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Thermodynamic phase transitions for Pomeau-Manneville maps
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We study phase transitions in the thermodynamic description of Pomeau-Manneville intermittent maps from the
point of view of infinite ergodic theory, which deals with diverging measure dynamical systems. For such systems,
we use a distributional limit theorem to provide both a powerful tool for calculating thermodynamic potentials as
also an understanding of the dynamic characteristics at each instability phase. In particular, topological pressure
and Rényi entropy are calculated exactly for such systems. Finally, we show the connection of the distributional
limit theorem with non-Gaussian fluctuations of the algorithmic complexity proposed by Gaspard and Wang
[Proc. Natl. Acad. Sci. USA 85, 4591 (1988)].
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I. INTRODUCTION

The major goal of statistical mechanics is to explain the
macroscopic properties of complex systems in terms of a very
small number of parameters by using probabilistic approaches.
As is well known, its primary motivation was the study
of thermodynamical properties of matter based on random
behavior of their very large number of constituents (atom and
molecules). Almost a century after Boltzmann’s seminal work
[1], such approaches were extended to dynamical systems
theory [2–4], a branch that is currently known as thermo-
dynamic formalism [4]. In this scenario, the chaotic dynamics
of an ensemble of trajectories plays the role of randomness
in the many-body dynamics, even for one degree-of-freedom
dynamical systems. The thermodynamic approach has proven
to be a powerful tool in the ergodic theory of hyperbolic
and expanding dynamical systems [4]. Later, there has been
growing interest, mostly by theoretical physicists, in extending
this approach to more general dynamical systems (see Ref. [5]
and references therein), particularly those that exhibit fractal
sets [6–10] or some kind of intermittent behavior [11–16].

Here we deal with phase transitions for Pomeau-Manneville
(PM) maps xt+1 = f (xt ) where f takes the form

f (x) = x(1 + ax1/α) mod 1, (1)

with a > 0 and α > 0 [17]. The remarkable characteristic of
such systems is the intermittent behavior due to the presence of
the indifferent fixed point x = 0, i.e., f (0) = 0 and f ′(0) = 1.
It is important to stress that the global form of f far from
x = 0 is less relevant here. For example, systems behaving
like (1) on [0,x∗), where f (x∗) = 1, exhibit the same statistical
behavior of Eq. (1) since the map on [x∗,1] is given by some
well-behaved function f1 such that f1(x∗) = 0 and f1(1) = 1.
Systems of the type (1) have diverging invariant measure
μ(x) near their indifferent fixed points for 0 < α < 1. More
specifically, the invariant density ω(x) of map (1), where
dμ(x) = ω(x)dx, behaves as

ω(x) ∼ bx−1/α, (2)

near x = 0 [18]. Therefore diverging measure regime of
Eq. (2) leads to a very slow laminar phase near x = 0
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alternating with fast turbulent one elsewhere. Due to this pecu-
liarity, the dynamics of the system (1) exhibit subexponential
instability of the type |δxt | ∼ |δx0| exp(λαtα) for 0 < α < 1
[19]. On the other hand, α > 1 leads to the finiteness of
invariant measure, which is naturally related to the usual chaos
and ordinary Lyapunov exponents.

It is important to point out here the connection between
subexponential instability and the so-called “sporadic random-
ness,” a phenomenon initially studied by Gaspard and Wang
[20]. These authors conjectured that the Kolmogorov-Chaitin
algorithmic complexity Ct for map (1) is proportional to the
number of entrances Nt into a given phase space cell after
a large number of iterations. In this assumption, recently
confirmed in Ref. [19] by means of a Pesin-type indentity, the
statistics of Nt is ruled by non-Gaussian fluctuations involving
Feller’s renewal results [21]. Subsequently, thermodynamic
phase transitions of PM map (1) for 0 < α < 2 was studied
by Wang [12] employing the same approach of [20]. It is also
interesting to note that the sporadic randomness has not only
been verified in PM intermittent maps (e.g., Ref. [19]), but also
suggested as a distinguishing feature in weather systems [22],
noncoding DNA sequences [23], and some linguistic texts [24].

