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Fractional-time random walk subdiffusion and anomalous transport
with finite mean residence times: Faster, not slower

Igor Goychuk
Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86135 Augsburg, Germany
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Continuous time random walk (CTRW) subdiffusion along with the associated fractional Fokker-Planck
equation (FFPE) is traditionally based on the premise of random clock with divergent mean period. This work
considers an alternative CTRW and FFPE description which is featured by finite mean residence times (MRTs)
in any spatial domain of finite size. Transient subdiffusive transport can occur on a very large time scale τc which
can greatly exceed mean residence time in any trap, τc � 〈τ 〉, and even not being related to it. Asymptotically,
on a macroscale transport becomes normal for t � τc. However, mesoscopic transport is anomalous. Differently
from viscoelastic subdiffusion no long-range anticorrelations among position increments are required. Moreover,
our study makes it obvious that the transient subdiffusion and transport are faster than one expects from their
normal asymptotic limit on a macroscale. This observation has profound implications for anomalous mesoscopic
transport processes in biological cells because the macroscopic viscosity of cytoplasm is finite.
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I. INTRODUCTION

The subject of anomalous diffusion and transport became
increasingly popular in the last two decades (see Fig. 1 in
Ref. [1]) with many application fields in physics and beyond
and many theoretical approaches coexisting and developed in
parallel. The works by Montroll and Weiss [2], Scher and Mon-
troll [3], and Shlesinger [4] laid the grounds for the continuous
time random walk (CTRW) approach to subdiffusion based on
the premise of a random distribution of the residence times
spent in traps with a nonexisting mean time period between
two successive spatial steps. Assuming that the residence
times in traps are independently distributed and no correlations
between spatial steps exist (semi-Markovian assumption), the
whole process is completely characterized by a residence
time distribution ψi(τ ) in the ith trap and the probability
distribution p(k|i) to jump from i to another trap k. Highly
dispersive subdiffusive transport with the position variance
growing sublinearly, 〈δx2(t)〉 ∝ καtα , 0 < α < 1, where κα

is subdiffusion coefficient, emerges when the residence time
distributions (RTDs) behave asymptotically as

ψ(τ ) ∝ τ−α−1. (1)

This approach acquired enormous popularity and has been
followed by numerous workers in the field [5–7]. However,
there are no real processes in nature which would show this
characteristic feature, i.e., infinite mean residence time (MRT)
in a finite spatial domain. Of course, in reality it is always finite.
Nevertheless, it can largely exceed a characteristic time τL ∼
(L2/κα)1/α related to a finite linear size L of the medium, e.g.,
the width of a thin amorphous semiconductor film exhibiting
akin transport properties. Then, the approximation of infinite
mean residence time can be well justified. Asymptotically
transport will be normal. However, this macroscopic normal
transport regime is irrelevant on mesoscale in the correspond-
ing amorphous media. The main advance of this work is to
introduce an alternative semi-Markovian CTRW approach to
subdiffusive transport on mesoscale featured but by finite MRT
as a main premise. Moreover, we derive a modified fractional
Fokker-Planck equation (MFFPE) for diffusion and transport

in an external force field in the continuous space limit, where
MRT in a pointlike trap becomes infinitely small. Within this
alternative CTRW approach MRT 〈τ 〉 in any finite spatial
domain not only remains finite, but it shrinks to zero with
vanishing size of the domain. Nevertheless, the corresponding
residence time distribution does scale as one in Eq. (1) on a
long intermediate time scale. Since in all real experiments the
mean residence times are always finite, one can conjecture
that some experimental observations of the law (1) along with
subdiffusion, e.g., in Ref. [8], might be more consistent with
our alternative description, rather than with the popular one.

II. THEORY

The key modification in this alternative is to consider
the residence time distribution in the ith trap which is
characterized by the Laplace-transformed survival probability

�̃i(s) = 1

s + ∑N
j=0 rαj ,is

1−αj

, (2)

where α0 = 1 and 0 < αj < 1 for j = 1,2, . . . ,N . By noting
that ψ̃i(s) = 1 − s�̃i(s), the corresponding residence time
distribution ψi(τ ) can be represented as a sum over N + 1
independent escape channels, ψi(τ ) = ∑N

j=0 ψji(τ ), with the
Laplace-transformed ψji(τ ) reading

ψ̃ji(s) = rαj ,is
1−αj �̃i(s). (3)

This justifies (see also below) naming the quantities rαj ,i the
fractional rates. One of them, r1,i = rα0,i is just the normal rate
corresponding to α0 = 1. The presence of such a fast escape
route from any trap is a crucial point yielding a finite MRT,
〈τi〉 = �̃i(0) = 1/r1,i in the trap i. This is because the particle
can go either via any slow route, or through the fast one which
defines the MRT.

