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First-passage time for subdiffusion: The nonadditive entropy approach versus the fractional model
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We study the similarities and differences between different models concerning subdiffusion. More particularly,
we calculate first passage time (FPT) distributions for subdiffusion, derived from Greens’ functions of nonlinear
equations obtained from Sharma-Mittal’s, Tsallis’s, and Gauss’s nonadditive entropies. Then we compare these
with FPT distributions calculated from a fractional model using a subdiffusion equation with a fractional
time derivative. All of Greens’ functions give us exactly the same standard relation 〈(�x)2〉 = 2Dαt

α which
characterizes subdiffusion (0 < α < 1), but generally FPT distributions are not equivalent to one another. We
will show here that the FPT distribution for the fractional model is asymptotically equal to the Sharma-Mittal
model over the long time limit only if in the latter case one of the three parameters describing Sharma-Mittal
entropy r depends on α, and satisfies the specific equation derived in this paper, whereas the other two models
mentioned above give different FPT distributions with the fractional model. Greens’ functions obtained from the
Sharma-Mittal and fractional models, for r obtained from this particular equation, are very similar to each other.
We will also discuss the interpretation of subdiffusion models based on nonadditive entropies and the possibilities
of the experimental measurement of subdiffusion models’ parameters.
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I. INTRODUCTION

Over about the last 20 years the anomalous diffusion
process has been observed in many physical systems. Simulta-
neously, various theoretical models of this process have been
put forward (see [1–3] and the references cited therein). It
is worth considering what the issue of anomalous diffusion
is and that the definition of this process can be taken into
account. We note that the situation is different here compared
to the normal diffusion process. Namely, in the latter case
the different models produce results which are equivalent to
each other. For example, the stochastic approach provides the
same normal diffusion equation as entropy formalism, and
their fundamental solutions appear to be Gaussian functions
with their second moment proportional to time

〈(�x)2〉 = 2Dt. (1)

Consequently, the question “What is the definition of normal
diffusion?” can be answered in a few equivalent ways, such
as with the process described by the Langevin equation with
white noise, the standard Wiener process, the random walk
of a particle where the probability distributions of its step
length and the waiting time to take its next step have finite
moments, or the process described by a probability density
which maximizes the Boltzmann-Shannon entropy. Although
from a mathematical point of view these definitions are not
exactly equivalent to each other, physicists usually treat these
definitions equivalently. Anomalous diffusion is a process
which qualitatively differs from normal diffusion, so all of
the above-mentioned definitions are not fulfilled. However,
such treatment causes ambiguity in the definitions. There
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arises a problem with the definition of anomalous diffusion
as a process which denies normal diffusion definition. The
Wiener process is replaced by the frational one (consequently
the Langevin equation is changed), within the continuous
time random walk (CTRW) formalism at least one of the
probability distributions describing a single particle jump has
infinite moments, and nonadditive entropies are used instead
of Boltzmann-Shannon entropy. The anomalous diffusion is
frequently defined by its interpretation as a non-Markovian
random walk which is described by non-Gaussian probability
distribution. However, this definition is limited to the stochastic
processes and its relation to thermodynamics or deterministic
models is not obvious. To find a more general definition one
should assume that anomalous diffusion is characterized by a
special parameter (in the following denoted by α) which is a
“measure” of how far the anomalous diffusion process is from
the normal diffusion one. Since within the CTRW formalism
the anomalous diffusion model provides us with the probability
distributions with the second moment to be nonlinear of time

〈(�x)2〉 = 2Dαtα, (2)

where α > 0, α �= 1, the statement that the model which
provides the relation (2) can be treated as an anomalous
diffusion model has been rather widely used. The parameter α

plays a different role in the models; it is related to the fractional
derivative order in the anomalous diffusion equations or it
controls a measure of nonadditivity of the entropy.

