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Virial expansion coefficients in the harmonic approximation
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The virial expansion method is applied within a harmonic approximation to an interacting N -body system of
identical fermions. We compute the canonical partition functions for two and three particles to get the two lowest
orders in the expansion. The energy spectrum is carefully interpolated to reproduce ground-state properties at
low temperature and the noninteracting high-temperature limit of constant virial coefficients. This resembles the
smearing of shell effects in finite systems with increasing temperature. Numerical results are discussed for the
second and third virial coefficients as functions of dimension, temperature, interaction, and transition temperature
between low- and high-energy limits.
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I. INTRODUCTION

The virial expansion is a classical concept [1–4] that
has been extended to be applicable for quantum mechanical
systems [5]. The expansion is in terms of few-body correlations
and therefore is most efficient when the influence of N -body
effects decreases with N . In practice, this decrease has to
be very fast because higher-order correlations are extremely
difficult to obtain by accurate calculations. This fact is not
obvious since only the spectrum of N interacting particles
is needed, not wave functions or structures nor any other
properties. However, obtaining these spectra implies solving
the N -body problem, which is already demanding beyond two
particles for general interactions.

In the classical textbook by Huang on statistical mechanics
[6], the virial expansion is discussed for the quantum me-
chanical case and it is elegantly demonstrated how the second
virial coefficient can be obtained from knowledge of the two-
body scattering phase shift and bound-state spectrum (when
present). This was subsequently generalized in the seminal
paper of Dashen, Ma, and Bernstein [7] where a formulation
of statistical mechanics in terms of the scattering S matrix is
given. The formulation gives a prescription for calculating
virial coefficients at any order, and shortly thereafter the
behavior of the third-order coefficient at low temperature was
obtained via the S-matrix method [8]. The S-matrix approach
to virial coefficients is still an active research topic [9] with
recent applications in the field of cold atomic gases [10].
However, since determining the S matrix in a general system
with multiple particles is a highly nontrivial task, it is valuable
to pursue alternative ways of approaching the virial expansion.

Approximations or assumptions are unavoidable at some
point. The traditional strategies have been either to limit the
Hilbert space allowed for the variational many-body wave
functions or to design schematic Hamiltonians aiming for
specific features. The latter approach requires great care
and physical intuition to retain the necessary features of
the Hamiltonian that will accurately describe the phenomena
under study. An approach along this second line of reasoning
is the use of harmonic Hamiltonians where interaction terms
are replaced by harmonic oscillators. This is extremely
convenient from a computational point of view as many
aspects become analytically addressable for both fermionic
and bosonic systems [11–14].

The replacement of one- and two-body terms in the Hamil-
tonian by harmonic forms leaves the problem of determining
the parameters of the harmonic Hamiltonian according to given
criteria. Here one must again take guidance from physical
properties and aspects of the system that are crucial for the
system under study. Recently, we formulated an approach
that explores the N -body problem in an external parabolic
confining potential by fixing the two-body interactions to
the properties of an exactly solvable problem in the same
geometry [15]. The two-body information needed is the energy
eigenvalues and structural properties of the wave function such
as radial averages.

The example studied in Ref. [15] was short-range inter-
acting particles in a harmonic trap for which the two-body
problem can be exactly solved in the zero-range limit [16].
Within the field of cold atomic gases, this solution was
subsequently confirmed by different experimental groups [17].
The model studied in Ref. [16] has since been used as a
starting point in both nuclear and cold atomic gas physics [18].
Recently, the harmonic approximation with parameters fixed
to exact two-body properties has been applied to particles that
interact via dipole forces [19–23] and shown to accurately
reproduce numerical few-body results for moderate to strong
dipole strengths [24–27].

This harmonic method has also been extended to the
thermodynamical regime at finite temperature [11,12,28],
where it has been shown using a path-integral formalism that
the canonical partition function for a given particle number can
be obtained [11,14,29–31]. Here we consider an alternative
approach that uses exact diagonalization of the Hamiltonian
and subsequent calculation of the relevant degeneracies in
the energy spectrum for a given number of particles [28].
This is in contrast to the usual approximation using the grand
partition function where only the average particle number is
conserved. The method applies to both identical bosons and
fermions as well as distinguishable particles and combinations
of all these possibilities [15,20,28]. The difficult part is to find
the degeneracies of the N -body spectrum for the specified
symmetries required by quantum statistics. The energies
themselves are easily found from the harmonic oscillator
solutions.

Here we consider the virial expansion within the harmonic
Hamiltonian approximation for identical fermions. This paper
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is a natural extension of Ref. [28], where the thermodynamics
of small to moderate size systems of fermions and bosons was
considered by direct computation of the partition function.
This requires a numerically efficient determination of the level
degeneracies, which, however, is possible only up to moderate
particle numbers (N ∼ 20) even in a harmonic model. The
virial expansion is usually a rapidly converging series and
we therefore expect to be able to compute coefficients within
the harmonic approach. However, there are some subtleties
with the convergence of the coefficients that must be carefully
handled. Therefore we focus almost exclusively on the formal
development of the virial expansion within the harmonic
approximation.

