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Noncanonical statistics of a spin-boson model: Theory and exact Monte Carlo simulations
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Equilibrium canonical distribution in statistical mechanics assumes weak system-bath coupling (SBC). In
real physical situations this assumption can be invalid, and equilibrium quantum statistics of the system may
be noncanonical. By exploiting both polaron transformation and perturbation theory in a spin-boson model, an
analytical treatment is advocated to study noncanonical statistics of a two-level system at arbitrary temperature
and for arbitrary SBC strength, yielding theoretical results in agreement with exact Monte Carlo simulations. In
particular, the eigen-representation of system’s reduced density matrix is used to quantify noncanonical statistics
as well as the quantumness of the open system. For example, it is found that irrespective of SBC strength,
noncanonical statistics enhances as temperature decreases but vanishes at high temperature.
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I. INTRODUCTION

Equilibrium canonical distribution is a fundamental result
in statistical mechanics, but with an implicit assumption
that the system-bath coupling (SBC) is vanishingly weak. In
real physical situations, such as light-harvesting systems [1],
superconducting qubits [2], and atom-cavity systems [3], this
weak SBC assumption can be invalid. Then a good separation
between the system and the bath is lost, leading to noncanoni-
cal equilibrium statistics for the system (though the system plus
the bath as a whole still satisfies a canonical distribution). At
present noncanonical statistics is a subject of great interest. It
challenges intuitive concepts in statistical mechanics [4] and
brings about new understandings of open quantum systems.
Because canonical statistics can be recovered in the classical
limit for a wide class of microscopic open-system models [5],
noncanonical statistics can also serve as an indicator of the
quantumness of open systems.

To better understand noncanonical statistics and for fu-
ture bench-marking purposes, an analytical treatment of
noncanonical statistics at arbitrary temperature and for the
whole range of SBC strength is important. This task is
achieved here in a spin-boson model by exploiting both the
polaron transformation technique and perturbation theory,
with results applicable to almost the entire parameter space
(certain conditions to be elaborated below). Though our theory
does provide all the information of system’s reduced density
matrix (RDM), one simple measure is employed to quantify
the degree of noncanonical statistics. Specifically, we use
the angle by which the diagonal representation of RDM is
rotated away from the energy eigen-representation of the
system as the measure. Evidently, this angle is zero for a
canonical distribution because the associated RDM is diagonal
in energy basis states. It is then shown how an increasing SBC
strength or a decreasing temperature strengthens noncanonical
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statistics. Interestingly, at sufficiently high temperature, our
theory reveals that the standard canonical statistics will be
recovered asymptotically. The theoretical results are found to
be in full agreement with exact Monte Carlo simulations. The
observation that noncanonical statistics vanishes in the high
temperature regime resonates with the view that noncanonical
statistics reflects the quantumness of the open system, which
is expected to diminish at high temperature. Furthermore, we
exploit our simple noncanonical statistics measure to identify
an interesting temperature scale, at which the noncanoni-
cal equilibrium statistics is most sensitive to temperature
variations.

II. THEORY

The total Hamiltonian H; of a system plus a bath is written
as

H; = Hs + Hp + Hgp, (1)

where the three terms represent Hamiltonians of the system,
the bath, and SBC, respectively. The system and the bath as
a whole is assumed to be in contact with a super-reservoir at
temperature 7. Long after quantum relaxation takes place, the
system and the bath as a whole reach a canonical equilibrium
state po;. The equilibrium RDM of the system is given by [6]

trp[e PH]

tr[e=PH] "’ @

ps = trglp] =
where 8 = 1<,+T’ tr[-] denotes the trace over the system as
well as the bath, and trg[-] denotes the trace over the bath
only. Due to the nonvanishing contribution of Hgp to Hj,
in general the equilibrium RDM is no longer a canonical
distribution of the system alone [7]. It is hence of importance
to develop a theoretical treatment to systematically investigate
the dependence of pg upon temperature 7' and the magnitude
of Hgp. We achieve this task here for a spin-boson model with
the Hamiltonian (we seth = 1)

