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Heat exchange mediated by a quantum system
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We consider heat transfer between two thermal reservoirs mediated by a quantum system using the generalized
quantum Langevin equation. The thermal reservoirs are treated as ensembles of oscillators within the framework
of the Drude-Ullersma model. General expressions for the heat current and thermal conductance are obtained
for arbitrary coupling strength between the reservoirs and the mediator and for different temperature regimes.
As an application of these results we discuss the origin of Fourier’s law in a chain of large but finite subsystems
coupled to each other by the quantum mediators. We also address a question of anomalously large heat current
between the scanning tunneling microscope (STM) tip and substrate found in a recent experiment. The question
of minimum thermal conductivity is revisited in the framework of scaling theory as a potential application of the
developed approach.
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I. INTRODUCTION

The development of non-equilibrium thermodynamics
mainly goes along two distinct directions. One direction is
the study of the energy transfer through microscopic systems,
such as nanotubes, molecules, or quantum dots [1,2]. Beyond
a purely academic interest in the problem, research suggests
that nanoscale and molecular systems are good candidates
for many technological advances, such as molecular wires,
molecular diodes, rectifiers, and switches [3,4]. The other
direction, with longer history, deals with thermalization of and
energy flow through finite macroscopic systems. Examples
of such an approach are those worked out by Caldeira and
Legett [5] and by Nieuwenhuizen and Allahverdian [6,7], in
which a thermal reservoir or a macroscopic system is described
as a large or infinite ensemble of harmonic modes.

In microscopic systems, such as chains of multilevel
systems [8,9], harmonic oscillators [10–12], or spins [13] the
relaxation processes of individual elements and the processes
of mutual equilibration between different elements are insep-
arable from each other and all take place on a microscopic
time scale. In contrast, the local equilibrium requirement for
macroscopic systems implies that the equilibration processes
proceed on two vastly different time scales. The local equi-
librium is established on the microscopic time scale, while
the equilibration between the macroscopic subsystems takes a
much longer time.

One of the most visible problems of nonequilibrium
thermodynamics is the microscopic derivation of Fourier’s
law, specifying that the heat flux j through both fluids and
solids is given by j = −κ∇T (r), where the temperature
T varies smoothly on the microscopic scale and κ is the
thermal conductivity. Despite the ubiquitous occurrence of
this phenomenon, very few rigorous mathematical derivations
of this law are known [14]. While for three-dimensional (3D)
generic models Fourier’s law is expected to be true, this law
may not be valid for 1D and 2D systems [1].

A recently developed approach to study heat transport
at the microscopic level is based on either the classical
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or the quantum Langevin equation. The quantum Langevin
equation was first considered in Ref. [15] for a weakly
damped harmonic oscillator. Later [16], it was used to
formulate transport, collective motion, and the Brownian
motion from a unified, statistical-mechanical point of view.
In Refs. [5–7,17–19], the Langevin equation was used for
studying the thermalization of a particle coupled harmonically
to a thermal reservoir and other closely related problems.
This approach was generalized in Refs. [11,20–22] in order
to explore the nonequilibrium steady-state heat current and
temperature profiles in chains of harmonic oscillators placed
between two thermal baths. Recently, a new method for an
exact solution to the Lindblad and Redfield master equations
for open a quadratic system of n fermions in terms of diagonal-
ization of a 4n × 4n matrix has been developed [23,24]. The
method has been applied to a Heisenberg XY spin-1/2 chain
coupled to heat baths at its ends. Generally, this approach
can be considered as an alternative to the quantum Langevin
equation.

In this paper we investigate the nonequilibrium steady-state
heat transfer between two thermal reservoirs described as
ensembles of harmonic modes mediated by a quantum system,
which is also considered in the harmonic approximation.
This is a Hamiltonian system with fixed total energy, but
increasing entropy. Our approach is based on the quan-
tum Langevin equation and uses the Drude-Ullersma model
(DUM) for the bath mode spectrum. This is a generalization
for the nonequilibrium situation of the approach employed
in Ref. [7] to the study of statistical thermodynamics of
a quantum Brownian particle coupled to a single thermal
reservoir.

The solution obtained within this model allows us to
determine the heat conductance between two thermal baths
at arbitrary strength of the coupling constant. The results
presented here are valid for an arbitrary temperature difference
and arbitrary cutoff frequency, which plays the role of the
Debye frequency. As is found, temperature dependence of
the conductance may possess a plateau at intermediate
temperature range, similar to the “classical” plateau at high
temperatures. Dependence of the thermal conductance on the
coupling strength displays a maximum. We also show that
the quantum thermal bath approach, in which a many-body
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problem is replaced by the one-body approximation where the
effect of thermal baths is quantified by random forces, yields
the same results for conductance as the rigorous (many-body)
solution in the limit of large Debye frequency. On a more
general note, this approximation can be successfully used for
solving more complex problems without necessarily resorting
on the rigorous solution that is based on the full-fledged
Hamiltonian.

The solution to the problem of heat transfer between two
thermal reservoirs with a quantum particle as the mediator is
applied to a chain system consisting of macroscopic subsys-
tems coupled to each other by quantum particles (mediators).
The microscopic time scale τ describes the time it takes for
the heat current facilitated by the mediators to come to a
steady-state. Each subsystem has arbitrary large heat capacity
and the equilibration time between them is much longer than τ .
In this case, Fourier’s law follows naturally as the differential
form of the energy conservation law.

We use these results to explain a recent experiment in
which the heat flow in vacuum between a scanning tunneling
microscope (STM) tip and a substrate was found to be about
ten orders of magnitude greater than that expected from the
blackbody radiation theory [25]. Our suggestion is that the heat
flow in this experiment was mediated by a carbon monoxide
molecule placed in the gap between the tip and substrate.
In addition, we briefly discuss the problem of minimum
thermal conductivity attained when the coherence length of
the phonons is minimal and of the order of the interatomic
distance. Finally, we also briefly mention a possible application
of the developed model to study the Josephson junction, which
provides an important example of strong coupling between the
quantum system and thermal baths.

The paper is organized as follows. The model is introduced
in Sec. II, where the generalized Langevin equation is derived
and solved using the DUM. In Sec. III, expressions for the
heat current between the thermal baths and heat conductance
are derived and analyzed for different temperature regimes
and different coupling strengths. In Sec. IV, we compare the
solution obtained in the quantum thermal bath approach with
the the rigorous solution. In Sec. V the specifics of strong
coupling are described. Section VI is devoted to Fourier’s law
in a chain of macroscopic subsystems. Section VII discusses
the application of our model to anomalously large heat flow
between the STM tip and substrate. Sections VIII and IX
discuss possible applications of the model to deal with the
problem of minimum thermal conductivity and the Josephson
junction, respectively.

II. LANGEVIN EQUATION

The total Hamiltonian of the system under consideration is
similar to that in Refs. [11,26],

Htot = H + HB1 + HB2 + V1 + V2. (1)

Here

H = p2

2m
+ kx2

2
(2)

1 TT 2

FIG. 1. (Color online) Diagram representation of the total Hamil-
tonian (1). The large circles correspond to the Hamiltonians of the
thermal reservoirs, Eqs. (3), the small circle is the Hamiltonian (2)
of the mediator, and the dotted lines correspond to the coupling
Hamiltonians (4).

is the Hamiltonian of the quantum system (the mediator)
described as a harmonic oscillator,

HBν =
∑

i

[
p2

νi

2mνi

+ mνiω
2
νix

2
νi

2

]
(3)

are the Hamiltonians of the first (ν = 1) and second (ν = 2)
baths, and

Vν = −x
∑

i

Cνixνi + x2
∑

i

C2
νi

2mνiω
2
νi

(4)

describes interaction between the mediator and the baths. In
Eq. (2), x and p are the coordinate and momentum operators
and m and k are the mass and spring constant of the particle.
In Eqs. (3) and (4), xνi and pνi are the coordinate and
momentum operators, whereas mνi and ωνi are the masses
and frequencies of the oscillators for the ith mode that belong
to the νth bath. Finally, Cνi are the coupling coefficients that
describe the interaction between the quantum system and the
baths. The last contributions to the right-hand side of (4)
are self-interaction terms, which guarantee that HBν + Vν are
positively defined operators. Figure 1 contains a graphical
representation of the Hamiltonian (1). Here the large circles
represent the Hamiltonians of the baths (3), the smaller central
circle stands for the particle Hamiltonian (2), and the dashed
lines describe the interaction between the central particle and
the baths (4).

The Heisenberg equations for the coordinate and momen-
tum operators corresponding to each bath and for our quantum
system read

ẋνi = pνi

mνi

, (5)

ṗνi = −mνiω
2
νixνi + Cνix, (6)

ẋ = p

m
, (7)

and

ṗ = −kx +
∑
iν

Cνixνi − x
∑
iν

C2
νi

mνiω
2
νi

. (8)

Considering Eqs. (5) and (6) as a system of inhomogeneous
equations with known inhomogeneity, its solution can be
written as

xνi(t) = xνi(0) cos(ωνit) + pνi(0)

mνiωνi

sin(ωνit)

+ Cνi

mνiωνi

∫ t

0
ds sin[ωνi(t − s)]x(s) (9)
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and

pνi(t) = mνiẋνi(t) = −mνiωνixνi(0) sin(ωνit)

+pνi(0) cos(ωνit) + Cνi

∫ t

0
ds cos[ωνi(t − s)]x(s).