The most used anomalous diffusion models seem to be
the CTRW model and the models derived from nonadditive
entropies. Throughout this paper we will refer to the model
based on CTRW as a fractional model. CTRW provides the
linear anomalous diffusion equation with the fractional-order
derivatives [2–4], while the models based on the nonadditive
entropies give nonlinear differential (or integral-differential)
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equations with derivatives of a natural order [5–14]. The
simplest stochastic interpretation of the anomalous diffusion
seems to be found within CTRW models, where the random
walker waits an anomalously long time to make its next step,
for example, in the transport process of sugars in gel (for
subdiffusion) or where the step length can be anomalously long
with a relatively high probability, for example, a random walk
in a turbulent medium (for superdiffusion). For the nonadditive
entropy model, a physical meaning of the anomalous diffusion
equation is manifested mainly in its stationary version, namely,
the stationary solution of the equation maximizes nonadditive
entropy. However, as was shown in [15], there is a non-
Markovian process which provides the relation (1). Thus, the
stochastic definition of anomalous diffusion is, in some situa-
tions, in contradiction with the ones based on the relation (2).

We note that in a system where the relation (2) is valid,
other functions, which can be measured experimentally, of
a type f (t) ∼ tα/2 describe the system, such as the time
evolution of near membrane layer thickness [16,17] and the
time evolution of the reaction front in the subdiffusive system
with chemical reactions [18,19]. Let us also note that there are
models which have stochastic interpretations different from
the fractional one as, for example, the model based on Tsallis
entropy; but in these models we can also find the power-like
important characteristic of the system identical with the ones
found within the fractional model. The stochastic models
are based on the assumptions which simplify the problem
which the experimental data are not capable of confirming,
as the assumptions concerning random walk of a particle for
a separable case of CTRW formalism. On the other hand,
the stochastic interpretation of various diffusion models is
needed (see, for example, [5,6,20,21]). The attempts to find
the stochastic interpretation of nonadditive entropy formalism
have mainly been made using the modified Langevin equation
for the description of the anomalous diffusion process which is
simultaneously described by a nonlinear differential equation.
The result is that a random force occurring in the Langevin
equation depends on the solution to the nonlinear equation
[22–26]. This situation can be interpreted as the existence
of feedback between a system and a random force, whose
interpretation is, at least in our opinion, not obvious. We remark
here that such nonlinear equations were also derived from the
master equation [27]. Recently, we found a new stochastic
interpretation of subdiffusion as a “long memory diffusion”
described by the generalized linear Langevin equation in a
system with external Gamma-type noise [28]. The anomalous
diffusion equation derived within this new model perfectly
coincides with the one derived within the nonadditive Sharma-
Mittal entropy formalism.

The above considerations lead us to take the following
definition of the anomalous diffusion: An equation whose
fundamental solution (Green’s function) G(x,t ; x0) provides
the relation (2) where

〈(�x)2〉 =
∫ ∞

−∞
(x − x0)2G(x,t ; x0)dx,

can be treated as an equation describing the anomalous
diffusion process. Throughout this paper we have assumed that
we are dealing with one-dimensional homogeneous systems
without any external fields and convective flows; here Dα

is the anomalous diffusion coefficient measured in the units
m2/sα and α is the anomalous diffusion parameter; 0 < α < 1
for subdiffusion, α > 1 for superdiffusion. Thus, anomalous
diffusion is controlled by two parameters: Dα and α. We
would like to add that the anomalous diffusion coefficient is
sometimes defined differently, for example, the subdiffusive
coefficient D̃α is often defined as [2,3] D̃α = �(1 + α)Dα .
Although Greens’ functions derived from the equation men-
tioned above provide Eq. (2), other important characteristics,
such as a first passage time distribution, are different.

First passage time (FPT), which is one of the most
important characteristics in normal and anomalous diffusions
[29–31], was studied for anomalous diffusion mainly within
the fractional model [2,3,32–43] as well as in the lattice and
fractal medium [44,45]. The FPT is defined as the time that
the random walker takes to reach a target located in xM

for the first time, from the starting point x0. The FPT has
been used to describe real physical processes such as animals
searching for food [46], the passage of DNA molecules through
a membrane channel [32], the spreading of disease [47],
and so on. Moreover, the FPT distribution can be used to
calculate other characteristic functions which are measured
experimentally, such as the time evolution of an amount of
a substance leaving a sample or the substance flux flowing
through a sample surface.