This expression (2) can be derived as follows. Let us
consider first a single escape channel. The escape is gov-
erned by a random fractional clock with the Mittag-Leffler
survival probability �j,i(τ ) = Eαj

(−rαj ,iτ
αj ). Here, Eα(z) =∑∞

n=0 zn/�(αn + 1) is the Mittag-Leffler function [9], which
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is a generalization of the exponential function, E1(z) =
exp(z). For α0 = 1, survival probability decays exponentially.
The probability density of the time intervals between two
successive escape events is (subindexes are temporally omitted
for clarity) ψ(τ ) = −d�(τ )/dτ . The Laplace-transformed
probability to have n independent escape events within the time
interval [0,t) is p̃(n,s) = [ψ̃(s)]n�̃(s). From this it is easy to
obtain the Laplace-transformed mean number of escape events
〈ñ(s)〉 = ∑∞

n=1 np̃(n,s). Straightforward calculations yield

〈ñ(s)〉 =
(

1

�̃(s)
− s

)
1

s2
. (4)

Furthermore, the Laplace-transformed Mittag-Leffler sur-
vival probability is �̃(s) = 1/(s + rαs1−α). This in Eq. (4)
yields 〈ñ(s)〉 = rαs−1−α or 〈n(t)〉 = rαtα/�(1 + α). Now
the last steps: Having N + 1 independent escape channels
acting in parallel, it is obvious that 〈ñ(s)〉 = ∑N

j=0〈ñj (s)〉 =∑N
j=0 rαj

s−1−αj . The use of this result in Eq. (4) yields (2)
upon restoring subindex i.

The MRT is thus finite in our model, due to the presence
of a fast escape channel, but its variance is not bounded,
〈δτ 2

i 〉 = ∞, reflecting the presence of anomalously slow
pathways. Similar happens, e.g., if the particle can escape out
of the anomalous CTRW subdiffusion domain being injected
on the normal radiation boundary which it can either leave
with normal rate immediately or penetrate further inside the
anomalous domain [10]. Even more strikingly, by doing the
continuous space limit below we shall consider the limit
〈τi〉 → 0. Here lies the principal difference of our subdiffusive
CTRW model from a popular one dominating currently over
this research domain. The simplest representative of this class
of models is (N = 1)

�̃i(s) = 〈τi〉
1 + (τcs)1−α + s〈τi〉 , (5)

where τc is a cutoff time which is equal for all traps and
defines the maximal time range of subdiffusion. For α = 1/2
this expression can be easily inverted to the time domain and
expressed in terms of a combination of the error function and
power-law functions. Generally, it can be inverted in terms
of a sum of Mittag-Leffler functions [9]. It is not difficult
to show that for 〈τi〉 	 τ 	 τc, ψi(τ ) exhibits precisely the
same scaling behavior as one in Eq. (1). Asymptotically for
τ � τc it is but a different power law, ψi(τ ) ∝ τα−3, ensuring
that the MRT is finite. Apart from this, initially for τ 	 〈τi〉,
ψ(τ ) ∝ τ−1+α . All in all, our RTD exhibits three different
interchanging power laws even in the simplest case of N = 1,
providing a rather rich model.

It should be mentioned that the considered model is differ-
ent from another scheme proposed earlier to describe transient
subdiffusion which is based on the truncated (tempered)
residence time distributions [11,12]. In the case of tempered
RTDs, all the moments of RTDs are finite, and not only the
first one. Furthermore, the resulting Fokker-Planck description
is different from one given below (it has a different memory
kernel). Moreover, the analytical expression for the particle
variance describing transient subdiffusion is different from
one in Eq. (14) (see below, even for F → 0). Our description
allows for a direct comparison both with the experimental

results parametrized in the form of Eq. (19) and with an
alternative way to describe transient subdiffusion based on
the generalized Langevin equation (see below). This is an
important feature.