(10)

Substituting (9) into (8) and integrating by parts, one obtains
the quantum Langevin equation:

mẍ = −kx(t) + η(t) −
∫ t

0
dsγ (t − s)ẋ(s) − γ (t)x(0),

(11)

where

η(t) =
∑
iν

Cνi

[
xνi(0) cos(ωνit) + pνi(0)

mνiωνi

sin(ωνit)

]
(12)

is the noise that comes from the baths and

γ (t) =
∑
iν

C2
νi

mνiω
2
νi

cos(ωνit) (13)

is the friction kernel, which takes into account the interaction
of the quantum particle with both thermal reservoirs.

A. Drude-Ullersma model

At this point we have made no specific assumptions
about the properties of the Hamiltonians that describe the
thermal reservoirs. The microscopic structure of the thermal
reservoirs does not affect the nature of the energy exchange
between them. Therefore, one can choose a specific, physically
meaningful model of the Hamiltonians HB1 and HB2 without
sacrificing the generality of the results.

Here we employ the Drude-Ullersma model (DUM) [7,27,
28]. The model assumes that, in the absence of the interaction
with the quantum system, each bath consists of uniformly
spaced modes and introduces the following ω dependence for
the coupling coefficients:

ωνk = k�ν, Cνi =
√

2γνmνiω
2
νi�νD2

ν

π
(
ω2

νi + D2
ν

) (14)

where k = 1,2,3, . . . ,Nν . In Eq. (14), �ν are the mode
spacing constants, Dν are the characteristic cutoff frequencies
qualitatively similar to the Debye frequency, and γν are the
coupling constants between a given reservoir and the mediator
[7]. Hereafter we assume for simplicity that D1 = D2 ≡ D. In
the final results we take the limit Nν → ∞ and �ν → 0.

Substituting Eq. (14) into Eq. (13) and replacing summation
over i by integration, one arrives at the following expression
for γ (t):

γ (t) = γDe−D|t |, (15)

where γ = γ1 + γ2. Using (14) and (15), Eq. (11) can be solved
by Laplace transformation [29]:

x(t) = ġ(t)x(0) + 1

m
g(t)p(0) + 1

m

∫ t

0
ds g(t − s)η(s).

(16)

Here

g(t) = L−1

[
1

z2 + w2
0 + zγ̂ (z)

]
≡ L−1[g̃(z)], (17)

where g̃(z) is the Laplace transform L of g(t), L−1 is the
inverse Laplace transform, and

γ̂ (z) = 1

m
L[γ (t)] = Dγ̂

D + z
, γ̂ ≡ γ

m
. (18)

After substituting (18) into (17), g(t) can be presented as

g(t) = L−1[g̃(z)] =
3∑

n=1

gne
−μnt , (19)

where

g̃(z) = D + z

(D + z)
(
z2 + ω2

0

) + Dγ̂ z
. (20)

Here gn are defined by the last two relations and μn are the
roots of equation

(μ − D)
(
μ2 + ω2

0

) + γ̂ Dμ = 0, (21)

where ω0 = √
k/m. Statistical thermodynamics of a quantum

particle coupled to a thermal bath was considered in Ref. [7]
in the limit of large D when

D � ω0, 1/τp = γ /m ≡ γ̂ , 1/τx ≡ k/γ = ω2
0τp. (22)

In this case, (19) and (21) give

μ1,2 ≈ 1

2τp
(1 ∓ r), μ3 ≈ D − 1/τp � |μ1,2|, (23)

and

g1 = −g2 ≈ τp

r
, (24)

where r = √
1 − 4τp/τx. If τp/τx = (ω0τp)2 � 1/4, μ1,2 are

real and if τp 
 τx , the quantities τp and τx can be interpreted
as the characteristic relaxation times for the momentum
and coordinate, respectively. Otherwise, when ω0τp > 1/2,
μ1,2 = 1/2τp ∓ i/τ0, where τ0 = (ω2

0 − γ̂ 2/4)−1/2 determines
the oscillation time while τp again determines the damping
time. In what follows, however, we consider a more general
case when D, ω0, and τ−1

p may be comparable. In this
case, the roots μn and coefficients gn, where n = 1,2,3, are
determined as analytical solutions of (21) and from relation
(19), respectively.

III. HEAT CURRENT

Using (5) and (6), one can easily show that the rate of
change of the energy of a given thermal reservoir is given by

d

dt

∑
i

〈
p2

νi

2mνi

+ mνiω
2
νix

2
νi

2

〉
≡ −〈Pν〉, (25)

where

Pν = −
∑

i

Cνi

2mνi

〈pνix + xpνi〉 (26)

is the work the quantum system performs on the νth bath per
unit of time (the power dispersed in the νth bath) [20]. In
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the steady-state regime the power acquired by one reservoir is
taken from the other, so that the steady-state heat current Jth

can be presented as Jth = 〈P1〉 = −〈P2〉 or in the symmetrical
form

Jth = 1
2 〈P1 − P2〉. (27)

Using solutions for pνi(t) and x(t) from Eqs. (10) and (16),
and omitting here the transient processes that wash out over
the short time τ = max(τp,τx), we get

〈Pν〉 ≈ − 1

2m

∑
i=1

Cνi

mνi

[
cos(ωνit)j

(a)
ν

− mνiωνi sin(ωνit)j
(b)
ν + Cνij

(c)
ν

]
, (28)

where

j
(a)
νi =

∫ t

0
ds g(t − s)〈pνi(0)η(s) + η(s)pνi(0)〉, (29)

j
(b)
νi =

∫ t

0
ds g(t − s)〈xνi(0)η(s) + η(s)xνi(0)〉, (30)

and

j
(c)
νi =

〈 ∫ t

0
dτ cos ωνi(t − τ )x(τ )

∫ t

0
ds g(t − s)η(s)

+
∫ t

0
ds g(t − s)η(s)

∫ t

0
dτ cos ωνi(t − τ )x(τ )

〉
.

(31)

The derivation of the steady-state expressions for j
(a)
1 , j

(b)
1 ,

j
(c)
1 , and ultimately for Jth depends on how the contact between

the baths is established. A physically meaningful model should
yield the same result regardless of how the coupling initially
takes place. To verify this we have considered two options. In
one case, the quantum system is attached simultaneously to
both baths at time t = 0. In the second case, the quantum
particle is coupled first to the first bath, reaches thermal
equilibrium with it, and at a later moment (which is again
t = 0) it is coupled to the second bath.

We have established that the steady-state heat current is
the same in either scenario. Below we give a derivation in the
case of simultaneous coupling of the mediator to two thermal
reservoirs at t = 0. We can assume that for t � 0 the dynamic
variables of the baths are determined by the usual expressions:

xνi(t) =
√

h̄

2mνiωνi

(a+
νie

iωνi t + aνie
−iωνi t ) (32)

and

pνi(t) = mνiẋνi(t). (33)

Here the creation and annihilation operators aνi and a+
νi

satisfy [aνi,a
+
ν ′k] = δikδνν ′ . The operators’ Gibbsian ensemble

averages are determined by

〈a+
νiaν ′k + aν ′ka

+
νi〉 = δikδνν ′ coth

(
βνh̄ωνi

2

)
, (34)

where βν = (kBTν)−1, which also result in

〈pνi(0)pν ′j (0)〉 = m2
νiω

2
νi〈xνi(0)xν ′j (0)〉

= h̄mνiωνi

2
δij δνν ′ coth

(
βνh̄ωνi

2

)
(35)

and

〈pνi(0)xν ′j (0) + xν ′j (0)pνi(0)〉 = 0. (36)

Using these equations, as well as Eq. (12), the ensemble av-
erages 〈pνi(0)η(t) + η(t)pνi(0)〉 and 〈xνi(0)η(t) + η(t)xνi(0)〉
can be found and 〈Pν〉 can be written as

〈Pν〉 = 〈Pν〉(1) + 〈Pν〉(2) (37)

where

〈Pν〉(1) = − h̄

2m

∑
i=1

C2
νi

mνi

coth

(
βνh̄ωνi

2

)

×
[

cos(ωνit)
∫ t

0
ds g(t − s) sin(ωνis)

− sin

(
ωνit

∫ t

0
ds g(t − s) cos(ωνis)

)]
(38)

and

〈Pν〉(2) = − h̄

2m

∑
i=1

C2
νi

mνi

j
(c)
νi . (39)

Evaluating the integrals in Eq. (38) using (19) and omit-
ting exponentially decaying contributions, one can find
that all time-varying terms, such as those proportional to
sin(ωνit) cos(ωνit), etc. cancel each other out. It means that
the steady-state heat current is truly time-independent and does
not contain any fluctuating contributions. Using Eq. (14) and
substituting integration for summation we obtain

〈Pν〉(1) = −h̄γνD
2

πm

3∑
n=1

gnμ
2
n

∫ ∞

0

dω ω coth(βνh̄ω/2)

(ω2 + D2)
(
ω2 + μ2

n

) .