The purpose of this work is twofold. First, we will revisit the
pioneering results of Ref. [12], but now from the point of view
of infinite ergodic theory [25] (for some applications, see also
[19,26]). In this first part some results involving phase tran-
sitions of the so-called topological pressure are considerably
improved. The topological pressure can be interpreted as a free
energy density associated with the ensemble of trajectories. We
also discuss the phase transition related to the Rényi entropy,
extending the results observed in Ref. [11] to the diverging
measure (nonergodic) regime of PM map (1). Finally, we show
the connection between Feller’s sporadic statistics and the infi-
nite ergodic theory. Second, it aims at understanding the phase
transition problem from a dynamical point of view since singu-
lar behavior of thermodynamical quantities does not tell every-
thing about dynamic characteristics of a system. The approach
employed here also show us precisely what happens at each
phase, particularly in the subexponential regime of map (1).

II. TOPOLOGICAL PRESSURE

In the thermodynamic formalism, systems of the type
(1) exhibit continuous phase transition, a situation where
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thermodynamic quantities vary continuously but not analyt-
ically when some external parameter of the system is changed.
The paradigmatic example in the usual statistical mechanics
is the ferromagnetic material at zero external magnetic field:
Ferromagnets lose their spontaneous magnetization when
heated above a specific critical temperature Tc and the
derivative of the magnetization with respect to magnetic field
(susceptibility) diverges at Tc and zero field. As shown in
Ref. [12], the many-body model that most closely resembles
(1) is the Fisher-Felderhof droplet model of condensation [27].

Let us first consider the topological pressure P (β), a kind of
negative Helmholtz free energy of thermodynamic formalism,
defined as [5]

P (β) = lim
t→∞

1

t
ln Zt (β), (3)

with the corresponding partition function Zt (β) given by

Zt (β) =
∑
{xi }

exp

[
−β

t−1∑
k=0

ln |f ′[f k(xi)]|
]

. (4)

The set of points {xi} in Eq. (4) is chosen as follows. First,
consider a partition of phase space into disjoint boxes �i so
that transitions between nearest-neighbor configurations (i,i ′)
are possible, i.e., f (�i) ∩ �i ′ �= ∅. For each allowed sequence
i0, . . . ,it−1, there is a subset �x(i0, . . . ,it−1) of phase space
defined by

�x(i0, . . . ,it−1) = {x : f k(x) ∈ �ik ,k = 0, . . . ,t − 1}. (5)

The size of subsets �ik goes to zero as t → ∞. Then, for very
large but still finite t , we pick a representative point xi , one
from each subset, and collect them as the set {xi}. It is important
to stress, however, that the analytical determination of this set
is not usually a practical task. We can circumvent this problem
by replacing the summation over xi by the integration over the
conditional measure as follows (h is an arbitrary function):∑

{xi }
h(xi) ∼

∫
x∈[0,1]

dσ (x)|�x(i0, . . . ,it−1)|h(x), (6)

where σ (x) represents the measure of initial condition x and
|�| denotes the Lebesgue measure of �. As t → ∞ we have
the following property [28]:

|�x(i0, . . . ,it−1)| = |�x(i1, . . . ,it−1)||f ′(x)|, (7)

where, on the right side of Eq. (7), we can replace i1 by i2 and
|f ′(x)| by |f ′[f (x)]||f ′(x)|, and so forth, leading to

|�x(i0, . . . ,it−1)| =
t−1∏
k=0

|f ′[f k(x)]|. (8)

Finally, we can rewrite Eq. (4) by means of Eqs. (6) and (8)
yielding

Zt (β) ∼
∫

dσ (x) exp

[
(1 − β)

t−1∑
k=0

ln |f ′[f k(x)]|
]

. (9)

Before attempting to estimate Eq. (9) we will make use
of the Aaronson-Darling-Kac (ADK) theorem [25], which
is precisely applicable to PM systems of type (1). For such
systems, this theorem ensures that, for a positive function

ϑ integrable over μ and an arbitrary measure σ of initial
conditions absolutely continuous with respect to the Lebesgue
measure, we have

1

tγ

t−1∑
k=0

ϑ[f k(x)]
d→ ξγ cγ (t)

∫
ϑdμ, (10)

as t → ∞, where ξγ is a non-negative Mittag-Leffler random
variable of index γ ∈ (0,1] and expected value E(ξγ ) = 1.
The corresponding Mittag-Leffler probability density function
ργ (ξ ) is given by [21,29]

ργ (ξ ) = 1/γ (1 + γ )

γ ξ 1+1/γ
gγ

[
1/γ (1 + γ )

ξ 1/γ

]
, (11)

where gγ stands for the one-sided Lévy stable density, whose
Laplace transform is g̃(u) = exp(−uγ ) (see Refs. [29,30] for
a detailed discussion). For PM maps of the type (1), the index
γ is