€ A
Ht = EO’Z =+ ng + ;wkbzbk + 0; ;gk(blt + bk)’ (3)
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where o; (i = x,y,z) are the usual Pauli matrices, € is the
energy splitting between two levels of the system, and A is
the tunneling matrix element. The bath is modeled as a set of
harmonic oscillators with frequencies wy, and the couplings to
the spin system are denoted by gx. The properties of the bath
are fully characterized by its spectral density, namely, J(w) =
Ty . g,%é(w — wy). For a fully analytical development we
first assume a super-Ohmic spectral density with exponential
cutoff, i.e., J(w) = yw’e ®/“, where y characterizes the SBC
strength and w, is the cutoff frequency of the bath. Though such
an open-system model is standard and (deceptively) simple,
even its stationary properties do not have exact solutions
(not to mention its dynamics). Indeed, only the case of a
single-mode spin-boson model with € = 0 can be regarded
as integrable [8]. As such, perturbation theory becomes one
of the few options. Note, however, a naive perturbation theory
would fail as our central concern is beyond the weak SBC
regime.

To capture the effects of a finite Hgp, we exploit a standard
paloron transformation as our starting step. To that end,
we transform the total Hamiltonian H, to H, = ef He ¥
(tildes denote operators in the transformed polaron picture)
where

F=0Y %(bl — by). )
k

We then obtain (up to a constant)
H, = Hs + Hp + Hgg,

€ A
= -0, + —Rax + Zwkabk +ox Vi +0o,Vy, (5)
2 k

2
with Hy = §o. + 820y, H = Hp,and Hgp = 0.V, + 0, V.
Two remarks are in order: (1) For Hy, the o, (tunneling) term
is now renormalized by SBC, because

AR/A =R =exp |:—2/OO d_a) J(C;) coth(ﬁa)/Z):|. (6)
0 T w

Using the super-Ohmic J(w) mentioned above, we obtain R =
exp{—j—gz [2¢/(1/Bw.) — w?B]}, with ¢’ being the derivative
of the digamma function. (2) Hgg, the SBC in the paloron
picture, assumes a form very different from Hyp, because the
bath operators entering into SBC are now

_Apripr_
Vx_4(D++D_ 2R), (7)
V—é(Dz—Dz) (8)
VT +/

with Dy = exp[££ (b} — by)]and (D3) 5, = R [9]. We stress
that so far our procedure is exact. As seen below, this
polaron transformation is advantageous in treating cases of
nonvanishing SBC strength because the correlation functions
of V, and of V, decay faster for a larger y. For later use we
also introduce density matrices in the polaron picture, i.e.,

p = e’ pe~F, where p can be the RDM pg or the full density
matrix p,. For example, g, = % and pg = trg[p;].

We now proceed with the calculations of the matrix
elements of pg, expressed in terms of the o, basis. The
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diagonal elements p§' and p2? are given by 1(1 + trg[o. ps]),
and the off-diagonal element p;> is given by trs[o_ps] =
tr[o_ p,]. Noticing that trg[o, ps] = trs[o, fs], one may obtain
the diagonal elements directly if gg, the RDM in the polaron
picture, is analytically known. On the other hand, because the
o_ operator does not commute with the polaron transformation
operator F defined above, calculating p4? in the polaron picture
is more involved. Nevertheless, we find

ps = tlo_p,] = uls_p] = ulo_D? ], ©)

indicating that p ;2 can be still obtained from g;, but not from
Ps-

Having observed how all RDM elements may be evaluated
in the polaron picture, we turn to the central expression e A%
in p,. We treat B as an imaginary time and exploit a “time”-
dependent perturbation theory in terms of Hgp. We first briefly
mention the calculations of the RDM diagonal elements, a
subject of a recent technical study by us [10]. In particular, due
to the fact that trg[Hgg] = 0, the leading-order contribution
of Hgg is of the second order, from which we have jg ~
Ps.,©) + Ps,2), where [11]

e_ﬂ]:]S
Ps.0) = , (10
) ZS,(O)
- A Zs) _gn
Ps)=5— — —5—5¢€ "%, (11)
@ Zso) [Zso)?
with
B T ~
A= Z/ dr/ dt'C,(t — e P, (v)o,(r),  (12)
=~ Jo 0
n=x,y