(40)

Similarly, Eq. (39) can be rewritten as follows:

〈Pν〉(2) = −h̄γνD
2

2m

〈∫ t

0
dτ S(t − τ )x(τ )

∫ t

0
ds g(t − s)η(s)

+
∫ t

0
ds g(t − s)η(s)

∫ t

0
dτ cos S(t − τ )x(τ )

〉
,

where

S(t) =
∑
i=1

C2
νi

γνD2mνi

cos(ωνit) = 2δ(t) − De−Dt . (41)

Using (12), (35), and (36), 〈Pν〉(2) can be obtained in a similar
way, reaching its steady-state value when t → ∞, and the heat
current is given by

Jth = − h̄D2

2πτp

3∑
n=1

gnμ
2
n

∫ ∞

0

dω ω[n1(ω) − n2(ω)]

(D2 + ω2)
(
μ2

n + ω2
) , (42)

where nν(ω) = 1/[exp(h̄ωβν) − 1] are the phonon occupation
numbers for the respective thermal reservoir. Here we assume
for simplicity that γ1 = γ2. In a more general case when γ1 �=
γ2, Jth will be determined by the same expression (42) by
substituting 1/2τp → 2γ1γ2/(γm). It can be shown explicitly
that the same result for 〈Pν〉(2) and, eventually, for Jth can
be obtained if one performs τ integration in j

(c)
νi first and,

finally, calculates the i sum in Eq. (39). This provides an
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additional verification of the formula (41) and expression (42).
If |T1 − T2| 
 (T1 + T2)/2 ≡ T , Eq. (42) determines the heat
conductance K:

K = − lim
�T →0

Jth

�T

= −τ 2
h kBD2

8πτp

3∑
n=1

gnμ
2
n

∫ ∞

0

dω ω2cosech2(βh̄ω/2)

(D2 + ω2)
(
μ2

n + ω2
) , (43)

where �T = T2 − T1 and τh = h̄/kBT .
In the second scenario of consecutive coupling of the

mediator to the thermal baths, one can consider initially a
closed system that describes the equilibrium (Gibbsian) state
of the first thermal bath plus the mediator. The corresponding
set of eigenvalues and eigenmodes {νk,ek}, can be determined
by diagonalization of the Hamiltonian H + HB1 + V1. As was
found in Ref. [7], the frequencies ω1k of the unperturbed modes
of the Hamiltonian HB1 are shifted due to the interaction with
the mediator to the values

ν1k = ω1k − �1

π
φ(ωk), (44)

where φ(ω) is a certain known function of the parameters of
the Hamiltonian. In the limit of small γ1, φ(ω) ∼ γ1.

In the Appendix we have shown that, after coupling of
this thermalized combined system to the second thermal bath
with a different temperature, the same steady-state heat current
(42) will be established despite the small difference in the
microscopic makeup of the two baths. This is important not
only from the physical point of view that the steady-state
energy current between two thermal reservoirs should not
depend on the initial conditions, but also for the derivation
of Fourier’s law as shown below.

It should be noted that the existence of a unique steady
state independent of the initial conditions cannot be taken for
granted. There is substantial literature devoted to this problem
in classical and quantum systems [1,30–34]. Reference [34]
considers the existence of the steady state and thermal equi-
libration in a system that represents a quantum wire coupled
to two baths. It appears that a necessary but not sufficient
condition of uniqueness of the steady state is absence of the
bound state in the spectrum of the thermal bath. In the model
we are using here the bound state would manifest itself as an
imaginary root in Eq. (21). This would result in a nondecaying
oscillatory contribution to the steady-state energy current and
its dependence on initial conditions. However, the absence
of the bound states does not solely guarantee the uniqueness
of the steady state or thermal equilibration [1,33,34]. In this
regard, our results demonstrate explicitly the existence and
uniqueness of the steady state in the considered model.

A. Different temperature regimes

Expressions for the heat current and heat conductance can
be simplified in the limits of high and low temperatures when
h̄|μn|/kBTν 
 1 and h̄|μn|/kBTν � 1, respectively. Here μn

(n = 1,2,3) are the roots of Eq. (21).
In the high-temperature limit, Eqs. (42) and (43) reduce to

Jth = −K(T2 − T1), K ≈ −DkB

4τp

3∑
n=1

gnμn

D + μn

. (45)

The above sum can be written as

3∑
n=1

gnμn

D + μn

= −L[ġ(t)]|z=D = −Dg̃(D) (46)

when using the well known properties of the Laplace transform
and also relation

∑3
n=1 gnμ

k
n = [(−1)k − 1]/2, where k = 0,

1, 2. Thus, K in Eq. (45) can be written as

K ≈ kB

4τp

2D2[
2
(
D2 + ω2

0

) + γ̂ D
] . (47)

In the limit (22) of large D we obtain

K ≈ kB

4τp
= kBγ̂

4
. (48)

In the deep quantum regime (low temperatures), we find

Jth ≈ π3k4
B

(
T 4

1 − T 4
2

)
30h̄3τp

3∑
n=1

gn

μ2
n

. (49)

Using again the Laplace transform and (20), we find

3∑
n=1

gn

μ2
n

= −dg̃(z = 0)

dz
= γ̂

ω4
0

, (50)

and finally have, in the quantum regime,

Jth ≈ π3k4
B

30h̄3ω4
0τ

2
p

(
T 4

1 − T 4
2

)
and K ≈ 2π3k4

BT 3

15h̄3ω4
0τ

2
p

. (51)

The temperature dependence of Jth is the same as in the Stefan-
Boltzmann law,

JSB = A
π2k4

B

60h̄3c2

(
T 4

1 − T 4
2

)
, (52)

where A is the area of a blackbody from which radiation
emits. We will use this observation in Sec. VII for discussion
of experimental results found in Ref. [25].

IV. QUANTUM THERMAL BATHS

Let us show now that the result for the heat current given
by Eq. (42) in the limit D → ∞ can be reproduced within the
quantum thermal bath (QTB) approach. In the phenomeno-
logical QTB model the many-body problem described by the
Hamiltonian (1) is replaced by a one-body problem in which
friction is introduced “by hand,” instead of being a logical
consequence of energy redistribution between the practically
infinite number of modes. The other effect of a thermal bath
is modeled by a random force. The equation of motion for the
mediator takes form of the Langevin equation

mẍ + γ ẋ + mω2
0x = F1(t) + F2(t), (53)

where the stochastic forces (colored noise) F1 and F2 describe
the effects of the two heat baths with temperatures T1 and
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T2, respectively. We take 〈Fν(t)〉 = 0 and 〈Fν(t)Fν ′(t ′)〉 =
δνν ′Kν(t − t ′), where ν,ν ′ = 1,2 and Kν(t) is determined by
its Fourier transform as

Kν(t) = 1

2π

∫ ∞

−∞
dωK̃ν(ω)e−iωt (54)

with

K̃ν(ω) = γ

2
h̄ω coth(h̄ω/2kBTν). (55)

The correlators of the Fourier transforms of the random forces
are given by

〈F̃ν(ω)F̃ν ′(ω′)〉 = 2πδ(ω + ω′)δνν ′K̃ν(ω). (56)

The solution of Eq. (53) is given by

x̃(ω) = − 1

m

F̃1(ω) + F̃2(ω)

ω2 + iγ̂ ω − ω2
0

, γ̂ = γ /m. (57)

The energy conservation law for the mediator is given by

d

dt

〈
mẋ2

2
+ mω2

0x
2

2

〉
= −γ 〈ẋ2〉 + 〈F1ẋ〉 + 〈F2ẋ〉, (58)

which in the steady state corresponds to γ 〈ẋ2〉 = 〈F1ẋ〉 +
〈F2ẋ〉.

We define heat current J
(s)
th as the energy transferred per

unit of time from the first to the second bath: J
(s)
th = −dE1/dt ,

or

J
(s)
th = − 1

2γ 〈ẋ2〉 + 〈F1ẋ〉 = 1
2 (〈F1ẋ〉 − 〈F2ẋ〉). (59)

Here E1 is the internal energy of the first bath and we take that
the energy dissipated by the mediator is equally split between
the two baths. In general, the energy dissipated by the mediator
can be split between the thermal baths in arbitrary proportion,
but then the correlators (58) also will be proportional to the
fraction of energy dissipated by the mediator in a given bath.

