(λ/t) = t

γ t + λ
= γ −1, (20)

while direct integration gives

lim
t→ ∞ D(t) = lim

t→∞

∫ t

0
R(t ′)dt ′ = γ −1. (21)

In this case the scaling yields correctly the wanted final value.
Equation (6) imposes as well some requirements on R(t).

First its derivative must be null at the origin, i.e., the integral in
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the right hand side must be null at t = 0. This is true except for
nonanalytical memories, such as δ functions. Indeed, we do not
expect exponential behavior of the form R(t) = exp (−γ |t |)
with a discontinuous derivative at the origin [19,20]. Second,
in Eq. (1), for a bath of harmonic oscillators the noise can be
obtained as [19]

ξ (t) =
∫ √

2kBT g(ω) cos[ωt + φ(ω)]dω, (22)

where 0 < φ(ω) < 2π are random phases and g(ω) is the noise
spectral density. The FDT yields

�(t) =
∫

g(ω) cos(ωt)dω. (23)

This shows that the memory is an even function of t . An
analytical extension of �̃(z) in the whole complex plane has
the property �̃(−z) = −�̃(z). Consequently, from Eq. (7),
R̃(−z) = −R̃(z), or R(−t) = R(t). In short, it requires well-
behaved functions and derivatives. Even functions have zero
derivatives at the origin as required before.

IV. BALLISTIC DIFFUSION

Let us consider the spectral density

g(ω) =
{

bω
1−β
s ωβ, ω � ωs,

0, ω > ωs.
(24)

This is a generalization of the Debye density of states. Here
b > 0 is a dimensionless constant, and ωs is a cutoff frequency.
For β 
= 0 we get anomalous diffusion. In particular, for β = 1
we introduce Eq. (24) into Eq. (23) to obtain

�(t) = bω2
s

(
sin(ωst)

ωst
+ cos(ωst) − 1

(ωst)2

)
, (25)

with the Laplace transform

�̃(z) = bz

2
ln

[
1 +

(
ωs

z

)2
]
. (26)

First, we have the analytical function D(t) = R̃(z = λ/t);
second, from Eq. (14) we obtain limt→∞ λ = 1 exactly. This
is ballistic diffusion of the form α = 2−.

Now we compare the analytical asymptotic with a numeri-
cal solution of Eq. (6). To do this, we rewrite this equation in a
discrete form, and then we expand it up to terms of order �t2n

to obtain

R(t + �t) = R(t − �t) + 2
n∑

k=0

R(2k−1)(t)
(�t)2k−1

(2k − 1)!
, (27)

where R(n)(t) is the time derivative of R(t) of order n. Note that
this expansion eliminates all the even derivatives. Now we can
obtain all R(t + �t) from the sequence of the previous value of
R(t), starting from R(0) = 1. From these values, its possible
to get the diffusion coefficient through direct integration of
Eq. (5).

In Fig. 1 we plot the correlation function R(t) as a function
of time t . The curves correspond to the numerical solution and
are calculated using Eq. (27), and Eq. (25) with �t = 10−5. For
curve a, ωs = 1 and b = 1; for curve b, ωs = 5 and b = 1/2.
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FIG. 1. (Color online) Correlation function R(t) as a function of
time t . We use the memory (25) and numerical integration. Curve a,
ωs = 1 and b = 1; curve b, ωs = 5, and b = 1/2.

In Fig. 2 we plot the diffusion coefficient D(t) as a function
of time t . The oscillatory curves corresponds to the numerical
solution and are calculated from the data of Fig. 1. The curves
without oscillations correspond to the analytical asymptotic
limit, Eq. (9), with memory Eq. (26). Here we see that the
asymptotic curves are mean values of the oscillatory ones. In
this range the fit yields for curve a, λ = 0.928 ± 0.002, and for
curve b, λ = 0.948 22 ± 0.000 01. We see in curve b that the
two curves collapse onto a single one. Here the transient time
τ to which we refer before Eq. (9) is a decreasing function of
b/ωs . The value of λ approaches the exact value 1 as the ratio
b/ωs decreases, or as time increases. This shows the efficiency
of the scaling; even before convergence is fully established,
curve a, the asymptotic curve gives us an average value that can
be used to understand the main characteristics of the process.

Consider now �̃(z) = az, exactly. That means R̃(z) =
[(1 + a)z]−1 or R(t) = [1 + a]−1, and by direct integration we
get D(t) = t/(1 + a) exactly. This is ballistic α = 2 diffusion.
If we apply Eq. (9) we obtain the same result with λ = 1. Since
from the relations (15) and (19) the value of λ does not depend
on ln (z), this result is exactly what we get from Eq. (26).
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FIG. 2. (Color online) Diffusion coefficient D(t) as a function of
time t . Curve a, ωs = 1 and b = 1; curve b, ωs = 5 and b = 1/2.
The oscillatory curves are the numerical result. The curves without
oscillations are the analytical asymptotic limit. We see in curve b that
the two curves collapse onto a single one.
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There are important differences between the α = 2− diffusion,
which according to the Khinchin theorem [6,21] is ergodic,
and the α = 2 diffusion, which does violate ergodicity. This
distinction was not possible before the generalization of the
diffusion exponent we present here.

V. CONCLUSION

In this work we generalize the concept of the diffusion expo-
nent, and we propose a conjecture to investigate the asymptotic
limits of anomalous diffusion, through the introduction of a
time scaling factor λ. We obtain the scaling parameter exactly
and we show that it is universal and depends only on the
diffusion exponent. We analyze the ballistic diffusions α = 2−
and α = 2, both analytically and numerically. The method
can be useful as well to analyze large amounts of data in

stochastic processes [5], and in different fields of science where
is necessary to inverse a Laplace transform of the form of
Eq. (7). The phenomenon of diffusion also poses challenges
in the understanding of fundamental concepts in statistical
physics, such general properties as the correlation function
[19], ergodicity [6,8,21–23], and the Khinchin theorem [6,21].
In nonlinear phenomena, such as growth and etching [24],
analytical results are rather difficult to obtain. In this way
we hope that this work may inspire research into similar
asymptotic limits.
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