γ =
{
α, 0 < α < 1,

1, α � 1,
(12)

whereas the coefficient cγ (t) in Eq. (10) takes the asymptotic
form [31]

cγ (t) ∼

⎧⎪⎨
⎪⎩

1
ba

(
a
α

)α sin(πα)
πα

, 0 < α < 1,

(b ln t)−1, α = 1,

1, α > 1,

(13)

as t → ∞, recalling that b = limx→0 x1/αω(x). For α > 1 we
have introduced the Birkhoff ergodic case γ = 1, for which
the corresponding Mittag-Leffler density reduces to ρ1(ξ ) =
δ(1 − ξ ), as in the α = 1 case. Evidently, we can choose ϑ =
ln |f ′| in the ADK formula (10).

Consider now the algorithmic complexity Ct of PM map
(1), valid for all α > 0 [19]:

Ct (x) ∼
t−1∑
k=0

ln |f ′[f k(x)]|, (14)

as t → ∞. Equations (10) and (13) lead to (see also Ref. [19])

Ct

〈Ct 〉
d→ ξγ , (15)

as t → ∞, where the ADK average 〈Ct 〉 = hγ tγ is given
in terms of the average of generalized Kolmogorov-Sinai
entropy [19]

hγ = cγ

∫
dμ ln |f ′|. (16)

Going back to Eq. (9), we can overcome the integration
problem over arbitrary σ considering it absolutely continuous
with respect to the Lebesgue measure. Such condition is
sufficiently broad to assure that our results involving phase
transitions typically do not depend on the initial condition
distributions. This is somewhat surprising in the case of
nonergodic regimes, i.e., 0 < α < 1 in the present case. After
applying Eqs. (15) and (16) in the ADK formula (10), we have

Zt (β) ∼
∫ ∞

0
dξργ (ξ ) exp[−(β − 1)hγ tγ ξ ]. (17)
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Note that Eq. (17) is just the Laplace transform of ργ , which
is given by the Mittag-Leffler special function Eγ (u), namely
[29]

ρ̃γ (u) = Eγ (u) =
∞∑

n=0

[(1 + γ )u]n

(1 + nγ )
, (18)

with u = (1 − β)hγ tγ . Now, considering the asymptotes
Eγ (u) ∼ γ −1 exp(u1/γ ) as u → ∞ [32] and Eγ (u) ∼ 0 as
u → −∞ [33], we have finally for all α > 0 and β

near 1

P (β) ∼
{

[hγ (1 − β)]1/γ , β < 1,

0, β � 1,
(19)

observing that hγ = 0 (cγ → 0) for α = 1. Note that Eq. (19)
is in accordance with the results first obtained in Ref. [12] for
0 < α < 2 and later extended for all α > 0 in Ref. [16]. It is
noteworthy here that, unlike these approaches, the prefactor
hγ in Eq. (19) is obtained exactly, given by Eq. (16) for all
α > 0.

III. RÉNYI ENTROPY

Let us consider now the phase transition related to the Rényi
entropy [5]:

K(β) = 1

1 − β
lim
t→∞

1

t
ln

t−1∑
j=0

(
p

(t)
j

)β
, (20)

where p
(t)
j = pj (i0, . . . ,it−1) usually denotes the probability

that a randomly chosen initial condition (σ distributed) on the
phase space falls into �j at time t − 1. In view of the fact that
we are also dealing with nonergodic regimes (0 < α < 1), we
set p

(t)
j such that

p
(t)
j (q) = τ

q

j∑t−1
k=0 τ

q

k

, (21)

where p
(t)
j (q = 1) = p

(t)
j . In Eq. (21) we consider the amount

of time τj spent in state �j instead of its length |�j |, which is
usually considered for ergodic systems (for which τj ∝ |�j |).
Then the partition function Zt takes the asymptotic form

Zt (q) ∼ exp[tP (q)] ∼
t−1∑
k=0

τ
q

k . (22)

Recalling that
∑

j [p(t)
j (q)]β ∼ exp[(1 − β)K(β,q)t], we have

for q = 1

K(β) = P (β) − βP (1)

1 − β
, (23)

also valid for ergodic systems [5]. From the topological
pressure (19) we then have

K(β) ∼
{

h1/γ
γ (1 − β)−1+1/γ , β < 1,

0, β � 1.
(24)

Note that for γ = 1, i.e., ergodic regimes, K(β) = hKS for
β < 1, where h1 = hKS is the Kolmogorov-Sinai entropy,
whereas K(β) = 0 for β � 1. Therefore Eq. (24) extends for
nonergodic regimes (0 < α < 1) the nonanalytic behavior of
Rényi entropy at β = 1 observed in Ref. [11].