Using Eqs. (57) and (56), we obtain

J
(s)
th = i

4πm

∫ ∞

−∞

dω ω[K̃1(ω) − K̃2(ω)]

ω2 + iγ̂ ω − ω2
0

. (60)

Taking into account expression (55), the heat current (60) can
be rewritten as

J
(s)
th = h̄

2πτ 2
p

∫ ∞

0

dω ω3[n1(ω) − n2(ω)](
ω2 − ω2

0

)2 + γ̂ 2ω2
(61)

and the corresponding conductance is

K (s) = τ 2
h kB

8πτ 2
p

∫ ∞

0

dω ω4cosech2(βh̄ω/2)(
ω2 − ω2

0

)2 + γ̂ 2ω2
. (62)

Thus, the heat current given by Eq. (61) and obtained
from the phenomenological quantum thermal bath approach
coincides in the limit D → ∞ with that given by Eq. (42),
which is the result of rigorous solution of a microscopic
many-body model of the thermal reservoirs. This is a solid
indication that the quantum thermal baths approach can be
used to address more complicated problems of energy transfer
via quantum mediators without resorting to a full-blown
treatment based on a many-body Hamiltonian such as the
one given by Eq. (1). It should be noted that the QTB model
has been recently successfully used by Dammak et al. [35]

for sampling quantum fluctuations within the framework
of molecular dynamics (MD) simulations. Using the QTB
model, the authors reproduced several experimental data
at low temperatures in a regime where quantum statistical
effects cannot be neglected. Our result here suggests that the
MD approach can account for quantum statistical effects in
nonequilibrium situations as well.

Also we should mention that a powerful method for solving
problems involving open quadratic systems for fermions has
been developed by Prosen [23] and Prosen and Žuncovič
[24]. It would be interesting to see how a problem of
nonequilibrium bosonic systems, such as the one considered
here, can be reformulated in terms of this novel approach of
“third quantization.”

V. WEAK AND STRONG COUPLING REGIMES

In this section we return to the analysis of our results
emphasizing the effects of the weak and strong coupling on
heat transfer as well as some interesting features in the behavior
of the heat conductance. The main purpose of this section is to
clarify the conditions which may allow us to assign a certain
temperature to the mediator. This is possible when the mediator
is in a state of weak nonequilibrium. For a simple system with
two degrees of freedom the weak nonequilibrium means that
the virial theorem is approximately satisfied. This condition
depends on the coupling strength γ and temperature. Let us
consider the average potential and kinetic energy:

kBTx = 〈kx2〉 and kBTp = 〈p2/m〉. (63)

The imbalance between them has been proven to be useful
in determining the statistics of a quantum particle coupled
to a single heat bath [7]. Even when the total system, (heat
bath + mediator), is in thermal equilibrium, the virial theorem
is not satisfied for the mediator, namely Tp(T ) − Tx(T ) is
nonzero for any finite γ . This is a manifestation of quantum
entanglement between a particle and a single thermal bath
[7]. The difference between the average kinetic and potential
energy of the mediator can serve as a criterion for the coupling
strength also in the nonequilibrium case, as shown below.

Using Eqs. (12), (16), and (34), and the relation p = mẋ,
one can obtain

Tx = h̄ω2
0τpS

πkB
, τpS =

3∑
n=1

gn

[
In

(
1 − μ̂2

n

) + In1 + In2
]
(64)

and

Tp = − h̄

πkB

3∑
n=1

gnμ
2
n

[
In

(
1 − μ̂2

n

) + In1 + In2
]
. (65)

Here μ̂n = μn/D,

In =
∫ ∞

0

x dx

(x2 + 1)
(
x2 + μ̂2

n

)
= i[arctan(a) − (π/2)sgn(b)] − ln(|μ̂n|2)

2
(
1 − μ̂2

n

) (66)
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with a = (μ2
nr − μ2

ni)/(μnrμni), b = μnrμni , μnr = Re(μn),
and μni = Im(μn). Finally,

Inν =
∫ ∞

0

x dx

(ex − 1)[x2 + (τhνμn)2]
(67)

where τh1,2 = h̄/kpT1,2.
The weak and strong coupling can be defined in terms of

the effective bath-particle interaction strength γ̂D, where

γ̂D = D2γ̂
(
D2 + ω2

0

)−1
. (68)

If γ̂D 
 ω0, one can find from (19)–(21) that

μ1,2 ≈ ∓iω0 + γ̂D/2, μ3 = D − γ̂D (69)

and

g1,2 ≈ ∓ i

2ω0
− γ̂D

2
(
D2 + ω2

0

) , g3 = γ̂D

D2 + ω2
0

. (70)

If γ̂D 
 ω0, the mediator can be described as an oscillator with
relatively small effective friction. However, this condition by
itself is not sufficient to guarantee the virial theorem. Only if
temperatures of both thermal reservoirs are sufficiently high,
i.e.,

kBT1,2/h̄ � γ̂D, (71)

we get approximately equal steady-state values of Tx,p:

kBTx ≈ kBTp ≈ 1
2 [U (T1) + U (T2)]. (72)

Here U (T ) = h̄ω0/2 + h̄ω0[exp(h̄ω0/kBT ) − 1]−1 is the av-
erage energy of a quantum oscillator in thermal equilibrium.
The inequality (71) can be considered as the usual condition
of applicability of the Gibbsian statistics, when interaction
energy between subsystems of a large closed system is small
with respect to the internal energies of the subsystems [36].
Thus, as long as the virial theorem is preserved, one can assign
to the mediator a certain temperature T on the basis of Eq. (72):
U (T ) = (1/2)[U (T1) + U (T2)]. In the high-temperature limit
kBT1,2 � h̄ω0, this leads to

Tx ≈ Tp ≈ T ≈ (T1 + T2)/2, (73)

as is expected.
For the case of moderate or strong coupling (overdamped

mediator), Tx,p acquire γ dependence and the condition (72)
is not satisfied any more. Figure 2 shows the monotonic
dependence of the relative energy imbalance �T̂px ≡ (Tp −
Tx)/(Tp + Tx) on the coupling strength. The cutoff parameter
D can loosely associate with the Debye frequency. The thermal
bath modes with frequencies higher than D are effectively
decoupled from the mediator and do not play a significant role
in the processes of thermalization and energy transfer. For this
reason, when D/ω0 decreases, �T̂px also decreases. This also
follows from (68). Indeed, the coupling constant γ̂ ≡ γ /m is
renormalized by the factor D2/(D2 + ω2

0) and is effectively
determined by γ̂D at a relatively small γ̂D. As one also finds,
�T̂px decreases when T1,2 grow in accordance with (71)–(73).
Thus, �T̂px can be considered as a measure of the coupling
strength that takes into account all the relevant factors such as
D2/(D2 + ω2

0) and values of T1,2.
It is interesting to notice that the γ dependence of the heat

conductance (43) may possess a maximum. As we found, it

(d)
(c)
(b)
(a)

T
p
−

T
x

T
p
+

T
x

γ̂/ω0 840

0.6

0.3

0

FIG. 2. (Color online) Dependence of �T̂px on the coupling
strength for different D/ω0, τh1ω0, and τh2ω0. (a) D/ω0 = 10,
τh1ω0 = τh2ω0 = 1, (b) D/ω0 = 1, τh1ω0 = τh2ω0 = 1, (c) D/ω0 =
10, τh1ω0 = τh2ω0 = 0.5, and (d) D/ω0 = 1, τh1ω0 = 1, τh2ω0 = 0.5.

appears at relatively small ω0 and relatively large γ̂ (strong
quantum entanglement between the particle and baths) when
τhω0 � 2, h̄γ̂ /kBT � 10, and γ̂ /D > 1 as is illustrated in
Fig. 3. The maximum strength can be characterized by the
quantity �K̂ = (Kmax − K∞)/Kmax, where Kmax and K∞
are the values of K at its maximum and at γ̂ /ω0 → ∞,
respectively. As our simulations show, �K̂ increases when
τhω0 decreases and the value (γ̂ /ω0)max at which Kmax is
achieved shifts toward larger values when D/ω0 decreases. It
is worth mentioning that a similar maximum in the dependence
of the heat current on the system-bath coupling strength was
found in Ref. [24] for a Heisenberg XY spin-1/2 chain.