Next, let us consider the generalized master equation
(GME) for the CTRW on the lattice xi = i	x (i ∈ Z) with
a discretization step 	x and nearest neighbor jumps only,
characterized by the jump probabilities q+

i = p(i + 1|i) and
q−

i = p(i − 1|i) obeying q+
i + q−

i = 1. The corresponding
GME reads [13]

Ṗi(t) =
∫ t

0
{K+

i−1(t − t ′)Pi−1(t ′) + K−
i+1(t − t ′)Pi+1(t ′)

− [K+
i (t − t ′) + K−

i (t − t ′)]Pi(t
′)} dt ′, (6)

where the Laplace transform of the kernel K±
i (t) is related to

the Laplace transform of the residence time distribution (RTD)
by K̃±

i (s) = q±
i ψ̃i(s)/�̃i(s), which for the considered model

yields

K̃±
i (s) = q±

i

⎛
⎝r1,i +

N∑
j=1

rαj ,is
1−αj

⎞
⎠ . (7)

One can also define forward and backward fractional rates
as r±

αj ,i
= q±

i rαj ,i , accordingly, with rαj ,i = r+
αj ,i

+ r−
αj ,i

, and
rewrite the GME (6) in the form of a fractional master equation

Ṗi(t) =
N∑

j=0

0D̂
1−αj

t

{
r+
αj ,i−1Pi−1(t) + r−

αj ,i+1Pi+1(t)

− [
r+
αj ,i

+ r−
αj ,i

]
Pi(t)

}
, (8)

where

t0D̂
γ
t f (t) := 1

�(1 − γ )

∂

∂t

∫ t

t0

dt ′
f (t ′)

(t − t ′)γ
, (9)

with 0 < γ < 1 defines the fractional Riemann-Liouville
derivative acting on some function f (t) [6].

Furthermore, let us consider an additional potential field
V (x) which influences the jumping rates as follows:

r±
αj ,i

= [
καj

/
(	x)2

]
exp[−β(Vi±1/2 − Vi)], (10)

where καj
has the meaning of a (generally) anomalous diffu-

sion coefficient, and β = 1/(kBT ) is inverse temperature. The
form (10) ensures that the Boltzmann equilibrium condition
r+
αj ,i−1/r−

αj ,i
= exp[β(Vi−1 − Vi)] is satisfied for any V (x)

and our description is thermodynamically consistent. Using
a finite difference operator 	/	x, 	P (x,t)/	x := [P (x +
	x/2,t) − P (x − 	x/2,t)]/	x, one can rewrite the GME (8)
for the considered model as

Ṗ (xi,t) =
⎛
⎝κ1 +

N∑
j=1

καj 0D̂
1−αj

t

⎞
⎠

× 	

	x

(
e−βV (xi )

	

	x
eβV (xi )P (xi,t)

)
, (11)

where we have explicitly singled out the fast transition channel
which is present between any two localized states and acting
in parallel to all other ultraslow channels.
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In the continuous space limit 	x → 0 with constant καj

Eq. (11) yields the following generalization of the fractional
Fokker-Planck equation (FFPE) of Refs. [6,14–16]:

∂P (x,t)

∂t
=

⎛
⎝κ1 +

N∑
j=1

καj 0D̂
1−αj

t

⎞
⎠

× ∂

∂x

(
e−βV (x) ∂

∂x
eβV (x)P (x,t)

)
. (12)

The generalization consists primarily in the presence also of
a normal diffusion term along with the anomalous diffusion
contributions. Notice that it was not only obtained from the
CTRW possessing finite MRT in each trap but even in the limit
〈τi〉 ∝ (	x)2/κ1 → 0, so that the MRT in any spatial domain
of a finite size is obviously finite. For N = 1, and in the limit
κ1 → 0 it reduces to the original FFPE of works [14,15].
In the same limit, but for N = 2 it reduces to the modified
FFPE of Ref. [17]. Generally, Eq. (12) belongs to the class
of distributed order fractional kinetic equations [17,18]. The
Fokker-Planck equation with memory introduced in Ref. [12]
does not belong to this class.