Zs o) = trs[e”sgs], and Zs 2y = trs[A]. In addition, the oper-
ators in imaginary time are defined as O(7) = et e,
where Hy = Hg + Hg. The bath correlation functions
C,(t) = (Vu(r)Vy) u, are given by

AR o) o —b)
() = 0 e ~2), (13)

A% $(1) _ A—(D)
Cy(r)=?(e —e ) (14)

lg—
with (1) = 4 [ Lo L V=20l [10]. A straightforward

inspection of these expressions (in particular, the term A%e?™)
shows that as y (the SBC strength) increases, the correlation
functions C,(r) always decreases exponentially with y,
thus enhancing the perturbation theory in imaginary time.
Indeed, in the strong SBC coupling limit, the second-order
correction ﬁéz) approaches zero. This roughly explains how our
polaron-picture-based perturbation theory, by construction,
may be suitable for treating finite SBC strength. It is now
also clear that our theory is perturbative in terms of Hgg,
but nonperturbative in terms of Hgp. We also note that
though the integral expression in Eq. (11) is complicated, it
involves 2 x 2 matrices only. The final expression for the trace
trg[o;Ps] is hence also analytical. Detailed calculations [10]
show that the RDM diagonal elements thus obtained are
accurate so long as the tunneling element A is not large as
compared to the bath cutoff frequency w, (therefore not a slow
bath).
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The crucial task in theory here is to explicitly evaluate the
off-diagonal element of pg via tr[o_ D? j,]. In this case, due to
the correlation between the system and the bath, the first-order
contribution of Hyp to e ## and hence to O 1s already nonzero
(upon thermal averaging). As such, it suffices to consider a
first-order perturbation theory in imaginary time for the total
density in the polaron picture. With some details elaborated
in'glle appendices [13], we finally obtain pg* ~ pi3o) + £§7)»
wi

n _ RAg h ) s
Pso) = — o tanh(8n/2), (15)
B
Py == fo dTS,(1)Kn(2), (16)
n=x,y

n=+e>+ A%. Here §,(t) = (0u(v)o_)p, and K,(7) =
(Vn(r)DE)HB are the correlation functions of the system and
of the bath, respectively. They are given by

A% esech(B8n/2)

1
Sy(t) = 2—7712 + pTe {e cosh I:E(ﬂ — 2t)n]

+ n sinh [%(,B —21)17:“, a7

Sy(t) = —%sech(ﬂn/Z){ cosh [%(,3 — 21)17:|

+ < sinh [l(ﬁ —21);7“. (18)
n 2

The bath correlation functions are K,(r) = 2C,(r)/A and
K,(t) =2iC,(r)/A. Note that the first-order correction here
is again linked with the above-defined bath correlation function
C, (7). So, by construction, our perturbation theory for off-
diagonal elements of RDM works even better for stronger
SBC coupling (thus analogous to the previous treatment for
pil and p3?).