Figure 4 shows the temperature dependencies for the
normalized heat conductance at different D and for ω0τp = 10.
The shown dependencies are based on the same expression (43)
and its high-D limit. As our analysis reveals, if D/ω0 � 10,
K(T ) essentially coincides with the corresponding D → ∞
limit (62). The straight-line region corresponds to the low-T
limit (51), which is the same for all curves. At large T ,
each curve reaches its classical plateau in accordance with
(45). An unusual feature, which is an additional plateau that
appears in the intermediate range of τp/τh and D 
 ω0, is
a generic result valid in a wide range of ω0τp. It can be
explained in the following way. If T is so large that ω0τh < 1

τhω0 = 0.5
τhω0 = 1
τhω0 = 2

K
k
B

ω
0

γ̂/ω0 1031010−1

0.4

0.2

0

FIG. 3. (Color online) Dependence of the normalized heat con-
ductance K/(kBω0) on the coupling strength at D/ω0 = 1 and
different τhω0.
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(d)

(c)

(b)

(a)

K
k
B

ω
0

τp/τh10−3 10−1 10

10−13

10−7

0.1

FIG. 4. (Color online) Temperature dependence for the normal-
ized heat conductance K/(kBω0) at ω0τp = 10 and different values of
D. Note that τp/τh ≡ kBT/h̄γ̂ . (a) Dτp = 0.1, (b) Dτp = 1, (c) Dτp =
100, and (d) Dτp = ∞.

or τp/τh > ω0τp, we have the “final” classical plateau in
Fig. 4 described by (47). On the other hand, if T is so small
that Dτh > 1 or τp/τh < Dτp, we have the quantum regime
(straight line in Fig. 4) described by (51). In the intermediate
region, when Dτh < 1 but ω0τh > 1 or Dτp < τp/τh < ω0τp,
one can approximate ω2 + μ2

1,2 ≈ μ2
1,2 under the integrals in

Eq. (43) for n = 1 or 2 and

K ≈ −τ 2
h kBD2

8πτp

[
J1

∑
n=1,2

gn + g3D
2J2

]
, (74)

where

Jk =
∫ ∞

0

dω ω2

sinh2(βh̄ω/2)(D2 + ω2)k
. (75)

Taking into account that g1 + g2 = −g3, one can rewrite (74)
as

K ≈ τ 2
h kBD2

8πτp
g3

∫ ∞

0

dω ω4

sinh2(βh̄ω/2)(D2 + ω2)2
. (76)

Finally, using that Dτh < 1 and approximating sinh(x) ≈ x,
the integral in Eq. (76) can be estimated as π/(Dτ 2

h ). Due
to (70),

K ≈ kBD

8πτp
g3 = kBγ̂

4

D3γ̂

2ω4
0

(77)

does not, indeed, depend on temperature forming the plateau
in Fig. 4. The physical origin for the small K and intermediate
plateau can be explained as follows. If T increases above the
Debye temperature θD = Dh̄/kB, i.e., Dτh = θD/T < 1, all
the baths’ modes begin to be excited. At the same time, if
T is still less than h̄ω0/kB (or τhω0 > 1, which is always
possible if ω0 � D), the quantum system cannot be excited
and, hence, it cannot absorb energy from either bath and
transfer it to the other bath. This will lead to a small value of K

in Eq. (77). Moreover, because this situation stays unchanged
when T changes within the interval θD < T < h̄ω0/kB (or
Dτp < τp/τh < ω0τp), K must not depend on T noticeably,
which is in accordance with (77). Also, as one can notice,
the effective bath-particle interaction strength γ̂D is small if

D � ω0 even if γ̂ itself is not small. In this case, we have a very
low decay rate for the μ1,2 modes and, correspondingly, very
small heat current and heat conductance, again in accordance
with (77). This result brings our situation close to the one
with the bound states mentioned at the end of the first part of
Sec. III. Indeed, when γ̂D = 0, we would have nondecaying
oscillatory contributions to the steady state, depending on the
initial conditions, and zero heat current. However, even for a
case with infinitely small γ̂D , the unique but infinitely small
steady-state current will be established after an infinitely large
time interval.

VI. FOURIER’S LAW

The results obtained in previous sections will be applied to
an extended model that can shed additional light on the long-
standing problem regarding the origin of Fourier’s law [14].
The standard definition of a macroscopic body in the state of
weak nonequilibrium [37] is that it can be divided into regions
large enough to be considered macroscopic, but small enough
to be described by a local temperature. In addition, these
regions or subsystems must be weakly coupled to each other.
The weak coupling in this context means that the characteristic
time required for the subsystems to come to mutual equilibrium
is much longer than the time of microscopic relaxation. Here
we introduce a model that fills this conceptual framework with
a microscopic content.

Figure 5 illustrates our model. It consists of N macroscopic
subsystems and two thermal reservoirs (TRs) coupled by the
mediators. Each subsystem and each TR is described by the
Hamiltonian given by Eq. (3) within the framework of the
Drude-Ullersma model, Eq. (14). Each mediator is described
by the Hamiltonian (2) and each coupling is described by the
Hamiltonian (4) and Eq. (14). The total system, including the
TRs, is a Hamiltonian with constant total energy.

Each subsystem and each TR is initially prepared in the state
of thermal equilibrium and is characterized by a temperature
Tn or TL and TR, respectively. It means that the respective
correlators have the form of Eq. (35).

The energy of a given subsystem, which consists of very
large or infinite number of modes with frequencies ωk = k�

with k = 1,2,3, . . . , is

U (T ) ∼ (kBT )2

h̄�
.

FIG. 5. (Color online) Chain of macroscopic subsystems
(“nanoparticles”) interconnected by mediators. Each subsystem
indicated by a large circle, as well as both thermal reservoirs,
correspond to Hamiltonian (3). Other symbols also have the same
meaning as in Fig. 1. Temperatures TL and TR of the left and right
thermal reservoirs are fixed because their heat capacity is considered
infinite. The temperatures Tn of the subsystems can slowly vary until
the steady state is established. Thermal conductances Kn can vary
from one connection to another.
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Here, the divergent zero-point energy term was dropped.
Correspondingly, the heat capacity of a given subsystem

C(T ) = dU

dT
∼ kB

kBT

h̄�
.

Thus, the thermal reservoirs will be characterized by � →
0 and, correspondingly, an infinite heat capacity, while the
subsystems need to be described by an arbitrarily small, but
still finite �. The energy difference between two subsystems
(as in Fig. 1) with temperatures T1 and T2 is

�U ∼ |(kBT1)2 − (kBT2)2|
h̄�

∼ k2
B|T1 − T2|Tav

h̄�
.

On the other hand, the heat current between the two subsystems
can be estimated on the basis of Eqs. (45) and (48) as

Jth ∼ kB

τp
|T1 − T2|.

Thus, the characteristic time of mutual equilibration

teq ∼ �U

Jth
∼ τp

kBTav

h̄�
= τp

τh
�−1 ∼ �−1. (78)

For the subsystems, we assume that the Heisenberg time scale
1/� is much larger than any other relevant characteristic
time in the problem [6,7]. Thus, the system described by the
Hamiltonian represented by the diagram in Fig. 5 meets the
conditions described in the first paragraph of this section.

One of the main results that we have obtained by solving
the Hamiltonian (1) is that the energy flows from higher-
to lower-temperature TRs. Since all the modes of a given
TR are in thermal equilibrium at the same temperature,
the thermodynamic relationship between energy and entropy
dUi = T dSi is satisfied for each of them and the total entropy
in the steady state increases:

dS

dt
= |Jth|

∣∣∣∣ 1

T1
− 1

T2

∣∣∣∣ > 0.

One can easily show that for the system represented in
Fig. 5 the total entropy also increases even when the energy
currents between the subsystems are all different. In the steady
state, which corresponds to all energy currents between two
neighboring subsystems being equal, the entropy increases as

dS

dt
= |Jth|

∣∣∣∣ 1

TL
− 1

TR

∣∣∣∣ > 0.

These results are valid as long as all modes remain in
thermal equilibrium or close to equilibrium. The coupling
constants given by Eq. (14) are proportional to the infinitesimal
parameter �,

Cν,i ∼ �1/2.

The effect of such coupling on the mediator is finite because
all modes contribute constructively. The rate of change of the
correlators (35) is much slower because each of the modes is
coupled only to the mediator with vanishingly small coupling
constant. One can see from Eqs. (6)–(12) that the rate of change

of the correlators (35)

∂

∂t
〈pνi(t)pν ′j (t)〉 ∼ ∂

∂t
〈xνi(t)xν ′j (t)〉 ∼ �.

Thus, if we consider the evolution of the system on the time
scale t , such that

τp < t 
 teq, (79)

which is long enough for the microscopic relaxation to take
place, but short on the macroscopic time scale, all modes will
remain approximately in thermal equilibrium determined by
the initial conditions.

The same argument allows us to extend the solution of
the Hamiltonian (1) shown as a diagram in Fig. 1 to the
Hamiltonian that corresponds to Fig. 5. Imagine that after
we prepared both TRs and all the subsystems in the state of
thermal equilibrium at the corresponding temperatures, we
start turning on the couplings to mediators one by one from
left to right. The energy flow between two subsystems indexed
as n and n + 1 will be the same as for the Hamiltonian (1)
because the effect of the subsystem n being already coupled to
the subsystem n − 1 adds to the energy current a contribution
of the order of � and is therefore negligible on the time scale
(79). This means that the solutions of the Hamiltonian (1) can
be directly applied to the Hamiltonian of the chain shown in
Fig. 5 in the form of energy conservation condition

∂tUn = Jn−1,n − Jn,n+1. (80)

Here the energy currents Jn−1,n are given by Eq. (42) and this
equation is valid for arbitrary values of the initial temperatures.
In order to obtain Fourier’s law we have to take the temperature
differences between the neighboring subsystems to be small
and express the currents in terms of thermal conductances (43)

∂tUn = Kn−1,n(Tn−1 − Tn) − Kn,n+1(Tn − Tn+1). (81)

This equation can be rewritten in the differential form
by introducing a continuous coordinate x, where x = nd

corresponds to the locations of the subsystems and d is the
distance between them. For identical mediators Eq. (81) can
be recast as

C(T )∂tT (x) = K(x − d/2)[T (x − d) − T (x)]

−K(x + d/2)[T (x) − T (x + d)], (82)

where C(T ) = dU/dT is the heat capacity of a subsystem.
Then, Eq. (82) leads to the energy conservation condition with
Fourier’s form of the energy current,

C̃(T )∂tT (x) = ∂x[κ(x)∂xT (x)], (83)

where C̃ = C/d is the specific heat of the chain, and the
thermal conductivity κ(T ) = K(T )d.