A. Simplest case of one normal and one anomalously
slow transition channel

In the following, we consider the simplest case of N = 1,
with finite κ1 and κα = κ1τ

1−α
c with a very large τc. The key

point is that for t 	 τc the normal diffusion term is negligible
and the dynamics is subdiffusive, whereas the mean residence
time in any finite spatial domain is finite. Here lies a profound,
striking difference with the earlier approach. For t � τc,
the normal diffusion contribution dominates the transport,
which becomes asymptotically normal. However, the biased
subdiffusion changes asymptotically into superdiffusion (see
below) because the variance of residence times is infinite.

Our focus is now on an intermediate subdiffusive regime.
Considering the mean displacement under the constant force
F , the solution of Eq. (12) yields

〈δx(t)〉 = F t/η1 + F tα/[ηα�(1 + α)]

= Fτc

η1

[
t

τc

+ 1

�(1 + α)

(
t

τc

)α]
, (13)
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FIG. 1. (Color online) Anomalous transport which asymptoti-
cally becomes normal.

where the normal, η1, and fractional, ηα , frictional coefficients
are related to the corresponding diffusion coefficients by
standard, η1 = kBT /κ1, and generalized, ηα = kBT /κα ,
Einstein relations, respectively. Figure 1 displays this solution
for three different values of α along with one and the
same normal diffusion asymptotics for t � τc and three
different initial t 	 τc asymptotics. One can conclude that
the motion remains subdiffusive for the most time and can
be characterized by a time-dependent power exponent αeff(t)
which gradually changes from α for t 	 τc to α = 1 for
t � τc. Even more strikingly, in the subdiffusive regime the
transport is as a matter of fact faster than its normal diffusion
asymptotics. Indeed, already the structure of the generalized
master equation (6) says that in the Markovian approximation
Pi(t ′) ≈ Pi(t), only the normal rate term contributes asymp-
totically, t → ∞. This is because the terms in the integral
of the memory kernel

∫ t

0 K±
i (t ′)dt ′, which correspond to the

anomalous rate contributions, tend to zero with increasing the
upper limit t like 1/t1−αj being always positive. Initially these
terms, however, profoundly contribute to making the overall
transport faster than its normal asymptotics. Notice that this
interpretation is opposite to that suggested in Ref. [18] for
diffusion, which we consider shortly: The transport obviously
slows down in the course of time and does not accelerate.

For the displacement variance 〈δx2(t)〉 = 〈x2(t)〉 −
〈δx(t)〉2, which characterizes diffusion, after some algebra we
obtain

〈δx2(t)〉 = 2κ1t + 2καtα/�(1 + α)

+
(

Fτc

η1

)2 {
2(1 − α)

�(2 + α)

(
t

τc

)1+α

+
[

2

�(1 + 2α)
− 1

�2(1 + α)

](
t

τc

)2α }
. (14)

Taking into account the generalized Einstein relation, it is
seen immediately that a linear fluctuation-response relation
〈δx(t)〉 = [F/(2kBT )]〈δx2(t)〉F=0 is satisfied, between the
“fluctuation” 〈δx2(t)〉F=0 in the absence of driving force F ,
and the “response” 〈δx(t)〉 to it. In the subdiffusive transport
regime restricted by t 	 τc,

〈δx(t)〉 ≈ F tα/[ηα�(1 + α)],
(15)

〈δx2(t)〉 ≈ 2καtα/�(1 + α),

i.e., the variance 〈δx2(t)〉 behaves subdiffusively also in the
presence of bias F , like the mean displacement in Fig. 1. This
is in a striking contrast with the standard CTRW and FFPE
subdiffusion based on the premise of infinite mean residence
times. In the latter case, 〈δx2(t)〉F =0 ∝ F t2α , for a sufficiently
large F , or asymptotically, similar to the last term in Eq. (14).
Therefore, our theory is closer to what one intuitively expects
for normal transport, sharing this normal feature also with the
alternative generalized Langevin equation (GLE) approach to
subdiffusion which we shall discuss shortly.