IV. ALGORITHMIC COMPLEXITY SATISFIES
THE ADK THEOREM

In Ref. [12], as well as in Ref. [20], the algorithmic
complexity Ct of a piecewise version of the PM map was
considered as the random number of entrances Nt into a given
phase space cell (A0) during t iterations of the map, i.e.,
Ct ∼ Nt . The statistics pα of Nt employed is well known
from Feller’s renewal theorems [21], and it was applied in
the estimation of P (β). The accordance with Eq. (19) can be
understood by observing that pα is, in fact, a Mittag-Leffler
probability density function. The statistics of Nt for the case
0 < α < 1 is given by Ref. [21]

Pα

(
Nt � c1

tα

qα

)
∼ Gα(q), (25)

as t → ∞, where Pα and Gα stand for the cumulative
distribution functions of pα and gα , respectively. Applying
the change of variable q = rξ−1/α , with rα = α(α) [29],
and after introducing the normalized random variable ξ =
Nt/〈Nt 〉, we have

pα(Nt )dNt ∼ ρα(ξ )dξ, (26)

as t → ∞, where 〈Nt 〉 = c1t
α/α(α) and ρα is the Mittag-

Leffler density (11). For the case α > 1, but different from 2,
we have [21]

Pα(Nt � c2t − c3t
1/κq) ∼ Gκ (q), (27)

where κ = α for 1 < α < 2 and κ = 2 for α > 2. Now Gκ

stands for the cumulative distribution function of the two-sided
stable density gκ [12]. We can consider the same normalized
variable ξ of Eq. (26), but now with 〈Nt 〉 = c2t . Then Eq. (27)
becomes

pα(Nt )dNt ∼ 1

ε
gκ

(
1 − ξ

ε

)
dξ, (28)

where ε = (c3/c2)t−1+1/κ goes to 0 as t → ∞. This leads to
δ(1 − ξ )dξ on the right hand side of Eq. (28). Already in the
Gaussian case κ = 2, ε2 is proportional to the variance, also
leading Eq. (28) to the same Dirac δ function. The same occurs
for α = 2, where we also have Eq. (28) for κ = 2, but replacing
c3 by c3

√
ln t and also leading to ε → 0 as t → ∞.

V. FINAL REMARKS

We revisit here the problem of thermodynamic phase
transitions for PM maps (1) by using the infinite ergodic theory,
in particular the ADK theorem. The topological pressure
P (β) and Rényi entropy K(β) are calculated exactly for such
systems, exhibiting both phase transitions at the same critical
value βc = 1. Our results also shed some light on the role of
the measure of initial conditions σ in the calculation of these
thermodynamic functions. Such quantities are invariant under
σ since it is absolutely continuous with respect to the Lebesgue
measure. This result is somewhat surprising in the case of the
nonergodic regime of the PM map (1), showing once more the
strength of the ADK theorem.

From a dynamical point of view, the thermodynamic
formalism allows us to obtain important quantities that
characterize nonlinear systems. We can mention, for instance,

021114-3



ROBERTO VENEGEROLES PHYSICAL REVIEW E 86, 021114 (2012)

the Pesin formula relating Lyapunov exponent � to the
Kolmogorov-Sinai entropy h1 = hKS, namely hKS = [P (β) −
P ′(β)]β→1− = � [5]. For nonergodic regimes 0 < α < 1,
however, the topological pressure (19) gives us the trivial
relation hKS = � = 0. In fact, the dynamic instability is
stretched exponential for such cases, of the form |δxt | ∼
|δx0| exp(λαtα), rather than exponential α = 1. For such cases
we can consider, once more, the infinite ergodic theory
approach. It has recently been shown that the Pesin relation
can be extended in a nontrivial way provided one introduces
a convenient subexponential generalization of the Lyapunov

exponent and Kolmogorov-Sinai entropy [19]. Moreover, the
generalizations of such quantities behave like Mittag-Leffler
random variables with hα as the first moment [19,26]. A quest
for new constitutive relations involving P (β) that lead directly
to these results in the thermodynamic formalism probably
deserve further investigations.
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