This analysis shows that as long as the energy flow between
macroscopic subsystems satisfies the condition of entropy
increase, namely, that the energy flows from higher to lower
temperature, Fourier’s law is a straightforward consequence
of energy conservation. What has been proven in this paper
is that the dynamics of the Hamiltonian system described by
the Hamiltonian (1) and its extension shown as a diagram in
Fig. 5 does indeed lead to the entropy increase. This statement
is predicated on the condition of local thermal equilibrium
or near equilibrium for the subsystems that exchange energy
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between themselves. We have stated in our treatment of the
Hamiltonian (1) that this is an initial condition. As such, it
remains true for the time interval indicated by inequality (79).
However, the generally accepted understanding of the slow
relaxation processes [37] in a macroscopic body implies that,
as each subsystem slowly gains or loses energy, it remains
close to thermal equilibrium with a certain time-dependent
temperature due to rapid thermalization on the microscopic
time scale. Thus, the microscopic derivation of Fourier’s law
in the context of our model requires not only proving that
in a certain limit (smooth temperature variation) the energy
current is proportional to the temperature gradient, which we
have done. An equal if not more important task is to show that
the subsystems described by the Drude-Ullersma model are
capable of self-thermalization when coupled by the harmonic
mediator. This proof will require the study of the dynamics of
the Hamiltonian (1) on the time scale given by Eq. (78).

The model depicted in Fig. 5 resembles to some extent the
models analyzed by Michel, Mahler, and Gemmer [8], as well
as those discussed by Dubi and Di Ventra [9]. The subsystems
considered in Refs. [8,9] were still microscopic with the
heat capacity of the order of kB . Other publications [10–13]
consider the energy transport in chains consisting of spins or
harmonic oscillators. In all these cases the goal was to examine
the energy transport on the “nanoscale.” Our approach here is
to examine a solvable Hamiltonian model of a nonequilibrium
system that falls within the more traditional, “textbook”
framework. The subsystems described by the Hamiltonian
(3) can have arbitrarily large heat capacity determined by the
infinitesimal parameter �. Correspondingly, these subsystems
remain in thermal equilibrium for an extended period of time,
much greater than the microscopic relaxation time of the
mediator, and demonstrate that the energy flow leads to entropy
increase and, hence, to Fourier’s law, Eqs. (80)–(83). The
mediators do not have to be in the state of thermal equilibrium
for Eq. (83) to be valid. As was discussed in Sec. V, in
the strong coupling regime the mediator cannot be assigned
a certain temperature. However, as long as the subsystems
remain close to thermal equilibrium, Fourier’s law is still valid.

The outstanding question of the quasistatic evolution and
self-thermalization of such subsystems on the much longer
time scale, Eq. (78), will be addressed elsewhere.

A. Quantum thermal baths model

In the limit of large D, Eq. (80) follows from the model
shown in Fig. 6. The equation of motion for the n’s mediator

FIG. 6. (Color online) Diagram of the quantum thermal baths
model equivalent to the Hamiltonian shown in Fig. 5. Here Fn are
the random forces that appear in Eq. (84) and the other elements are
similar to ones from Fig. 5. Notice that the mediators are not coupled
to each other directly.

is practically the same as Eq. (53),

mẍn + γ ẋn + mω2
0xn = Fn−1(t) + Fn(t), (84)

where the random force Fn describes the effect of the
corresponding subsystem n on the mediator and the correlator
of the force is determined by the temperature of the respective
subsystem. Note, that the mediators are not directly coupled to
each other by “springs,” so that Eqs. (84) are not a system of
coupled equations, but simply are n identical equations, whose
solution for the heat current Jn−1,n is given by Eq. (61).

One can compare this model with the models of self-
consistent reservoirs [38–40]. Since our subsystems are macro-
scopically large, their effect on the mediator can be described
in terms of a stochastic force. However, these forces are not
arbitrarily introduced. We have shown that the exact solution
of the Hamiltonian dynamics in the limit of large D yields
the same expression for the energy current as the quantum
thermal baths model. In this sense the quantum thermal baths
model can be a useful shortcut, but our model is defined by
the Hamiltonian (1). It is also important to mention that the
thermalization of these self-consistent reservoirs is considered
a given in Refs. [38–40]. In fact, it has to be proven by analysis
of the long term evolution of the Hamiltonian dynamics.

One should note that in our model the mediators are
not coupled to each other directly. The energy flows only
through the macroscopic subsystems. In this sense the chain
of mediators operates, by design, in the minimum thermal
conductivity limit because the neighboring mediators are
always uncorrelated. If we were to associate the movement
of the mediators with phonons, their mean free path would be
the minimum possible, equal to the “interatomic” distance.

VII. HEAT CURRENT BETWEEN STM TIP
AND SUBSTRATE

The results obtained in previous sections can be used to
clarify an interesting finding reported recently by Altfeder,
Voevodin, and Roy [25]. In their experiment, the energy current
in high vacuum between the Pt/Ir tip of the scanning tunneling
microscope and gold film serving as a substrate was found to
be anomalously large, exceeding by ten orders of magnitude
the current given by the blackbody radiation theory. An
interpretation of this phenomenon given in Ref. [25] involves
“emission” of phonons by the Au surface, facilitated by the
electric field, and their “tunneling” through the vacuum gap to
the tip. Here we would like to offer an alternative mechanism
that seems to be capable of accounting quantitatively for the
same effect.

An important feature of this experiment is that a carbon
monoxide (CO) molecule was always present between the
Pt tip and the substrate. From the value of the tunneling
conductance, the gap between the “last tip atom” and the
surface of the Au film was inferred to be close to 3 Å [41].
The diameter a of a CO molecule is close to 3.7 Å [42].
Thus, without the CO molecule, the distance between the tip
and the substrate would be about 7 Å. There is also a strong
electric field in the gap, which is due to the work function
difference between Pt and Au (≈0.7 eV). The implication of
this is that the CO molecule must be strongly coupled to both
the tip and the Au surface. If we consider that this molecule
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serves as a mediator between the two thermal reservoirs (the
tip and the substrate, similar to the arrangement in Fig. 1), the
energy current between them can be estimated and compared
with the experimental data. The coupling strength between the
mediator and the thermal reservoirs determines how strongly
damped the mediator is.

There are two vibration modes associated with the CO
molecule attached to the Pt tip [43]. One of them is the
Pt-C stretching vibration with frequency 480 cm−1. The other
mode is the C-O stretching motion with the frequency of
approximately 2000 cm−1. Using the conversion coefficient
1 K = 0.7 cm−1, we find that the lowest frequency 480 cm−1

corresponds to 685 K and the highest frequency 2000 cm−1

corresponds to 2.8 × 103 K. In the experiment, the tip was
maintained at room temperature, while the temperature of the
substrate was substantially lower. Thus the higher mode was
clearly not activated and we should take the frequency of the
mediator in our model to be ω0 ≈ 480 cm−1.

Since the main frequency h̄ω0/kB ≈ 685 K is substantially
greater than the temperature of the bulk of the tip (≈300 K)
and the temperature of the substrate (in the range 90–210 K),
the first-order approximation of the heat current mediated by
the CO molecule can be estimated using Eq. (51),

JCO ≈ π3k4
Bγ̂ 2

30h̄3ω4
0

(
T 4

1 − T 4
2

)
. (85)

The expression for the energy current between the tip and the
substrate due to phonon emission from the “hot” spot on the
surface was used in Refs. [25,44] in the form

JA ≈ π5k2
B

60h̄θ2
D

(
T 4

1 − T 4
2

)
. (86)

Here θD is the Debye temperature of the substrate. The
underlying physics that leads to these two expressions is very
different, but the temperature dependence is the same. The
analysis based on Eq. (86) leads to a good description of the
experimental results. Thus, the model of CO-mediated heat
transfer will also give the same results if the prefactors of
Eqs. (85) and (86) are equal. This requires that

γ̂

ω0
= π√

2

h̄ω0

kBθD
. (87)

For gold θD ≈ 165 K, and since h̄ω0/kB ≈ 685 K we get

γ̂

ω0
≈ 9. (88)

Thus, other things being equal, the model based on CO-
mediated heat exchange will give the same quantitative results
as the model of phonon tunneling, provided that the coupling
between the CO molecule and both the tip and substrate is
strong enough to make the Pt-C vibrating mode overdamped
according to Eq. (88). This is likely the case, considering (as
mentioned above) that the size of the molecule is comparable
to the gap between the tip and substrate and also taking
into account the presence of the strong polarizing electric
field.

