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Double resonance in the infinite-range quantum Ising model
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We study quantum resonance behavior of the infinite-range kinetic Ising model at zero temperature. Numerical
integration of the time-dependent Schrödinger equation in the presence of an external magnetic field in the z

direction is performed at various transverse field strengths g. It is revealed that two resonance peaks occur when
the energy gap matches the external driving frequency at two distinct values of g, one below and the other
above the quantum phase transition. From the similar observations already made in classical systems with phase
transitions, we propose that the double resonance peaks should be a generic feature of continuous transitions, for
both quantum and classical many-body systems.
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I. INTRODUCTION

A noise is often considered as a nuisance for a system
to display any ordered behavior, and thus the weaker the
better for the performance of the system. However, for the
last decades, a lot of researchers have revealed that this is
not always the case and that there exist a class of systems
in which the intermediate strength of noise can help the
system to show the best coherence with an external periodic
driving. This surprising phenomenon was termed as the
stochastic resonance (SR) due to its stochastic nature [1]. The
phenomenon of SR has been found in the fields of physics
and earth science, as well as in biology: the periodically
recurrent ice ages, the bistable ring laser, superconducting
quantum interference device, human vision and the auditory
system, and the feeding mechanism of paddle fish, to list a
few [1,2]. The occurrence of the SR is properly explained by
the time-scale matching condition: the coherence between the
system’s response and the external driving becomes strongest
when the stochastic time scale inherent in the system matches
the time scale provided by the external driving. In a simple
classical system of a few degrees of freedom making contact
with a thermal reservoir, the intrinsic time scale is given
by the monotonically decreasing function of the exponential
thermal activation form. Accordingly, the above mentioned
time-scale matching condition can only be satisfied at a single
temperature [1]. The time-scale matching condition was later
extended to the classical statistical mechanical systems with
continuous phase transitions such as the globally coupled,
i.e., infinite-range kinetic Ising model [3]. It has been shown
that the nonmonotonic behavior of the intrinsic time scale
around the critical temperature makes the time-scale matching
condition satisfied at two distinct temperatures, one below and
the other above the critical temperature, resulting in the double
resonance peaks. The double SR peaks have also been observed
in the classical Heisenberg spin system in a planar thin film
geometry [4] and infinite-range q-state clock model [5].

The SR phenomenon in quantum systems, named as quan-
tum stochastic resonance (QSR), has been studied with focus
on the interplay between quantum and classical fluctuation
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at finite temperatures [1,6]. The QSR at zero temperature has
also been studied for the one-dimensional quantum spin system
with a spatially modulated external field, and the length-scale
matching similar to the time-scale matching in conventional
SR has been discussed [7]. In the present work, we study
the QSR at zero temperature in the Ising spin system with
the quantum phase transition [8]. We summarize our main
findings in Fig. 1, which displays the double SR peaks and the
time-scale matching conditions in infinite-range classical [3]
and quantum (this work) Ising systems in the presence of a
weak external driving with the frequency �. We conclude
that the time-scale matching condition allows us to understand
the classical and the quantum double SR peaks on the same
ground.

In this paper, we numerically study the resonance behavior
of the infinite-range quantum Ising model. Integrations of the
time-dependent Schrödinger equation and the semiclassical
equation of motion unanimously yield the existence of the
double SR peaks, which are clearly explained from the
matching condition between the energy gap, which is intrinsic,
and the frequency of the external time-periodic driving.

II. RESULTS

Let us begin with the globally coupled N spins described
by the Hamiltonian H = −1/(2NS)

∑
j �=k Sz

jS
z
k − g

∑
j Sx

j ,
where Sα

j is the spin-1/2 operator in the α direction (α =
x,y,z) at the j th site (S ≡ 1/2 and h̄ ≡ 1 henceforth), and
the transverse field g in the x direction induces quantum
fluctuation due to [Sz

j ,S
x
k ] = iδjkS

y

j �= 0. By using the total
spin operator Jα ≡ ∑

j Sα
j with J = N/2, the Hamiltonian

can be cast into the form [9]

H = − 1

2J
Jz

2 − gJx, (1)

which allows us to handle much bigger N since the number of
base kets becomes only N + 1 (we use Jz eigenkets as base
kets). The globally coupled quantum Ising model Eq. (1) is
very well known to exhibit the quantum phase transition of
the mean-field nature and its finite-size scaling has also been
extensively studied [9] (see [10] for the finite-size scaling of the
quantum phase transition in the one-dimensional Ising chain
system).