Within the presented modified theory the large time
asymptotic behavior of the variance in the presence of bias
is also rather unusual. Obviously for F = 0 and t � τc, the
main contribution in Eq. (14) is superdiffusive, 〈δx2(t)〉F =0 ∝
F t1+α . The explanation of this is the following. Even if the
random clock governing subdiffusion in our case does possess
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a mean value, its variance is but infinite and in accordance
with Ref. [1] (see the Appendix therein) determines the
displacement variance in the case of biased diffusion.
Unbiased diffusion remains nevertheless asymptotically nor-
mal. Such a combination of normal transport and superdif-
fusion was found recently in numerical simulations of nor-
mal Langevin dynamics in near critically biased washboard
potentials in the presence of frozen disorder for a parameter
regime [19]. In this respect it is worth mentioning that hopping
diffusion in disordered potentials is equivalent within the
mean-field (effective medium) approximation to a CTRW [5].
This provides one of the physical justifications for the CTRW
phenomenological approach.

B. Comparison with alternative GLE approach

Let us compare now the considered modification of
CTRW subdiffusional transport phenomenology with even
more normal GLE description of subdiffusion [20–23]. Here,
all the moments of the residence time distribution in any
finite-size spatial domain are finite [22]. Such a GLE approach
is intrinsically based on the phenomenon of viscoelasticity
[24,26] with long-range correlations in the Brownian particle
displacements. Here, the physical origin of subdiffusion is
entirely different from one in the semi-Markovian CTRW
[22,23]. Stochastic dynamics is described by the overdamped
GLE [20,21]∫ t

0
η(t − t ′)ẋ(t ′)dt ′ = −∂V (x,t)

∂x
+ ξ (t), (16)

where thermal force ξ (t) is (i) Gaussian, (ii) unbiased on
average, and (iii) obeys the fluctuation-dissipation relation

〈ξ (t)ξ (t ′)〉 = kBT η(|t − t ′|) (17)

at the environmental temperature T . The inertial effects are
completely neglected, similar to the above CTRW descrip-
tion. Macroscopic power-law models of viscoelasticity were
introduced in 1936 by Gemant [24,25] as a generalization
of the Maxwell model [26] with an exponentially decaying
viscoelastic memory kernel. One of Gemant’s macroscopic
models having relation to our present work corresponds to the
memory friction

η̃(s) = η1

1 + (sτc)1−α
, (18)

in the Laplace space. For t 	 τc, η(t) can be approximated by
η(t) ≈ ηα/[�(1 − α)tα], with ηα = η1τ

α−1
c and its asymptotic

decay for t � τc is another power law, η(t) ∝ tα−2, ensuring
that η̃(0) = η1 is finite. This GLE model with the memory
kernel (18) for f (x) = F = const yields again exactly the
same solution (13) for the mean displacement and a modified
(with F → 0, the first line only remains) solution (14) for
the variance [27]. It must be emphasized that GFFPE (12)
with N = 1 does not present a master equation counterpart
of the GLE (16) with the memory kernel (18), as they have
physically (and mathematically, too) totally different origins.
Both approaches share, however, a prominent feature that the
mean residence time in any finite spatial domain is finite.

This ensures, for example, that the asymptotic response
of the corresponding anomalous dynamics to time-periodic

perturbations is finite. However, these asymptotical responses
in both models can also be different in some details, reflecting
different physics. For example, it has been recently shown
that the traditional CTRW subdiffusion based on infinite
MRTs displays an asymptotically dying response to periodic
fields [28] which is at odds with most experimental data on
an anomalous dielectric response, and nevertheless agrees
with some [29]. Normally, the anomalous response exhibits
aging behavior. However, the response normally decays not to
zero, but to some finite value. The response to periodic fields
can serve to distinguish among different underlying physical
mechanisms. A generalization of the presented here modified
CTRW and FFPE model to time-dependent fields is not a trivial
matter at all. It is left for a separate study.