III. RESULTS

With all the RDM elements analytically obtained above, we
now examine the validity of our theoretical results and reveal
interesting physics in noncanonical equilibrium statistics.
Instead of examining all the RDM elements (one exception
later), we use a single quantity to characterize noncanonical
statistics, i.e., the smallest possible angle (6) to be rotated (in
radians) on the Bloch sphere to reach the eigenstates of Hy
from the diagonal representation of the RDM. The theoretical
results (solid line) are plotted in Fig. 1 as a function of the
SBC strength y for a fixed temperature. For small values
of y, 6 is small, so the RDM’s diagonal representation is
close to, or significantly overlapping with, that of Hg. This
is expected because for weak SBC strength, the equilibrium
statistics should be canonical. As y increases, 6 increases,
indicating that the RDM diagonal representation continuously
and monotonously rotates away from the eigenstates of
Hg [14]. To further elucidate the continuous change in 6,
an analogous angle, namely, the angle the RDM diagonal
representation should be rotated to reach the eigenstates of
Hgp, is also plotted in Fig. 1 (dashed line). Interestingly,
for large values of y, the RDM diagonal representation is
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FIG. 1. (Color online) Coupling-strength dependence of the angle
to be rotated on the Bloch sphere to reach eigenstates of Hs (solid
line) or Hgp (dashed line) from eigenstates of equilibrium RDM, for
B =1, =0.5,and w. = 5 (in units of A). Solid dots are numerically
exact Monte Carlo simulations results (for details of this method, see
Ref. [15]).

seen to approach that of Hgg. Indeed, because C,(t) — 0 for
large , all the perturbative corrections to p§', p2%, and pl?
approach zero, and hence the RDM approaches exp(—35f0),
whose diagonal representation should be parallel to that of
Hgp (as both are a function of o). This is the case at arbitrary
temperature. Our theoretical results are also in quantitative
agreement with the solid dots shown in Fig. 1, obtained
numerically from Monte Carlo simulations based on imaginary
time path integral (a powerful method if the bath temperature
is not too low [15]). That is, for a varying SBC strength,
either weak or strong, our theory and numerically exact results
agree. This confirms that our analytical treatment for RDM
off-diagonal elements performs equally well in the regime
valid for treating the RDM diagonal elements (hence almost
the entire parameter space [10]).

In a different context, i.e., decoherence dynamics [16,17],
the RDM diagonal representation is regarded as a special
representation, often called a preferred basis of decoherence.
It is in this special representation that decoherence can be
understood as the disappearance of the off-diagonal matrix
elements of a time-evolving RDM. A recent study using a
low-dimensional quantum chaos model as a quantum bath [18]
shows that the preferred basis of decoherence shows exactly
the same qualitative behavior as observed in Fig. 1 for the
equilibrium RDM; i.e., after a short period of decoherence the
preferred basis of a system coincides with the eigenstates of
Hg for weak SBC and becomes the eigenstates of Hgp for
strong SBC, with a continuous deformation in intermediate
regimes. This very feature shared by the equilibrium RDM
considered here and the preferred basis of decoherence is
somewhat expected: An equilibrium RDM is an asymptotic
result of quantum dissipation. Due to this interesting con-
nection, the particular diagonal representations of RDM as
a result of noncanonical statistics can be also understood as
one remarkable (previously overlooked) outcome of Nature’s
superselection in open quantum systems [16,17,19-22].

We now turn to the temperature dependence of non-
canonical statistics at a fixed y, as depicted in Fig. 2 for
y =0.1. We choose y =0.1 as an example because it
represents an intermediate SBC strength in Fig. 1. As observed
from Fig. 2, for temperature lower than k37 =1 (a value
considered in Fig. 1), the RDM diagonal representation is
further rotated from that of Hy (solid line) but gets closer to
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FIG. 2. (Color online) Temperature dependence of the angle to be
rotated on the Bloch sphere to reach eigenstates of Hy (solid line) or
Hyp (dashed line) from eigenstates of equilibrium RDM, for y = 0.1,
€ = 0.5, and w, = 5 (in unit of A). Solid dots are numerically exact
Monte Carlo simulations results.

that of Hgp (dashed line). Therefore noncanonical statistics
becomes more pronounced when temperature decreases. On
the other hand, when temperature increases, the plotted angles
continuously change in opposite directions, showing that the
RDM diagonal representation gradually moves away from the
eigen-representation of Hgpg but smoothly approaches that of
Hjy. For temperature values much higher than shown in Fig. 2,
this trend persists. Numerically exact Monte Carlo simulation
results (solid dots) are also presented in Fig. 2, thus supporting
again our theory.