021119-11539-3755/2012/86(2)/021119(4) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.021119


SUNG-GUK HAN, JAEGON UM, AND BEOM JUN KIM PHYSICAL REVIEW E 86, 021119 (2012)

 0.5

 0.51

O
R (a) classical 

0

 0.2

 0.4

 0.6

 0.8

1

0  0.5 1  1.5 2  2.5

1/
τ

T

(b) classical 

0

1

2

3

4

P
Ω

(g
) 

(x
10

3 ) (c) quantum

0

 0.5

1

 1.5

0  0.5 1  1.5 2

Δ

g

(d) quantum

FIG. 1. Infinite-range (a and b) classical and (c and d) quantum
Ising models. Double SR peaks are observed in (a) the occupancy
ratio (OR, the fraction of spins in the direction of the external periodic
driving) and in (c) the power spectrum at the driving frequency �,
P�(g) ≡ | ∫ dteiωtm(t ; g)|2ω=�, where m(t ; g) is the magnetization.
Fluctuation strength is controlled by (a) the temperature T and (c) the
transverse field strength g, respectively. Arrows denote the positions
of maxima in (a) and (c), which are in good agreements with the
time-scale matching conditions shown in (b) and (d). In (b) τ is
the intrinsic relaxation time scale, and in (d) � is the energy gap
(and thus the inverse time scale). The dotted horizontal lines in
(b) and (d) denote the external frequency scales of time-periodic
driving. � in (d) is obtained from the direct diagonalization of the
quantum Hamiltonian for the system size N = 1000 and P�(g) in
(c) through the semiclassical approximation on the Heisenberg
equation of motion (see text). See [3] for (a) and (b).

We numerically obtain the energy gap � between the
ground and the first-excited states of the Hamiltonian Eq. (1),
which exhibits the quantum phase transition at g = gc = 1
of the mean-field universality class as displayed in Fig. 2
for the system sizes N = 200,600, and 1000. The inset of
Fig. 2 shows the finite-size scaling of � with the well-known
exponents: dynamic critical exponent z = 1, the correlation
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FIG. 2. (Color online) The energy gap � between the ground and
the first-excited states vs the transverse field strength g for the globally
coupled quantum Ising model without external driving in z direction.
� vanishes as the quantum critical point gc = 1 is approached. Inset:
Finite-size scaling of the form � = (g − gc)zνf [(g − gc)N 1/dcν] with
z = 1, ν = 1/2, and dc = 3.

length exponent ν = 1/2, and the upper critical dimension
dc = 3 [9]. The vanishing energy gap (and thus the divergence
of the intrinsic time scale) at the quantum critical point is
particularly important in the present study: The nonmono-
tonicity of � as a function of the fluctuation strength g

provides the origin of the double quantum resonance peaks (see
Fig. 1).

In parallel to studies of the classical SR behaviors [1,3],
we next apply the weak time-periodic external magnetic
field h(t) = h0 cos �t along the z direction with h0 =
10−3 and � = 0.8, to get the time-dependent Schrödinger
equation:

i
d|	(t)〉

dt
=

[
− 1

N
J 2

z − gJx − h(t)Jz

]
|	(t)〉, (2)

where the quantum ket |	(t)〉 = ∑J
M=−J AM (t)|M〉 with

Jz|M〉 = M|M〉 and the complex coefficient AM (t). The time
evolution of the system is numerically traced through the
use of the fifth-order Runge-Kutta method combined with the
Richardson extrapolation and Bulirsch-Stoer method [11]. We
check that the use of the sufficiently small time step δt = 10−4

keeps the normalization condition
∑ |AM (t)|2 = 1 unchanged

within numerical accuracy. We first get the ground state in the
presence of the extremely small external field in the positive
z direction to break the up-down spin symmetry and use it as
the initial condition for Eq. (2).

As the most important quantity to detect SR behav-
ior, the average magnetization in the z direction m(t) ≡
(1/J )〈	(t)|Jz|	(t)〉 is measured as a function of time. We
do not observe significant difference for other system sizes,
and we display our results m(t) for N = 600 in Fig. 3 at
(a) below and (b) above the quantum critical point gc = 1.
When g > gc, m(t) oscillates around m = 0, and we shift
vertically each m(t) in Fig. 3(b) for better comparison. It is
obvious from Fig. 3 that the resonance behavior of m(t) is
seen in the form of the larger oscillation amplitude at two
distinct strengths of quantum fluctuation, i.e., one below gc

and the other above gc. In Fig. 3(c), we display the oscillation
amplitude �m ≡ maxt m(t) − mint m(t), which clearly shows
double resonance peaks. We denote the first and the second
resonance points as g1 ≈ 0.59 and g2 ≈ 1.44, where the
oscillation amplitudes become maxima. As another indicator
of the SR behavior, we carry out the Fourier transformation
of m(t) to obtain m(ω) at frequency ω. Figure 4 displays
the magnitude of the spectral components |m(ω)| versus ω