A motivation for our work is the recent investigation of
universal thermodynamics within cold atomic gas experiments
[32] where the virial expansion has been successfully applied
[33]. However, the expansion is general and is applicable to
other fermionic systems. While the typical condensed-matter
and cold atom fermion systems have two internal (spin or
hyperfine spin) components, we consider the case of single-
component fermions here in order to keep the formalism sim-
ple while still retaining the full quantum statistical properties
of a Fermi system. Multicomponent fermionic and bosonic
systems will not be considered in this study.

The purpose of the present paper is to formulate and explore
the harmonic method and the virial expansion to prepare for
future applications to systems in both cold atomic gases and
nuclear physics as well as condensed-matter systems. The
paper is organized as follows. We describe the ingredients
of the method in Sec. II. Numerical illustrations for the lowest
virial coefficients follow in Sec. III. In Sec. IV we summarize
and provide an outlook for future directions of interest.

II. THEORY

We first present general definitions of the crucial ingredi-
ents. Then we apply the formulation to the results of a system
of N particles described by a coupled set of harmonic oscillator
potentials. The approach to the high-temperature limit is finally
modified to exhibit the behavior corresponding to the correct
high-energy spectrum.

A. Basic definitions

The classical virial expansion is an expansion of the
equation of state of a gas of identical particles, usually in
powers of the number density ρ (see, e.g., Refs. [1–4]):

p = kBTρ[1 + B2(T )ρ + B3(T )ρ2 + · · ·], (1)

where p is the pressure, kB is Boltzmann’s constant, T is
the temperature, and the Bi’s are the virial coefficients of
the expansion. In the classical expansion, they are related to
the intermolecular or interatomic potentials of i interacting
particles. The advantage of the expansion is that it reveals
deviations from ideal gas behavior by examining just the
few-body aspects of the system. The leading term is then
the ordinary ideal gas expression for a non-interacting system.
The second term in the classical expansion in three dimensions

is given by the B2 coefficient

B2 = −1

2

∫
{exp[−βV12(r)] − 1}d3r, (2)

where V12 is the interparticle potential depending on the
relative coordinate r and β = 1/kBT . The integral in Eq. (2)
is known as a configuration integral and from it one can
see that this coefficient converges only for potentials that
decay faster than 1/r3. The convergence in two dimensions
is correspondingly achieved only when V decays faster than
1/r2. The general coefficient is

Bi = − i − 1

i!V

∑
I,

where V is the volume of the system and I denotes all
independent i-cluster integrals. The i-cluster integrals are
all the independent clusters containing the i particles, first
presented graphically in Ref. [34]. A cluster in this context
can be visualized graphically by thinking of i numbered
circles with lines connecting them symbolizing the interaction
between those particles. These lines can be drawn in many
different ways; the only requirement for the i cluster is that all
i atoms or molecules must be connected to at least one other
member of the system. The quantum mechanical version of
the cluster expansion was developed at around the same time
in Ref. [5].

For a system of quantum mechanical particles with Fermi
or Bose statistics, the expansion is most commonly performed
in the fugacity z = exp (βμ) of the system, where μ is the
chemical potential of the N -body system. The grand canonical
partition function Z is written as an expansion in z,

Z = 1 + zQ1 + z2Q2 + · · · , (3)

which translates into an expansion for the grand thermody-
namic potential �,

� = −kBT Q1[z + b2z
2 + b3z

3 + · · ·]. (4)

The first virial coefficients can be explicitly written

b2 = (
Q2 − Q2

1

)/
Q1, (5)

b3 = (
Q3 − Q1Q2 + Q3

1/3
)/

Q1, (6)

b4 = (
Q4 − Q1Q3 + Q2

1Q2 − Q2
2/2 − Q4

1/4
)/

Q1, (7)

where QN is the canonical partition function for N particles
of the proper symmetry, that is,

QN =
∑

j

g
(N)
j exp

( − βE
(N)
j

)
, (8)

where g
(N)
j and E

(N)
j are the degeneracy and energy of

the j th state of the N -body system. Thus QN can be
calculated solely from the energy spectrum of the N -body
system and all thermodynamic quantities can then be obtained
from � in Eq. (4) to the order desired. The classical virial
expansion [Eq. (1)] can be recovered from the quantum version
introduced above by using 〈N〉 = − ∂�

∂μ
|T ,V and � = −pV

(see, for instance, Ref. [35], where the relation of Bi and bi is
also discussed). In the present case we have an external trap
and the volume must be suitable translated into parameters of
the trap before making detailed comparisons to experiments
or other studies [36].
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In practical calculations, it is more convenient to consider
the difference between interacting and noninteracting sys-
tems. We then consider the differences �Qn = Qn − Q(1)

n

and �bn = bn − b(1)
n , where the superscript (1) denotes a

noninteracting system having the same N -body fugacity z.
We can then rewrite Eq. (4) as

� = �(1) − kBT Q1[�b2z
2 + �b3z

3 + · · ·], (9)

where �(1) is the grand thermodynamic potential of the
noninteracting system with the same fugacity. The differences
of the virial coefficients in Eqs. (5)–(7) become

�b2 = �Q2/Q1, (10)

�b3 = �Q3/Q1 − �Q2, (11)

�b4 = �Q4/Q1 − �Q3 + Q1�Q2

− (
(Q2)2/2 − (

Q
(1)
2

)2
/2

)/
Q1. (12)

These definitions and expressions are general and now appli-
cable to a specified set of potentials producing the partition
functions Qn and the corresponding (differences of) virial
coefficients.