In this paper we study subdiffusive systems. We derive
the FPT distributions for subdiffusion equations derived form
Sharma-Mittal, Tsallis, and Gauss nonadditive entropies and
compare them with the result obtained from the fractional
model. We should add here that we will pay particular attention
to the nonlinear differential anomalous diffusion equations
derived from nonadditive entropies and we will not discuss the
interpretation of the entropies. Our strategy is as follows: We
adapt Greens’ functions presented in their generalized forms
in Frank’s book [5] into special forms so that each of them
exactly satisfies the relation (2). Next, we calculate the FPT
distribution functions and compare them with the one obtained
from the fractional model. We derive consistency conditions
in the functions calculated from various models over the
long time limit. We briefly discuss the similarity of Greens’
functions and the interpretation of the parameters occurring in
nonadditive entropies and their connection with the parameters
Dα and α, which are measured experimentally. This method
would allow us to measure nonadditive entropy parameters.

II. METHOD

Here we will present the functions and equations which
define the Green’s function and the distribution of FPT used
in our considerations. The description of nonlinear anomalous
diffusion equations derived from nonadditive entropies and
their analytical solutions (Greens’ functions) are based on
Frank’s book [5].

A. Anomalous diffusion equations

1. Nonadditive entropy formalism

The Sharma-Mittal entropy is defined as

SSM
q,r [P ] = 1 − (

∫
P rdx)(q−1)/(r−1)

q − 1
, (3)
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where q,r > 0, q,r �= 1, P denotes a probability of finding a
particle at the point x at time t . Gauss entropy obtained in the
limit r → 1− reads

SG
q [P ] = 1 − e(q−1)

∫
P lnPdx

q − 1
,

where q > 0, q �= 1. The Tsallis entropy can be obtained
from Eq. (3) putting q = r . For two statistically independent
systems A and B the Sharma-Mittal entropy satisfies the
following equation

SSM
q,r (A + B) = SSM

q,r (A) + SSM
q,r (B)

+ (1 − q)SSM
q,r (A)SSM

q,r (B).

For q �= 1 one deals with nonadditive entropy [48,49].
There are two main ways to derive anomalous diffusion

equation from nonadditive entropy. Within the first one the
stationary state is generated by means of a maximum entropy
condition under conditions which assume that the q moments
are finite. Within the second method the flux J defined by the
equation J = L(P )(δS/δP ) is combined with the continuity
equation ∂C/∂t = −∂J/∂x [9]. For the normal diffusion case
L(P ) ∼ 1/P . There is no obvious choice of the function L(P )
for anomalous diffusion. The anomalous diffusion equation
derived within nonadditive entropy formalism reads [5]

∂P (x,t)

∂t
= Qi�i[P ]

∂2P r (x,t)

∂2x
, (4)

where r �= 1 and r > 1/3, r = q for the Tsallis case and r = 1
for the Gauss case, the index i denotes the symbol identifying
entropy, Qi denotes the fluctuation strength, and

�SM[P ] =
(∫

P rdx

) q−r

r−1

, �T [P ] = 1,

�G[P ] = e(q−1)
∫

P lnPdx.

2. Fractional model

Within the separable case of CTRW formalism it is assumed
that a particle takes its next step of a length ρ after time τ , where
both are independent random variables. For subdiffusion
the probability distribution ω(τ ) is of “thick tail,” ω(τ ) ≈
−τα/t1+α�(−α) for a sufficiently large time (the mean value
of ω equals infinity), whereas λ(ρ) is the Gaussian distribution,
λ(ρ) = exp(−ρ2/2σ 2)/

√
2πσ 2. Under the above assumptions

one obtains the linear subdiffusion differential equation with
the Riemann-Liouville fractional derivative [2–4]

∂P (x,t)

∂t
= D̃α

∂α

∂tα

∂2P (x,t)

∂x2
, (5)

where D̃α = σ 2/τα , the Riemann-Liouville fractional deriva-
tive is defined as follows for α > 0

dαf (t)

dtα
= 1

�(n − α)

dn

dtn

∫ t

0
(t − t ′)n−α−1f (t ′)dt ′,

where n is a natural number fulfilled α � n < α + 1.