Theoretical results outlined above may be further exploited
to understand the asymptotic high-temperature behavior of
RDM. Keeping only terms of 8° and B', the use of Eq. (10)
gives pi! = 1/2 + €B/4 and p3* = 1/2 — /4, whereas the
use of Egs. (15) and (16) yields ,oéz = —ApB/4 [13]. But these
asymptotic density matrix elements are exactly those of a
canonical distribution for Hg = S0, + %ax at high temper-
ature. Noncanonical statistics is seen to have totally vanished
at high temperature. This clearly depicts an interplay between
two competing factors: SBC strength and temperature. A larger
SBC strength generates a noncanonical RDM, but the thermal
averaging tends to dilute noncanonical statistics and wipes it
out completely at high temperature. Interestingly, this compe-
tition can be also appreciated from the bath statistics, which is
also noncanonical. In particular, in terms of the boson occupa-
tion number on mode k, the ratio of the leading-order correc-
tion to the canonical result is proportional to g,f [(wrkpT) [13],
which becomes negligible at high temperature.

To further examine noncanonical statistics characterized
by a single angle measure (6), we present in Fig. 3 d6/dT,
i.e., the sensitivity of the RDM diagonal representation to
a small temperature variation, as a function of temperature.
The sensitivity is low for very low temperature, but it rapidly
increases, reaching a maximum at characteristic temperature
scales that are comparable to other system parameters (such
as y). As temperature increases further, the sensitivity drops
to zero asymptotically. The sensitivity profile as a function of
temperature qualitatively changes for a varying SBC strength.
For weak SBC strength (e.g., y = 0.05), it exhibits a sharp
peak. Hence the rotation of the RDM diagonal representation
mainly occurs within a narrow temperature window. For
strong SBC strength (e.g., ¥ = 0.2), the sensitivity profile
displays a rather flat structure, suggesting that it is harder
for thermal effects to compete with SBC. Thus, if and only
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FIG. 3. (Color online) Sensitivity of the RDM diagonal represen-
tation to temperature variation, as described by d0/dT vs T. 0 is
the angle to be rotated to reach eigenstates of Hg from eigenstates of
the equilibrium RDM. System parameters are given by € = 0.5 and
w, = 5 (in unit of A).

if the SBC strength is rather weak, then the temperature
that gives d%6/dT? = 0 (i.e., largest sensitivity of the RDM
diagonal representation to temperature) becomes an interesting
temperature scale.

IV. CONCLUSIONS

For an open quantum system not weakly coupled with a
bath, its equilibrium state is far from a canonical state at
low temperature. Exact analytical solutions are typically not
available (one known exception is the model of a harmonic
oscillator linearly interacting with a boson bath). A systematic
approach to such open quantum systems is hence highly
desirable in efforts to better understand their qualitative and
quantitative features of equilibrium statistics as temperature
and/or SBC strength varies. To our knowledge, the theoretical
treatment advocated in this work, as supported by numerical
results, represents the first attempt along this direction that
can almost cover the whole range of SBC strength and the
whole range of temperature of a spin-boson model. Because
noncanonical statistics is closely related to strong system-bath
correlation, we anticipate our theory to be also useful in
understanding system-bath entanglement.

Our theoretical findings based on a spin-boson model are
very relevant to experiments based on quantum dots. Acoustic
phonon modes have been identified as the principal source
of decoherence in InGaAs/GaAs quantum dots [23,24], and
temperature is widely tunable in such a semiconductor imple-
mentation. Certainly, in a real system the bath spectral density
may not be the super-Ohmic one assumed here. To address this
concern we have carried out numerically exact calculations
for an Ohmic bath at a nonzero temperature, obtaining results
that are qualitatively the same as presented in this work [13]
(even though our analytical treatment based on a full polaron
transformation cannot be applied to this case). Our approach
can also be generalized to study any dissipative large spins as
well as to ensembles of spins coupled to a common bath [25].
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APPENDIX A: DERIVATIONS OF THE OFF-DIAGONAL
RDM ELEMENT