B. Harmonic approximation

The one- and two-body interactions for the N -body system
are approximated by second-order polynomials in Cartesian
coordinates. The Hamiltonian is a sum of similar terms from
each spatial dimension H = Hx + Hy + Hz. In the present
work we consider the two- and three-dimensional cases. For
identical particles of mass m the Hamiltonian of the x direction
is

Hx = − h̄2

2m

N∑
k=1

∂2

∂x2
k

+ e
1

8
mω2

in

N∑
i,k=1

(xi − xk)2

+ 1

2
mω2

0

N∑
k=1

x2
k + N (N − 1)

2
Vsx, (13)

where xi is the coordinate of particle i, ω0 and ωin are
frequencies of the one- and two-body interactions, and Vsx is
a constant adjusting the energy to the desired value. The factor
1/8 in the second term comes from the use of the reduced mass
equal to m/2 and to avoid double counting in the sum.

The frequencies and the constant shift can be chosen to
reproduce certain properties of a modeled system as discussed
in Ref. [15]. How these parameters are chosen does not affect
the computation of the virial coefficients, which therefore are
obtained as functions of the parameters in the Hamiltonian.
The method is general and applicable as soon as a Hamiltonian
of the oscillator form is available. It is, however, still useful
to illustrate by describing the procedure for a specific system.
We focus on a system of identical, spin-polarized fermions
confined in an external trap [15] where the fermions interact
via a short-range potential. Due to the Pauli principle, the
particles cannot interact in the spherical s-wave channel and
the lowest nontrivial interaction will be odd and of the p-wave
kind (higher odd partial wave channels will be neglected). In
the zero-range limit, the model of Busch et al. [16] can still
be solved for p-wave interactions in both three- [37] and two-
dimensional [38] traps. We adjust the interacting frequency ωin

to reproduce some property related to the spatial extension of
the correct two-body wave function (the average square radius
in the two-body ground state in the trap). The shift Vsx is
then added to make sure that the exact two-body ground-state
energy is reproduced by the oscillator potential. Notice that
this (constant) energy shift does not influence thermodynamics
in any essential way. We therefore ignore it for most of our
discussion, except for some comments near the end of Sec. III.

The accuracy of the harmonic approximation should depend
on the degree to which the physical two-body potential allows
a quadratic expansion. Naively, this should be the case for
potentials that have a sizable attractive pocket, which is true
for many molecular potentials that allow a large number of
bound states [39]. An example is the Morse potential, which
has been explored in the harmonic approximation in Ref. [14].
As mentioned in the Introduction, for dipolar particles, the
harmonic approximation is extremely accurate, even in the
regime of small dipole moments when suitable adjustment
of the harmonic frequency is performed [19–21]. In fact, even
when the real potential is shallow, the energy can be reproduced
to a few percent accuracy with a careful choice of Gaussian
wave function, as shown in Ref. [21].

For typical cold atomic gas setups, one has harmonically
trapped atoms interacting via short-ranged interactions. In
the idealized limit of zero-range interactions, the two-body
problem is exactly solvable, as demonstrated by Busch et al.
[16]. In Ref. [15], the exact solution was used to fit the
oscillator parameters that provide the input for the harmonic
approximation. In the strongly bound limit where a deep
two-body bound state occurs, this choice of parameters leads
to the same scaling of the energy with particle number that
is observed in variational approaches [40,41]. Also, when the
interactions have a diverging two-body scattering length (the
unitarity limit), the two-body wave function becomes similar
to the noninteracting wave function in the trap [16] and we
therefore expect the harmonic approximation to be very good.
These features are clearly seen in the one-dimensional case
as discussed in Ref. [42]. As discussed in Ref. [16], the one-
and three-dimensional cases are very similar. The scalings
away from these limiting cases are similar, but not identical
to other approaches. In general, we expect the harmonic
approximation to give good qualitative results for strong
interactions, but do not expect perfect quantitative agreement
with variation or numerics. On the quantitative side, we note
that for one-dimensional systems, the three-body energy can be
reproduced to within 10% in the strongly bound limit [42]. We
thus estimate similar accuracy on the third virial coefficient. At
this point we leave the question of how to adjust the two-body
parameters of the Hamiltonian and proceed with a general
discussion for arbitrary parameters.

The solution to Eq. (13) is found by a coordinate trans-
formation that splits the Hamiltonian into N independent
harmonic oscillators with new coordinates and frequencies
related to the normal modes of the N -body system. For
N identical particles two new normal mode frequencies are
produced, that is, the external trap frequency ω0 corresponding
to the center of mass motion and the N − 1 times degenerate
frequency ωr given by

ω2
r = Nω2

in

/
2 + ω2

0. (14)
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The degenerate frequencies correspond to different types of
intrinsic (relative) motion, which for two particles is simply
oscillations in the relative coordinate, but in the general case
corresponds to different normal modes of the system. The
N -body energy spectrum is

Ej = Ec.m. + Erel + VS, VS = D

2
N (N − 1)Vsx, (15)

Ec.m. = h̄ω0

(
n0(j ) + D

2

)
, n0(j ) =

D∑
i=1

n0,i(j ), (16)

Erel = h̄ωr

(
nr (j ) + D

2
(N − 1)

)
+ VS, (17)

nr (j ) =
D∑

i=1

N−1∑
k=1

nk,i(j ) =
D∑

i=1

nr,i(j ), (18)

where j is the index of the N -body states. Here n0,i is the
number of excitation quanta in the center-of-mass degree of
freedom in the ith direction, while nk,i is the number of
quanta in the kth of the N − 1 degenerate ωr modes in the
ith direction. The energy state j is thus given by specifying
the number of excitation quanta in each normal mode for all
dimensions. Here we have divided into center of mass and
relative contributions since in the equal mass case studied here
these can be separated completely.