III. APPLICATION TO BIOLOGICAL SUBDIFFUSION

For subdiffusion restricted by the time scale t < τc and
spatial scale x < L ∼ (κατα

c )1/2 it is not easy to distinguish
between two different models discussed here, if to study only
the mean displacement and the displacement variance. They
display a very similar transient behavior. Calculation of the
velocity autocorrelation function as, e.g., in Ref. [30] can
clearly prove that the viscoelastic mechanism is at work,
or statistical analysis of single trajectories [31] can help
to make the distinction. The common feature is, however,
that in both cases the transient transport is faster than the
asymptotically normal one, and the transient subdiffusion is
faster than asymptotically normal diffusion in the unbiased
case. The results on mRNA molecule subdiffusion in bacterial
cells [32] seem consistent with this paradoxical conclusion
[27]. Moreover, the experimental results on subdiffusion of the
colloidal gold particles having a typical size of proteins with
radius R = 2.5 nm in cytoplasm of living cells [33] delivers
a further clear confirmation. Indeed, in Ref. [33] experimental
results were parametrized as

〈δx2(t)〉 = 2DτD

[
t

τD

+
(

t

τs

)α]
. (19)

Comparison with our model yields τc = [�(1 +
α)τD/τα

s ]1/(1−α), κ1 = D, and κα = Dτ 1−α
c . The experimental

values of α, τD , and τs can be found for various cells in
Ref. [33]. The corresponding asymptotic normal diffusion
coefficient is D = r2

0 /(4τD), where r0 = 0.21 μm is the
microscope aperture size [33]. From this we can obtain κ1,
κα , and τc (see Table I). For gold beads of this size in water
κ1,water = 90 μm2/s. Therefore, from the experimental values
of κ1 in the cytoplasm of selected eukaryotic cells (possessing
cytoskeleton) one can conclude that the cytoplasm is about
κ1,water/κ1 ∼ 750 times more viscous than water and about
two times less viscous than glycerol. On the maximal time
scale of experimental data in Ref. [33], which is about 1 s, the
particles subdiffuse much faster than one would expect from
the normal diffusion in such a viscous environment. This
paradoxical and overlooked fact should be taken into account
in any discussion of the influence of transient subdiffusion on
living processes as it appears that subdiffusion can bring only
advantages, contrary to some common expectations [27].

In this respect, GLE subdiffusion can provide additional
advantages over semi-Markovian CTRW subdiffusion in the
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TABLE I. Parameters derived from experimental data.

Cell α τD (ms) τs (ms) τc (s) κ1 (μm2/s) κα (μm2/sα)

HeLa 0.51 91 0.271 30.3 0.121 0.644
THLE 0.48 89 0.329 16.7 0.124 0.536
HepG2 0.52 88 0.767 37.6 0.125 0.715
HeLa + 500 mM sucrose 0.66 92 0.954 2875 0.119 0.931

case of a three-dimensional search of a target (e.g., a binding
site for regulatory protein on a gene promoter). The solution
of Eqs. (16)–(18) in the limit τc → ∞ [34] is the fractional
Brownian motion (fBm) by Kolmogorov [35] and Mandelbrot
and van Ness [36]. The fractal Hausdorff dimension of its
trajectories occupying 3D space is dH = 2/α, for 2/3 < α <

1, and dH = 3 for 0 < α � 2/3 [37]. Hence, for α � 2/3 the
fBm fills densely in the three-dimensional Euclidean space.
Therefore, on the time scale t < τc and the corresponding
spatial scale the GLE subdiffusion can help dramatically
to find even the smallest targets. This remarkable property
is because of antipersistency of fBm increments [37]. On
the contrary, subdiffusive semi-Markovian CTRW trajectories
have the same dH = 2 as normal Brownian motion in 3D
because increments are independent and abnormal behavior
stems from a very broad residence time distribution and not
from the antipersistency. For the diffusion in the plane the
situation changes since both the normal and the anomalously
slow (either GLE or CTRW) Brownian motions have the
same dH = 2, which coincides with Euclidean dimension of
the embedding space, independently of α. Here, no addi-

tional advantages can be provided by the GLE subdiffusion.
The same is valid also for a 1D diffusional search and
corresponding diffusion-limited reactions. Nevertheless, tran-
sient subdiffusion remains faster on mesoscale than one
expects for normal diffusion in a fluidlike medium of large
macroscopic viscosity, independently of underlying physical
mechanisms.

IV. CONCLUSION

The author is confident that the modified CTRW and
FFPE theory of mesoscopic subdiffusive transport considered
in this work presents a viable alternative to the traditional
one. It shares more similarities with viscoelastic subdiffusion
and should be taken seriously as an ample modeling frame-
work with attractive physical features and clear experimental
relevance.
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