The heat current given by Eq. (85) is ∼1010 times greater
than that determined by the blackbody radiation, Eq. (52),
emitting from the area equal to the cross-section of the

CO molecule, A = πa2/4, with a ≈ 3.7 Å, provided that
γ̂ /ω0 ∼ 10.

Our conclusion is that the anomalously large heat current
between the STM tip and the substrate can be understood just
as well as the effect of mediation by the CO molecule. There
are ways to modify the experiment in order to determine which
of the two mechanisms is responsible for the effect. One is to
carry out a similar measurement, but without the CO molecule
lodged in the tunneling gap. Another option is to use the tip
and substrate made of the same metal, so that there will be
no work function potential difference �� between them. The
mechanism of phonon tunneling is based on the interaction
between the electrically charged tip and its electrostatic image.
The amount of charge is mainly determined by the large
electric field E = ��Au/Pt/d, where d is the vacuum gap [25].
In the absence of such large field the mechanism of phonon
tunneling should be greatly weakened.

VIII. MINIMUM THERMAL CONDUCTIVITY

The topic of minimum thermal conductivity can be first
traced to Einstein’s contribution (see Ref. [45] and references
therein). In strongly disordered solids the phonon coherence
length may become of the order of interatomic distance and,
obviously, cannot be reduced any further. Correspondingly,
the thermal conductivity reaches its minimum value, at least
as far as its dependence on such length is concerned. A
detailed treatment of this problem is given in Refs. [46,47]. The
same phenomenon leads to a minimal electric conductivity in
disordered conductors—the so-called Mott-Ioffe-Regel limit
[48,49]—when the coherence length of the charge carriers
becomes comparable to the interatomic distance.

Here we would like to add another perspective on this matter
using the results obtained above and making use of the scaling
approach previously developed for electron transport [50–52].
It should be emphasized that this section is not intended as a
comprehensive treatment of this problem, but rather as a brief
introduction to an alternative approach which may be useful
in some systems.

Consider a microscopic block whose edges are along the
principal axes {x,y,z} of the thermal conductivity tensor. We
can choose the sides of the block such that, on average, the
random phase acquired by phonons due to an inelastic inter-
actions along the way between the two opposite boundaries is
the same, of the order of 2π , for all three pairs of the block
boundaries. This choice for the sides of the block corresponds
to the definition for the anisotropic phase coherence lengths
�ϕ,i (i = {x,y,z}), the distances over which phonons lose phase
coherence.

Let Kϕ,i be the thermal conductance of such a phase
coherent volume (PCV), so that the energy current through
this block is

jϕ,i = Kϕ,iδTi . (89)

Here δTi is the temperature difference between the opposite
edges of the PCV block. Notice that the notion of a temperature
difference cannot be introduced for distances smaller than the
phase coherence length. In order to express the macroscopic
anisotropic thermal conductivity κi in terms of the conduc-
tance of the PCV, consider a macroscopic block with sizes
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{Lx,Ly,Lz} obtained by fitting together N3 phase coherent
volumes, so that Lx/�ϕ,x = Ly/�ϕ,y = Lz/�ϕ,z = N � 1.

By virtue of Fourier’s law, the heat current in the x direction
through this macroscopic volume is

Jx = κx�Tx

LyLz

Lx

. (90)

Here we assume a linear temperature variation across the
block. On the other hand, the heat currents through the
individual PCVs combine linearly, so that

Jx = Kϕ,xδTxN
2. (91)

Taking into account that δTx = �Tx/N , we obtain

κx = Kϕ,x

�ϕ,x

�ϕ,y�ϕ,z

. (92)

To put this result into a different perspective, the PCV is the
minimal size block for which one can introduce the notion of
thermal conductivity.

One can argue that the thermal conductance of the PCV
of phonons in an anisotropic medium is isotropic, similar to
the electric conductance in anisotropic metals [53], namely,
Kϕ,x = Kϕ,y = Kϕ,z. If this assertion were true, the anisotropy
is defined by the following relationship:

κx

κy

= �2
ϕ,x

�2
ϕ,y

,
κx

κz

= �2
ϕ,x

�2
ϕ,z

. (93)

This relationship is in agreement with the quasiclassical results
obtained from the kinetic equations κi ∼ cviλi , where c is the
specific heat, vi is the anisotropic speed of sound, and λi is the
phonon mean free path. Considering that the mean free path is
similar to the phase coherence length, so that λi ∼ �ϕ,i = viτϕ ,
we get κi ∼ c�2

ϕ,i/τϕ . Since both the relaxation (decoherence)
time τϕ and the specific heat are scalars, the relationship (93)
follows.

Equation (93) is most useful when applied to a system
where at least one of the coherence lengths is a temperature-
independent constant. It may be a highly disordered crystal in
which the decoherence takes place over interatomic distances,
or a layered structure in which the coherence length in one
direction is fixed by the size of the layer. Further discussion of
the consequences of Eq. (93) would be far outside the scope
of this paper.

Now we will return to the case of highly disordered
substances in which the coherence lengths in all directions
are of the order of interatomic distances and do not change
with temperature. There are numerous example of such sub-
stances where the minimum thermal conductivity is reached
at temperatures above 30 K [45]. In vitreous, silica- and
germania-based glasses, the mean free path (or the phase
coherence length) approaches the interatomic distance at
T � 100 K. For example, the phonon mean free path for
amorphous selenium at T � 50 K is temperature independent
and equal to 5 × 10−8 cm, which corresponds approximately
to the interatomic distance in this substance [54].

In the minimum thermal conductivity (MTC) regime the
movements of the neighboring atoms are incoherent, so that
there are no propagating phonons. Instead, every atom is acted

upon by the nonequilibrium environment and the mechanism
of this interaction can be described by the Hamiltonian given
by Eq. (1) (see also Fig. 1). Thus, the conductance Kϕ of the
PCV containing one atom can be well described by our model
in which a single oscillator mediates the energy exchange
between two thermal reservoirs. Then, by virtue of Eq. (92)
the thermal conductivity is given by

κmin = Kϕ/�0, (94)

where �0 is a constant of the order of the interatomic distance
and Kϕ = K is given by the general expression, Eq. (43), and
its limiting cases such as Eq. (48).

Let us consider the classical limit of high temperatures,
Eq. (48), when Eq. (94) takes the form

κmin ≈ kB

4τp�0
= kBγ̂

4�0
. (95)

This has to be compared with another expression for the MTC
which is based on the atomic density n and elastic constants
[45,47],

κmin = 0.4kBn2/3(vl + 2vt ). (96)

Here vl and vt are the longitudinal and transverse speeds of
sound, respectively. This is the sum of the contributions of the
three spatial degrees of freedom. Taking into account that

n2/3 ∼ 1

�2
0

,

κmin can be estimated as

κmin ∼ kB

�0

vav

�0
. (97)

Hereafter we will drop the numerical prefactors. The charac-
teristic time scale �0/vav is the time of flight of a phonon over
the interatomic distance. The incoherence of the neighboring
atoms means that the phonons lose their coherence over this
time interval. This is exactly the meaning of the decoherence
time τϕ ∼ �0/vav. In our model the relaxation time τp is
determined by the strength of the coupling between the
oscillator and the thermal baths. It is the relaxation time of
the momentum of the oscillator. Thus, in the MTC regime τϕ

and τp are equivalent quantities,

τp ∼ τϕ ∼ �0

vav
(98)

and the expressions for the MTC given by Eqs. (95) and (96)
are qualitatively and even quantitatively similar.

Moreover, since the standard definition of the Debye
frequency is ωD ≡ kBθD/h̄ ∼ vav/�0, we see that in the MTC
regime the relaxation time in our model must be

τ−1
p = γ̂ ∼ ωD. (99)

The frequency ω0 is the highest frequency associated with
atomic vibration and it must be also of the order of Debye
frequency, ω0 ∼ vav/�0 ∼ ωD. The last parameter of the model
is the cutoff frequency D, which defines the maximum
frequency of the modes of the thermal baths that are coupled
to the mediator. In the context of solid substances this cutoff
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also must be of the order of the Debye frequency. Thus,
we come to conclusion that the range of parameters within
which the Hamiltonian model given by Eq. (1) is applicable to
the description of the minimum conductivity regime is rather
narrow and is given by

ω0 ∼ γ̂ ∼ D ∼ ωD. (100)

As an example, we can take the data from Ref. [54] for
selenium at temperatures above 100 K. The value of ther-
mal conductivity κmin ∼ 0.5 × 10−2 WK−1cm−1. Comparing
this value with Eq. (95), and taking into account that the
characteristic interatomic distance �0 ≈ 5 × 10−8 cm, we
find γ̂ ∼ 1013 s−1. The Debye temperature for selenium is
θD ∼ 250 K, so that ωD ∼ 3 × 1013 s−1 and the condition
given by Eq. (99) is satisfied. Thus, in a highly disordered
substance the oscillator enclosed inside the PCV is rather
overdamped, ω0τp � 1. Although this is only an estimate, we
use it in order to illustrate the potential applications of our
model. A more detailed comparison with the experimental
data needs to involve the specific heat also calculated within
the framework of the same model.