C. Lowest virial coefficients

The partition function for one particle Q1 is the trivial
problem of one particle in an external harmonic trap of D

dimension. Since it has no other particles to interact with,
the spectrum arises only from center of mass motion for one
particle. The partition function is in this case found from
Eqs. (8) and (16) to be

Q1 =
(

exp(−�0/2T )

1 − exp(−�0/T )

)D

= 1

2D
sinh−D

(
�0

2T

)
, (19)

where �0 = h̄ω0/kB .
The partition function for two particles Q2 is found from

Eqs. (8) and (15)–(17) and can be factorized into center of
mass and relative contributions. The center of mass piece is
completely symmetric in all the coordinates, so it plays no role
in determining the overall symmetry of the system. It is just a
geometric series in D dimensions and in fact equal to Q1 since
the frequency is that of the external trap.

The relative motion corresponds to the difference between
the two individual coordinates. For fermions this motion
then must provide the antisymmetry of the wave function
corresponding to an odd number of relative oscillator quanta
nr (j ) in Eq. (17). The energies are completely specified by
the quanta and the related degeneracy is easily counted for the
relative motion of two particles. To obtain an analytical closed
solution, it is convenient to consider the individual Cartesian
quanta. In two dimensions (2D), one merely needs to keep
either quanta nr,x or nr,y odd in the x or y direction. In 3D,
there are two possibilities, in that all three quanta are odd
or two are even and one is odd. With these restrictions the
summation in Eq. (8) leads for D = 2 to

Q2 = Q1

(
exp(−�r/T )

1 − exp(−2�r/T )

)2

exp(−�S/T ), (20)

where �S = VS/kB and �r = h̄ωr/kB . For D = 3, we find
instead

Q2 = Q1 exp(−�S/T )

× 3 exp(−5�r/2T ) + exp(−9�r/2T )

[1 − exp(−2�r/T )]3
. (21)

The next terms involve the partition function Q3 for the
three-body system. A completely closed form solution for the
partition function is not found and we keep the expression as
an energy sum over three-body states. The center of mass
summation is again performed analytically and Eqs. (15)
and (17) lead to the other factors amounting in total to

Q3 = Q1 exp(−�S/T )
∞∑
l=0

glexp[−(l + D)�r/T ], (22)

where the summation over all states is reduced to run over all
integers. The difficulty is then only to know the corresponding
degeneracy gl . This number of states of a given excitation
energy is found by the method described in Ref. [28]. The
expression in Eq. (22) is formally the same in two and three
dimensions, but the degeneracy factors differ substantially.
The infinite sum must in practice be truncated at some level
of excitation. Ideally this is after convergence is reached.
However, this depends strongly on the value of the temperature
and we therefore first must decide how large the T values we
need to investigate.

The differences between interacting and noninteracting
virial coefficients are found from Eqs. (10) and (11). The
noninteracting partition functions are structurally the same
as the interacting ones, only with �r replaced by �0 and
�S = 0. Using the expressions in Eqs. (20), (21), and (22),
we can therefore easily find �b2 and �b3. For �b2 in two
dimensions we explicitly get

�b2 = exp(−�S/T )

(
exp(−�r/T )

1 − exp(−2�r/T )

)2

−
(

exp(−�0/T )

1 − exp(−2�0/T )

)2

(23)

and a slightly more complicated expression for three dimen-
sions from Eq. (21). In the same way we can of course rewrite
�b3 in terms of the expression for Q3 in Eq. (22), but due to the
lack of closed form it does not provide any further information.

Notice that the low-temperature limit of the virial coeffi-
cients above is determined by the value of the shift �S . From
Eq. (23) we see that �b2 will vanish for T → 0 whenever
we have �S + 2�r > 0 and similarly for the higher virial
coefficients. In the following we will discuss mostly the case
�S = 0, i.e., no shift at all, since this is the relevant case for
thermodynamics. For generality, we comment briefly on the
influence of the shift for all temperatures in Sec. III.

D. High-temperature limits

At high temperature, the interacting system should ap-
proach a noninteracting system as the kinetic energy dominates
the potential. This does not imply that all �bi must vanish at
large T , since deviations in the low-energy spectrum between
interacting and noninteracting systems easily produce different
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large-temperature contributions. This can be seen by dividing
the sum over states in the partition functions in low- and
high-energy parts. Even if we assume that the high-energy
interacting and noninteracting spectra become equal and would
thus not contribute to �bi , the low-energy parts remains
different and this yields a contribution to the virial coefficient
for all temperatures. However, such a difference must remain
finite since it arises from a finite energy interval.