The off-diagonal element of the equilibrium reduced
density matrix (RDM) can be formally written as p§* =

trlo_p,] = trfo_ D2 5;] where 5, = Expanding g, up

- tr [e f‘”f]
to first order in Hgp, we have

Pt = Pr0) + Pr,0) (A1)

where
e—BHo
tleP]’
e—BHy B

tr[e—#Ho]

Pr.) = (A2)

~ tHy 13 —TH
Py = — dre’ " Hgpe™ ™7,
efﬁﬁo

o
= ——./ dTHSB(T).
1Jo

A
tr[e=AHo (A9

Inserting the above expressions into ,oéz = trfo_D? pOr], we
obtain

Pt = trlo_D2 p, )],

= (0_)4,(D*)

BAg '
=-= tanh(Bn/2); (A4)
n

trlo_D? p; 1)l

— Z/ dt(Hsg(t)o_D*)g,

n=x,y

12
Ps (1)

-y / dt(0,(1)0-) g, (Va(©)D? ) 1,

n=x,y

(AS5)

— Z/ dt S,y(T) K (7),

n=x,y

where the explicit expressions for the system and bath
correlation functions, S,(r) and K,(t), are already given in
the main text.

APPENDIX B: HIGH-TEMPERATURE BEHAVIOR OF RDM

Here we give some details to see how noncanonical
statistics of RDM totally vanishes at high temperature. For
the off-diagonal element, the zeroth order term vanishes at
high temperature since R decays exponentially with 7'. Thus,
only the first-order correction term, ,052(1), contributes to the
off-diagonal element at high temperature. Furthermore, at
high temperature the system correlation functions can be ap-
proximated as S,(t) & 1e#~27¢/2 and S, () ~ —ifelf 27/
(where we have used n & €). Note also that though R vanishes
at high temperature, the term R%e?™ contained in the bath
correlation functions remains finite (keeping in mind that
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FIG. 4. (Color online) The angle to be rotated on the Bloch sphere
to reach the eigenstates of Hg(crosses) or Hgp (solid dots) from the
eigenstates of the equilibrium RDM as a function of coupling strength,
for 8 =1,e€ = 0.5, and @, = 5 (in units of A).

0 < v < B). Thatiis,

o0
R?e?® = exp{—4/
0

cosh [3Bw] — cosh [3(B — 21)w] }
X ’

do J(w)
T w?

sinh(Bw/2)
2 _
%exp{—l{—r ’3,37:}’ B1)
where «k =4 [ - d“’ J(“)) Eii'wf and we have used the

expansions smh(x) ~ x and cosh(x) ~ 1 +%x2 to arrive
at the second expression. The bath correlation functions

at high temperature can then be written as K (r)~
4exp[ Kt ﬁt]andK (1) ~14exp[ Kt ﬂr] We then have
,012 ﬁfoﬂ e(B=20¢/2-(x*~B1)/B 41 Since 7 is also small
© < B), the integrand can be further expanded using e* &

1 + X, and we finally obtain p§? up to the second order in g:

12 A 2
s~ _Z(ﬂ — kp7/6). (B2)
Calculating the diagonal elements at high temperature is
more straightforward: The double integral in matrix A [see
Eq. (12)] indicates that it is at least proportional to 82 and can
be discarded if we are interested only in terms up to the first
order of B. The diagonal elements, p}! and p3*, can then be

written as %(1 =+ trg[o; ﬁ(SO)]). The are explicitly given by

v e |~ L — e, 83

Os _5 ;an (ﬁn/) ’\"E( 613/ )’ ( )
» 1 € 1

p3* = =1+ —tanh(Bn/2) | ~ =(1 + €B/2), (B4)
2 n 2

where we have used = V€2 + A%e ~ € and tanh(x) ~ x.
Gathering all the results above, our analytic theory predicts
that at high temperature,

(L
Ps = 3 AB e,s)~

The above expression is exactly the same as the high-
temperature canonical state of the system, W This

remarkable agreement nicely demonstrates that canonical
statistics is recovered at high temperature.