at various values of g. In general, there exist two peaks in
|m(ω)|, one at ω1 = � = 0.8 (indicated by the dotted vertical
lines in Fig. 4) and the other at the position ω2 that depends
on g. We observe that the latter peak at ω2 simply originates
from the energy gap (see Fig. 2), i.e., ω2 = � (note that h̄ = 1
in this work). As g is increased toward gc from below, �

decreases (see Fig. 2), which in turn yields decreasing ω2

as shown in Figs. 4(a)–4(c). As g passes through gc from
below, ω2 bounces back and moves to a larger value, reflecting
the increase of � for g > gc in Fig. 2. Another important
observation one can make from Fig. 4 is that, when the two
peaks at ω1 and ω2 merge into a single one at ω = ω1 = �,
the power spectrum (Pω = |m(ω)|2) at � suddenly increases
much. From this, it is clear that the merging of the two peaks
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FIG. 3. (Color online) The order parameter m(t) = (1/N )
〈	(t)|Jz|	(t)〉 in time t at (a) g < gc = 1 and (b) g > gc for N = 600
in the presence of an external oscillating magnetic field h0 cos �t

with � = 0.8 in z direction. At two values of g, one at g1 � 0.59 and
the other at g2 � 1.44, m(t) exhibits the larger oscillation amplitude
reflecting the stronger coherence with the external driving. For better
distinction, m(t) is vertically shifted by 0.9, 0.7, 0.4, and 0 at g = 1.10,
1.40, 1.44, and 1.50 in (b), respectively. (c) The oscillation amplitude
�m vs g, exhibiting double SR peaks.

must occur at two distinct values of g, which are in good
agreement with g1 ≈ 0.59 and g2 ≈ 1.44 in Fig. 3.

We next adopt the Heisenberg picture in which the spin
operator satisfies the equation of motion J̇α = −i[H,Jα]. By
using the commutation relation [Jα,Jβ ] = iεαβγ Jγ , we get
J̇x = (1/2J )(JzJy + JyJz) + h(t)Jy , J̇y = −(1/2J )(JzJx +
JxJz) + gJz − h(t)Jx , and J̇z = −gJy . We then make the
semiclassical approximation and treat the spin operator Jα

as the αth component of the classical spin vector �J ≡
J (sin θ cos φ, sin θ sin φ, cos θ ), which results in [9,12]

θ̇ = g sin φ, φ̇ = g cot θ cos φ − cos θ − h(t). (3)

We take initial values of θ and φ from the ground state of the
system calculated by semiclassical approximation of Eq. (1)
and perform numerical integrations of Eq. (3) in time at given
values of g. In this semiclassical approximation, the order
parameter is simply computed from m(t) = Jz/J = cos θ (t),
which is then used for the Fourier analysis. We again find the
SR behaviors at two distinct values of g: g1 � 0.59 and g2 �
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FIG. 4. (Color online) The magnitude of the power spectral
density |m(ω)| vs frequency ω at various values of the transverse field
strength g. The dashed vertical lines denote the frequency of the exter-
nal field (� = 0.8). At g = 0.59 and 1.44, the two peaks in the spectral
density merge to become one. The peak in (b) at ω = 1.6 is a harmonic
and does not reflect the energy gap like peaks in other panels.

1.44 as displayed in Fig. 5, which are in perfect agreement
with the findings in Fig. 4.
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FIG. 5. (Color online) |m(ω)| vs g and ω in the two regions
(a) g < gc = 1 and (b) g > gc = 1 obtained via semiclassical
approximation applied for the Heisenberg equations of motion. The
right panels of (a) and (b) show the color scheme for |m(ω)|. Along
ω = 0.8 axis, as g is increased, |m(ω)| exhibits the biggest value both
at g � 0.59 and 1.44.
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III. SUMMARY

In summary, the infinite-range quantum transverse field
Ising model at zero temperature has been numerically in-
vestigated in the presence of the weak longitudinal time-
periodic magnetic field at the frequency �. The resonance
behavior at two distinct values of the transverse field g has
been clearly observed via (i) the large amplitude oscillation
of the magnetization in time and (ii) the large peak at �

in spectral analysis. The origin of the double SR peaks
in the system has been identified from the vanishing of
the energy gap around the quantum critical point. When
the energy gap matches the frequency of the external field, the
strong resonance peaks occur at two different values of
g, exhibiting the double resonance behavior. We have also

confirmed the double resonance in the thermodynamic limit
through the use of the semiclassical approximation made
for the Heisenberg equation of motion. We propose that the
time-scale matching condition should play an important role
in understanding the double SR behavior in a broad range of
systems with continuous phase transitions, both classical and
quantum.
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