As stated before, the virial expansion does not work for
potentials that do not vanish at a fast enough rate, so one
would think that the harmonic potential, which does not vanish
at all, would cause problems. Indeed, if we use the derived
expressions all our �bi diverge with increasing temperature.
The origin of this problem is simply that the energy spectrum is
obtained for the N -body solution of a temperature-independent
Hamiltonian adjusted to reproduce ground-state properties.
This does not account for the influence of temperature on
the effective interactions and in turn on the energy spectrum.
This may also be expressed in terms of an excitation energy
dependence of the effective interaction as seen, for example,
in the variation of the mean free path. Since excitation energy
on average can be related to temperature, these formulations
are equivalent.

To pinpoint the problem and subsequently resolve it we
start with �b2. In the limit of high temperature, Eq. (23) can
be expanded to leading orders in T to give

�b2(T → ∞) = T 2

(
1

4�2
r

− 1

4�2
0

)
− T

�S

4�2
r

. (24)

Equivalently, we find for three dimensions that

�b2(T → ∞) = T 3

(
1

2�3
r

− 1

2�3
0

)
− T 2 �S

2�3
r

+ T

4

(
�2

S

�3
r

+ 15

�r

− 15

�0

)
. (25)

Obviously �b2 diverges as T to the power of the dimension
D, unless of course interacting and noninteracting frequencies
are precisely equal. The following orders are independent of
T or vanishing with increasing T .

The unphysical divergence is here clearly seen to originate
from the difference between the energy spacing found by a
fit to ground-state properties and the spacing for a noninter-
acting system. The proper thermodynamics requires a correct
spectrum for all energies or temperatures.

In order for �b2 to be finite at large temperatures, ωr

must approach ω0. From Eq. (14) this seems most rea-
sonably achieved by a vanishing interaction frequency ωin.
Furthermore, Eqs. (24) and (25) imply that the energy shift
adjusted to fit the ground-state energy also must vanish in the
large-temperature limit. To get finite �b2 we introduce cutoff
functions F (T ) and G(T ) into ωin and VS :

ω2
r = N

2
F (T )ω2

in + ω2
0, VS → VSG(T ). (26)

Without further constraints, there is a great deal of freedom
in the form of F (T ) and G(T ), but they must satisfy the
conditions of approaching zero respectively as 1/T D and
1/T D−1 at high temperatures. The simplest such

functions

F (T ) =
(

T0

T + T0

)D

, G(T ) =
(

T0

T + T0

)(D−1)

, (27)

where T0 is a cutoff parameter that indicates at what
temperature the spectrum continuously should shift to the
noninteracting spectrum. These functions regularize the high-
temperature behavior and now �b2 approaches a constant at
high temperatures. The limits in the different dimensions can
be found from Eqs. (24) and (25) by use of Eqs. (26) and (27),
that is,

�b2(T → ∞) = −N

8

ω2
in

ω2
0

(kBT0)2

(h̄ω0)2
− VSkBT0

4(h̄ω0)2
(28)

for two dimensions, and for three dimensions we get

�b2(T → ∞) = −3N

8

ω2
in

ω2
0

(kBT0)3

(h̄ω0)3
− VS(kBT0)2

2(h̄ω0)3
, (29)

where N = 2 for this second virial coefficient. The high-
temperature limit is then determined by the interaction
frequency, the ground-state energy shift, and the cutoff
temperature. The two terms have opposite sign since VS is
negative and initially introduced to balance the zero-point
energy of the oscillator such that large ωin is correlated with a
large negative VS .

Once �b2 is regularized we turn to �b3, which is more
complex, as seen in Eq. (11). It consists of two terms, the
difference between interacting and noninteracting partition
functions for three particles and �Q2 = Q1�b2. This latter
term contains the already regularized factor �b2, but Q1 in
Eq. (19) also diverges as → T D/�D

0 at high temperature.
Therefore �b3 can only remain finite in the limit when the
difference (Q3 − Q

(1)
3 )/Q1 diverges precisely as Q1.

However, this is not even sufficient because the T D

divergence from Q1 leads to divergence of the terms in
�b2 vanishing as 1/T in two dimensions and as 1/T and
1/T 2 in three dimensions. These terms all must be canceled
by corresponding diverging terms in (Q3 − Q

(1)
3 )/Q1. These

conditions seem impossible to meet, but nevertheless this
miracle seems to occur. We find that �b3 also is regularized
with precisely the same cutoff function as used for �b2

and this occurs in both two and three dimensions. Problems
with divergences in �b3 have been reported by other authors
[43]. They resolved it by separating the system into a 2 + 1
subsystem in which the divergence was then removed. While
we do not need to do this to obtain a finite �b3, the underlying
deep reason for this is still unclear to us.