(BS)
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FIG. 5. (Color online) The angle to be rotated in the Bloch sphere
to reach the eigenstates of Hy (crosses) or Hgp (solid dots) from the
eigenstates of the equilibrium RDM as a function of temperature, for
y = 1.5, = 0.5, and @, = 5 (in units of A).

APPENDIX C: OHMIC BATH

Here we study the rotation angle between the eigenstates
of the RDM and the eigenstates of Hg or Hgp using an
Ohmic bath, J(w) = ywe™*/*:. Unfortunately, a full polaron
method as we used in the main text is not applicable for
an Ohmic bath as it suffers from an unphysical divergence
issue [6,26]. The integral in the renormalization constant
R is divergent for all coupling strength, and the tunneling
element is always normalized to zero. Therefore here we
only present the numerical results from the imaginary time
path integral simulations (for not too low temperature).
The coupling and temperature dependence of the rotation angle
are plotted in Figs. 4 and 5. It can be seen that the features
of the figures are qualitatively similar to those obtained using
a super-Ohmic spectral density in the main text. Therefore,
the general observations made in our main text should not be
sensitive to the spectral density of the bath.

APPENDIX D: EIGENVALUE AT ZERO TEMPERATURE

In the eigenbasis, the equilibrium RDM can be written as

(M 0 D1
IOS_<0 )\‘2>7 ( )

where A; are the eigenvalues of RDM and A; + A, = 1. The
eigenvalues denote the population of each of the eigenstate.
The eigenvalues also serve as an indicator of the purity of the
system. If both eigenvalues are nonzero, the system is in a
mixed state. Below, we will use the larger eigenvalue, A;, to
investigate the purity of the system: The system is in a pure
state if A, = 1 and vice versa.

Due to the finite system-bath coupling, the equilibrium
RDM might not be a pure state at 7 = 0 even though the
system plus the bath is in their entangled ground state.
To examine how the purity of RDM at 7 =0 depends
on the coupling strength, we plot A, as a function of y
in Fig. 6. It can be observed that the eigenvalue exhibits
an interesting nonmonotonic behavior as a function of the
system-environment coupling strength. At y = 0, the system
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FIG. 6. (Color online) The larger eigenvalue, 1, of RDM, plotted
against the SBC strength y, for 7 = 0, ¢ = 0.5, and w. = 5 (in units
of A).

is in the ground state of Hg with unit purity. At finite coupling,
both eigenstates are populated and RDM is a statistical
mixture due to the system-bath entanglement. Interestingly,
RDM is reduced to a pure state at very large y, indicating
that the system-bath entanglement vanishes at ultrastrong
system-environment coupling. However, this pure state is no
longer the eigenstate of the system Hamiltonian, but that of o,
in the interaction Hamiltonian.

APPENDIX E: BATH STATISTICS

Here we examine the equilibrium statistics of the bath by
examining the average boson number of each mode, which
is denoted by (n;). In the polaron frame, the boson number
operator is given by

= ankefF,
2
8k i 8
= — —o.(b + bp) + =%, (El)
Wi a)k

where F =0, ), i—i(bl — by) in the first line. An approximate
expression of (n;) can be obtained by
tr[n; e P
tr[e=BH:] ’
trfef e efe=Phie—
trle—AH:]
tr[ﬁke”ggf]
- trle—#H] ’

~ tr{figeFHo]

(ng) =

"

’

AN - E2
tr[e=AHo] E2)
Inserting Eq. (E1) into the above expression, we have
(i) = (o + g [ i (E3)

o .
where (n;)o = (e®7 — 1)~ is the average boson number
without system-bath coupling. In the high temperature limit,
it satisfies the equipartition theorem, (rn;)o ~ ]Z’;—kT Therefore,

2
the fractional correction, given by ) —tmdo —S8k_ becomes
e . (ni)o wikpT

negligible at high temperature.
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