IX. JOSEPHSON JUNCTIONS

Finally, we can mention that for some potential applications
of our model, such as the Josephson junctions, all the model’s
parameters are already experimentally known. This enables
making valuable predictions about the physical behavior of
the corresponding system. In the case of the Josephson
junction, the particle’s coordinate x in the Langevin equation
is substituted by φ which is the phase difference between the
wave functions describing the state of condensate of Cooper
pairs in the contacting superconductors kept at different
temperatures. Here ω0 is the plasma frequency and γ̂ =
γ /m = 1/RC with R and C being the junction resistance
and capacitance, respectively [55]. Characteristic values for
ω0 can vary between 1010 and 1014 s−1, depending on the
current density. For tunnel junctions, when γ̂ /ω0 is usually in
the range 0.001–0.1, the damping is weak. For junctions with
nontunneling conductivity and in the form of point contacts
or thin-film microbridges [56], γ̂ /ω0 � 1 and the damping is
large.

X. SUMMARY

In conclusion, we have considered the heat transport
between two thermal reservoirs mediated by a quantum par-
ticle using the generalized quantum Langevin equation. Both
thermal reservoirs are described as ensembles of harmonic
modes using the Drude-Ullersma model and the mediator is
also treated in the harmonic approximation. The expressions
obtained for the heat current and thermal conductance are
valid for arbitrary coupling strength between the mediator
and the reservoirs. The cutoff frequency, which characterizes
the thermal reservoirs, can also be arbitrary. The obtained
results are analyzed for different temperatures regimes and
different strengths of the coupling parameter. The dependence
of the thermal conductance on the coupling strength shows
a maximum and the temperature dependence of this quantity
reveals a plateau at intermediate temperatures, similar to the

classical plateau that corresponds to the high-temperature
limit.

The results are applied to a model of a chain made out of
macroscopically large, but finite subsystems, each described
by the Drude-Ullersma model. These subsystems are coupled
to each other through a quantum mediator. As long as the
subsystems are large enough, so that their energy changes
slowly in comparison with the relaxation rate of the mediator’s
energy, Fourier’s law follows as a differential form of the
energy continuity equation. It is important to notice that at
no point this derivation relies on any assumptions outside the
framework of the Drude-Ullersma model. Thus, it may be
considered as one of the few examples of rigorous derivation
of Fourier’s law from the first principles, at least on the time
scale that leaves the modes of the thermal baths in thermal
equilibrium.

We have applied our results to explain the observed
anomalously large heat flux between STM tip and substrate.
Our conclusion is that the effect is due to the mediating role
of the CO molecule placed in the tip-substrate gap. We also
outlined the approach by which our model can be applied in
order to understand thermal conductivity of highly disordered
substances—the minimum thermal conductivity—and to the
nonequilibrium Josephson junction.
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APPENDIX

In the second way, at t < 0, the dynamical variables x2i(t)
and p2i(t) of the second bath are determined by relations to
(32) and (33), while x1i(t) and x1i(t), which now incorporate
the quantum system, are determined as

x1i(t) =
∑
k=0

√
h̄

2mνiν1k

ek
i (a+

1ke
iν1k t + a1ke

−iν1k t ) (A1)

and p1i(t) = m1i ẋ1i(t). Here ek
i are orthonormal eigenvectors

[7]:

ek
i =

√
D2 + ν2

k

D2 + ω2
i

2�ωi sin φ(ωk)

π
(
ω2

i − ν2
k

) . (A2)

Taking into account (34) and (A1), one finds

〈x1i(0)x1j (0)〉 = h̄

2
√

m1im1j

∑
k

ek
i e

k
j

νk

coth
β1h̄νk

2
, (A3)

〈p1i(0)p1j (0)〉 = h̄
√

m1im1j

2

∑
k

νke
k
i e

k
j coth

β1h̄νk

2
, (A4)

and 〈p1i(0)x1j (0) + x1j (0)p1i(0)〉 = 0 as before. Using these
relations, the first two sums in Eq. (28) can be recast
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into

1

2m

∑
i=1

C1i

m1i

cos(ωit)j
(a)
1

= 4h̄γ1D
2

π3m

∑
k

�νk

(
D2 + ν2

k

)

× sin2 φk coth
β1h̄νk

2
F (a)

1 (νk)F (a)
2 (νk) (A5)

and

1

2m

∑
i=1

C1iωi sin(ωit)j
(b)
1

= 4h̄γ1D
2

π3m

∑
k

�
D2 + ν2

k

νk

× sin2 φk coth
β1h̄νk

2
F (b)

1 (νk)F (b)
2 (νk). (A6)

In Eqs. (A5) and (A6),

F (a)
1 =

∑
i=1

�ω2
i cos ωit(

D2 + ω2
i

)(
ω2

i − ν2
) , (A7)

F (a)
2 =

∑
n=1,2,3; i=1

gn�ωi[μn sin ωit − ωi cos ωit](
μ2

n + ω2
i

)(
D2 + ω2

i

)
(ω2

i − ν2)
, (A8)

F (b)
1 = −∂tF (a)

1 , F (b)
2 = −∂tF (a)

2 . (A9)

Using [57], the above summations can be carried out accurately
and the result is

F (a)
1 (ν) = π

2

ν

D2 + ν2

cos[νt + φ(ν)]

sin φ(ν)
, (A10)

F (a)
2 (ν) = π

2

1

D2 + ν2

3∑
n=1

fn

μ2 + ν2

×
[
μn

sin[νt + φ(ν)]

sin φ(ν)
− ν

cos[νt + φ(ν)]

sin φ(ν)

]
, (A11)

and F (b)
1 (ν), F (b)

2 (ν) are determined from (A9). In the de-
rived expressions we disregarded all contributions that are
exponentially decaying in time. As in the first way, after
substituting F (a,b)

1,2 into (A5) and (A6) contributions that
contain the product sin[νt + φ(ν)] cos[νt + φ(ν)] cancel each
other, and the other time-dependent terms will be proportional
to sin2[νt + φ(ν)] + cos2[νt + φ(ν)] = 1. As is also clear, the
coefficient in the product F (a,b)

1 F (a,b)
2 is inversely proportional

to sin2 φk and is canceled by similar factors in Eqs. (A5) and
(A6). This eliminates the dependence on initial conditions
related to whether the central particle was initially connected
or not to the first bath. These observations prove explicitly
the existence of the steady state in the presented mode and
its uniqueness. Finally, replacing the summation over k by the
integral results in the same expression (40) for 〈Pν〉(ab).

[1] A. Dhar, Adv. Phys. 57, 457 (2008).
[2] Y. Dubi and M. Di Ventra, Rev. Mod. Phys. 83, 131 (2011).
[3] Molecular Electronics, edited by J. Jortner and M. Ratner

(Blackwell Science, Oxford, 1997).
[4] P. Hanggi, M. Ratner, and S. Yalikari, Chem. Phys. 281, 111

(2002).
[5] A. O. Caldeira and A. J. Leggett, Physica A 121, 587 (1983).
[6] A. E. Allahverdyan and Th. M. Nieuwenhuizen, Phys. Rev. Lett.

85, 1799 (2000).
[7] Th. M. Nieuwenhuizen and A. E. Allahverdyan, Phys. Rev. E

66, 036102 (2002).
[8] M. Michel, G. Mahler, and J. Gemmer, Phys. Rev. Lett. 95,

180602 (2005).
[9] Y. Dubi and M. Di Ventra, Phys. Rev. E 79, 042101 (2009).

[10] M. Michel, M. Hartmann, J. Gemmer, and G. Mahler, Eur. Phys.
J. B 34, 325 (2003).

[11] D. Segal, A. Nitzan, and P. Hanggi, J. Chem. Phys. 119, 6840
(2003).

[12] M. Michel, J. Gemmer, and G. Mahler, Int. J. Mod. Phys. B 20,
4855 (2006); and references therein.

[13] K. Saito, Europhys. Lett. 61, 34 (2003).
[14] F. Bonetto, J. L. Lebowitz, and L. Rey-Bellet, in Mathematical

Physics 2000, edited by A. Focas, A. Grigoryan, T. Kibble, and
B. Zagarlinski (Imperial College Press, London, 2000).

[15] I. R. Senitzky, Phys. Rev. 119, 670 (1960).
[16] H. Mori, Prog. Theor. Phys. 33, 423 (1965).
[17] G. W. Ford, M. Cac, and P. Mazur, J. Math. Phys. 6, 504 (1965).
[18] H. Haken, Rev. Mod. Phys. 47, 67 (1975).

[19] Y. L. Klimontovich, Statistical Theory of Open Systems (Kluwer,
Amsterdam, 1997).
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