The form of the cutoff in Eq. (26) can be changed in many
ways. The transition can set in at different temperatures and be
more or less fast. We have chosen to use only one parameter
T0, but we tested with another functional form

F (T ) = [1 − exp(−T0/T )]D, (30)

which has the same high-temperature behavior. Both �b2 and
�b3 are again regularized in the high-temperature limit. The
values of �b2 and �b3 are both larger in magnitude at all
temperatures simply because this cutoff function is larger for
all T .
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Instead of the temperature cutoff in Eq. (26), we could
choose a cutoff in excitation energy. This might at first
appeal as being more physically reasonable since this directly
amounts to changing the N -body spectrum at high excitation
energy to the noninteracting N -body spectrum. However, this
conclusion is rather shaky. Completely different configurations
specified by sets of quantum numbers can give precisely the
same energy. This is easily seen in a single-particle picture
by comparing states of the same total energy arising from a
few particles at very high-lying levels and all others in the
lowest possible levels with the opposite where all particles are
in levels of intermediate energy.

Thus a given excitation energy already corresponds to
an average over many configurations very similar to the
configurations occupied for a given temperature. In any
case, we investigated a cutoff in excitation energy instead of
temperature, that is, expressions of simplicity similar to those
in Eq. (27):

F (E) =
(

E0

E + E0

)D

, G(E) =
(

E0

E + E0

)(D−1)

, (31)

where E is the excitation energy. This function is inserted
in Eq. (26) in the place of F (T ) and when the partition
function is being calculated as the sum over states, the step
in energy taken between states is now dependent on the
position in the spectrum. The mean field spacing is reached for
energies higher than E0. Implementing this cutoff successfully
regularizes �b2, but to remove the divergence for �b3 it is
necessary to use a constant E0 different from that of �b2. No
obvious relation is found and generalizations to higher �bi

seem to be at least very impractical.

III. NUMERICAL RESULTS

The virial coefficients can now be calculated numerically. In
the model they are completely determined from trap frequency
ω0, interaction frequency ωin, shift energy VS , and cutoff
function and related parameters T0. We use the trap frequency
as the energy unit, which implies that results for any other
value of ω0 can be obtained by scaling all energies h̄ωin,
kBT0, and VS by h̄ω0. The energy shift VS is introduced to
adjust to the correct energy and has no effect on eigenvalues
and corresponding wave functions. It is strongly dependent
on which model is approximated. We shall therefore first
investigate the general dependencies on ωin and T0, which
in turn can be related to specific models. Afterwards we shall
separately investigate the dependence on the shift.

A. Virial coefficients

The cutoff parameter is essential for the behavior of the
expansion coefficients. The size of an appropriate value can be
estimated by inspection of the effect it is designed to simulate.
The first excited state appears at an excitation energy of
h̄ωr , which is a single-quasiparticle excitation. Therefore h̄ωr

represents a shell gap to be overcome by thermal excitations.
This gap is known to wash out at a critical temperature T ,
given by kBT 2π2 ≈ h̄ωr (see Refs. [44,45]). This surprisingly
large factor 2π2 ≈ 19.7 suggests a rather small relative value
of T0 proportional to ωr , that is, kBT0 ≈ h̄ωr/2π2.

-1

-0.75

-0.5

-0.25

0

0 5  10  15

Δb
2

kBT/−hω0

FIG. 1. (Color online) Virial coefficient �b2 in 2D as a function
of temperature with a model space of 160 oscillator shells and
zero energy shift. The cutoff used was the function in Eq. (27).
The values of T0 and ωin (in units of ω0) from bottom to top are
(T0,ωin) = (0.51,5.0), (0.25,5.0), (0.13,5.0), (0.25,2.5), (0.13,5.0),
and (0.062,2.5). The T0 values are ωin/2π 2 and twice and half that
value.

To illustrate the dependence we show �b2 in Fig. 1 as
a function of T for different interactions and cutoff values.
We see the general behavior of a second-order increase from
zero at T = 0 and the smooth curvature before bending over to
reach the saturation value. The expansion coefficient is a rather
strongly increasing function of both interaction frequency and
cutoff parameter. The functional form of the cutoff function
in Eq. (27) implies that the saturation value and saturation
temperature both depend rather strongly on T0.

The overall behavior must be understood in the model even
at uninterestingly high temperatures. We continue to show �b3

in Fig. 2 for two dimensions for the same set of parameters as
in Fig. 1, with qualitatively the same behavior, except for the
overall opposite sign. However, the temperature dependence is
faster and the saturation values are larger, as seen for the small
interaction frequency with the small T0. For higher values

0

 0.5
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 1.5

2

0 5  10  15

Δb
3

kBT/−hω0

FIG. 2. (Color online) Same as in Fig. 1 for �b3 in 2D. The
parameters are also the same, but must be read from top to bottom.
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Δb
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 Δ
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ω in/ω0

kBT/−hω0=1.0
kBT/−hω0=2.0
kBT/−hω0=5.0

kBT/−hω0=5.0, T0=ωin/2π

FIG. 3. (Color online) Virial coefficients �b2 < 0 and �b3 >

0 as a function of interaction frequency ωin for three different
temperatures. Notice that from Eq. (14) we always have ωin >

√
2ω0.

On this plot kBT0/h̄ω0 = 0.25 for all curves except the dotted line,
which has kBT /h̄ω = 5.0 and kBT0 = h̄ωin/2π 2 (adjusted at the end
point on the horizontal axis).

we observe a tendency to form a flat region, which quickly
becomes an increasing function.

At low temperature, the coefficients vanish since both the
interacting and noninteracting partition functions go to unity
at low temperature (in the absence of any energy shift). This
might seem odd since our �bi’s are the difference between
a noninteracting and an interacting system, which should
increase at low temperatures when the interactions are more
significant compared to the kinetic energy. Since both of the
partition functions are small at low temperature, the only
signature we see of this is that the relative difference of
the partition functions, for example, (Q2 − Q

(i)
2 )/Q(i)

2 , does
increase.

The effect of the interaction frequency is plainly to increase
the virial coefficient, which could be seen in Figs. 1 and 2. A
more precise dependence on interaction frequency can be seen
in Fig. 3. The coefficients vanish for small ωin, as then there
is no difference between the noninteracting and interacting
systems, but then increase rapidly, especially after ωin > ω0.
The increase is more dramatic at higher temperatures, which
are closer to the saturation value. It does appear, however, that
for any temperature the behavior of the coefficients is faster
than linear.

B. Hilbert space and cutoff function

The apparent lack of saturation for �b3 at high temperatures
is a very unsatisfactory feature. Fortunately, it seems to be
an effect of the model space truncation at high excitation
energies in the calculation of the partition function. This
happens because of the subtle nature of the cancellation that
removes the divergence and leads to saturation. The piece
Q1 in �Q2 in Eq. (11) contains all states to infinitely high
excitation energies since it is calculated analytically. This
piece eventually overwhelms the �Q3 term in Eq. (11), which
is calculated numerically and consequently arises from a
truncated energy spectrum.

0
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 0.05

 0.075

 0.1

0 5  10  15

Δb
3

kBT/−hω0

100 −hω
120 −hω
160 −hω

FIG. 4. (Color online) Virial coefficient �b3 in 2D as a function of
temperature for three different model space sizes. The cutoff function
is that given in Eq. (27). The other parameters are kBT0 = 0.25h̄ω0

and ωin = 2.5ω0.

We demonstrate this in Fig. 4, where we show �b3 for
three different model space sizes. The higher the energies we
include in the numerical calculation, the larger the region of the
flat saturation interval and the larger the temperatures before
the divergence sets in. This is very reassuring, allowing us to
ignore the unphysical region of all temperatures above the flat
region.

One uncertainty in the method to recover the high-energy
noninteraction limit is the function describing the disappear-
ance of shell effects. In Fig. 5 we illustrate this dependence
of the virial coefficients by results from use of different cutoff
functions, that is, the rational expression [Eq. (27)] and the
exponential function [Eq. (30)]. The virial coefficients using
the exponential cutoff are larger for all temperatures before
finally merging into the same high-temperature limit. This is
due to the larger cutoff function at all temperatures, which

-1

0

1

2

0 2 4 6 8  10

Δb
3,

 Δ
b 2

kBT/−hω0

R, kBT0/−hω0=0.25
R, kBT0/−hω0=0.50
E, kBT0/−hω0=0.25
E, kBT0/−hω0=0.50

FIG. 5. (Color online) Virial coeffecients in 2D as a function
of temperature for different cutoff functions. The rational function
cutoffs [Eq. (27)] are labeled with an R and the exponential cutoff
[Eq. (30)] is labeled with an E. Here ωin = 2.5ω0 was used for all the
curves.
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FIG. 6. (Color online) Virial coefficients �b2 (bottom solid line)
and �b3 (top dashed line) in 2D as a function of temperature exam-
ining the effect of the energy shift. The coefficients behave similarly
to what was shown previously, except at very low temperature. For
this plot ωin = 2.0ω0 with Vs = −5.81h̄ω0 and kBT0 = 0.5h̄ω.

leaves the reduction to take place somewhat faster at larger
temperatures, although the same final saturation is reached for
T much larger than T0.

C. Effect of the energy shift

The energy shift in the Hamiltonian has a different effect on
the virial coefficient. We illustrate by the examples in Fig. 6.
The high-temperature limit remains finite by construction, as
shown explicitly in energies [Eq. (28)] for one case. Otherwise
the behavior at high T is very similar to that of zero shift, where
convergence is essential or at least a flat region at high T is
necessary. The energies enter in the partition function in the
exponent. Contributions disappear from energies much higher
than the temperature.

However, at very low temperatures the same contribution
from the shift can produce unphysical results. This is seen at
very low T in Fig. 6, where a narrow and large peak is present
in both virial coefficients. The numerical reason is obvious
since the negative shift divided by a small temperature value
produces a very large value. This occurs for temperatures much
smaller than ω0 and long before the statistical treatment is
meaningful.

The negative shift is not necessarily sufficient for a diver-
gence at low temperatures. The shift energy must completely
eliminate the zero-point energy and thus for polarized fermions
VS < −DNh̄ωr . The parameters in Fig. 6 provide a shift large
enough in magnitude to give a spike towards large positive
values at very low temperatures. This changes the sign of �b2,
as the term containing the shift (small T ) eventually becomes
larger than the noninteracting term in Eq. (23).

For �b3, the singularity at zero temperature comes at a
slightly higher temperature since the shift energy is three times
larger than for two particles. Again this occurs for temperatures
lower than those allowing a statistical treatment.
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FIG. 7. (Color online) Virial coefficients in three dimensions,
�b2 < 0 (lines on the bottom half of the graph) and �b3 > 0 (lines
on the top half of the graph), as functions of temperature. The cutoff
temperature T0 and ωin are varied among the different curves. On
the �b2 side (below zero), from bottom to top, (kBT0/h̄ω0,ωin/ω0) =
(1.00,2.5), (0.50,3.5), (0.50,2.5), (0.50,1.5), and (0.25,2.5). For �b3

(above zero), the lines have the parameters just listed, but in inverse
order. For this plot there is no energy shift VS = 0 and a model space
of 160 shells is used.

D. Three dimensions

We have so far shown results for only two dimensions. The
method is, however, applicable in three dimensions, where
the coefficients look qualitatively similar to those in two
dimensions (see Fig. 7). We notice the increase from zero
at T = 0, then a decreasing derivative resulting in saturation
or in a tendency towards saturation, and finally the divergence
at high temperature for �b3 due to mismatch between the
numerical Q3 and the analytical Q1. The results are more
sensitive to the cutoff parameter because powers that enter in
two dimensions are higher than in three dimensions, as seen,
for example, by comparing Eqs. (28) and (29). Indeed, if one
uses T0 = ωin/2π2, then the magnitude of the coefficients is
quite small, of order 10−2. Also, the truncation effect in �b3

is more sensitive to the cutoff parameter and can begin at
comparatively low temperatures when compared to 2D (see
Fig. 2).

The virial expansion is most efficient when the size of the
coefficients decrease with the order. Therefore, a requirement
of �b3 � �b2 leads to a condition on the maximum size of
T0. This demand is more restrictive for three dimensions than
for two dimensions.

IV. SUMMARY AND OUTLOOK

We have discussed the virial expansion technique and a
quantum mechanical formulation was sketched from an analo-
gous classical expansion. We applied the formulated method to
a harmonic approximation to the N -body problem for identical
fermions. A key step in this approach was the adjustment
of the harmonic one- and two-body parameters to pertinent
properties of the corresponding two-body problem that holds
information about the exact interaction that is approximated
by a harmonic form. Once these were obtained, the resulting
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N -body Schrödinger equation could be solved exactly and
the spectrum could be used to compute the partition function.
The second- and third-order virial expansion coefficients were
obtained by direct calculation of the two- and three-body
partition functions. Here we were interested in the details of
the formal development of a virial expansion and we therefore
varied the parameters of the harmonic interaction terms freely
to study the behavior. The mapping to realistic two-body
properties was straightforward.

The virial expansion could be reformulated in terms of
deviations between noninteracting and interacting systems.
Importantly, the virial coefficients have an unphysical di-
vergence for large temperatures. It arises in the formula-
tion because the increasing temperature populates higher
and higher excited states. Their average properties can be
very far from the ground-state properties and eventually
the results should resemble those of the noninteracting
system where the kinetic energy is decisive. This was
achieved by modifying the energy spectrum by a function
of temperature smoothly connecting the low-temperature
ground-state dominated and high-temperature noninteracting
spectra.

To achieve the goal of removing the divergence, the modi-
fication function must reduce the initial interaction frequency
to zero by a high-temperature behavior where the power of the
temperature is equal to the spatial dimension of the system.
The divergence was removed from the second-order expansion
coefficient and it turned out that the same modification
function removed the divergence from the third-order term.
This result is highly nontrivial since the third-order divergence
is of a very different origin from that of second order.
This was emphasized by an attempt to use an energy- (in
contrast to temperature-) dependent modification function,
which removed the second-order divergence but required an
additional adjustment to remove the third-order divergence.
The temperature modification is then the more promising
approach for applications where higher orders have to be
calculated.

We found that the critical temperature value describing
where the adjustment of the spectrum should take place and
the rate of the modification should be about 2π2 smaller than
the two-body interaction frequency. This is analogous to the
smearing of shell effects by temperature in an N -body finite
system described by its single-particle spectrum. This function
is exponential and the rate is precisely the single-particle
frequency divided by 2π2. In our case the modification
function was chosen to have a rate of change of the N -body
energy spectrum that is a rational function of temperature to a
power that depends on dimension. However, the modification
took place on the energies appearing in the exponent of
the partition function. The precise shape of the temperature
modification function is not essential for the overall properties
unless one considers extreme cases. A sensible choice of
modification function that regularizes the divergence will thus
yield a formalism that can be adjusted to low-energy properties
and make further predictions for the many-body problem.

While we have focused on two- and three-dimensional
systems in the current presentation, a good testing ground
for the formalism discussed would be some of the exactly
solvable models that are known in one-dimensional systems
[46]. A good example is the N -boson problem with zero-range
interactions studied by Lieb, Linniger, and MacGuire [47]
for which the harmonic approximation can be applied [42]
or to dipolar molecules in one-dimensional setups where
N -body clusterized bound states can easily form [48]. In the
strong-coupling domain these should be well described within
a harmonic approximation approach.

In summary, we have demonstrated that the harmonic
approximation employed at the Hamiltonian level gives a
divergent set of virial expansion coefficients that must be
regularized at high temperature. This can be done by a careful
choice of temperature-dependent spectral modification that
will render the virial coefficients finite at all temperatures.
The ease of solving the harmonic N -body problem and
subsequently calculating the virial coefficients makes this an
attractive approach to compute many-body properties.
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