B. Green’s function

Green’s function (GF) is defined here as a solution to the
appropriate diffusion equation with the initial condition

G(x,0; x0) = δ(x − x0),

δ denotes the delta-Dirac function. When particles are inde-
pendently transported and all of them start their movement
at x0 at the initial moment t = 0, the Green’s function can
be interpreted as a concentration profile of the particles
normalized to 1 (i.e., divided by the number of particles).
Another interpretation of the GF is that it is treated as a
probability density of finding a particle at point x at time t

under the condition that its initial position is x0. We should add
here that there is a stochastic interpretation of the subdiffusive
movement of a particle described by a nonlinear differential
equation, which assumes that the particle is transported
independently of other particles [28]. For the unrestricted
system the GF satisfies natural boundary conditions which
require the disappearance of the function at an infinite distance
from the initial position G(x,t ; x0) → 0, when x → ±∞.

The Green’s function for the nonlinear diffusion equation
(m > 0, m �= 1)

∂P (x,t)

∂t
= ∂2P m(x,t)

∂x2
,

known as the Barenblatt solution, reads [50]

G(x,t ; x0) = t−k

[ {
1 − k(m − 1)|x − x0|2

2mt2k

}
+

] 1
m−1

, (6)

where k = 1/(m + 1), {u}+ = max{u,0}.
In our paper we use the Green’s function for the system

with a fully absorbing wall. The commonly used boundary
condition at an absorbing wall reads

Gabs(xM,t ; x0) = 0.

Due to the interpretation of the GF and the symmetry
arguments, the GF for the normal and subdiffusive systems
with a fully absorbing wall can be found through the means of
the method of images, which for x,x0 < xM gives

Gabs(x,t ; x0) = G(x,t ; x0) − G(x,t ; 2xM − x0). (7)

1. Nonadditive entropy formalism

The Greens’ functions of Eq. (4) for the Sharma-Mittal and
Tsallis models take the form of Eq. (6) and read [5]

GSM(x,t ; x0)

= DSM(t)

[{
1 − CSM(t)

2
(r − 1)(x − x0)2

}
+

] 1
r−1

, (8)

where r > 1/3, r,q �= 1, q > 0,

GT (x,t ; x0)

= DT (t)

[{
1 − CT (t)

2
(q − 1)(x − x0)2

}
+

] 1
q−1

, (9)
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where q > 1/3, q �= 1,

GG(x,t ; x0) = DG(t)exp

(
−CG(t)

2
(x − x0)2

)
. (10)

The functions occurring in Eqs. (8) to (10) are defined as

DSM(t) =
[

1

2r(1 + q)QSMKr,q |zr |2t
] 1

1+q

, (11)

DT (t) =
[

1

2q(1 + q)QT |zq |2t
] 1

1+q

, (12)

DG(t) =
[

e(q−1)/2

2π (1 + q)QGt

] 1
1+q

, (13)

where

zr =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
π

r−1
�[r/(r−1)]

�{(3r−1)/[2(r−1)]} , r > 1,

√
π, r = 1,√

π
1−r

�[(1+r)/2(1−r)]
�[1/(1−r)] , 1/3 < r < 1.

(14)

and

Kr,q =
{(

3r−1
2r

) q−r

1−r , r �= 1,

e(1−q)/2, r = 1,
(15)

CSM(t) = 2[zrDSM(t)]2,

CT (t) = 2[zqDT (t)]2, (16)

CG(t) = 2π [DG(t)]2.

The second moment of the Greens’ functions presented above
can be calculated according to the formulas

〈(�x)2(t)〉SM = 2

3r − 1

1

CSM(t)
,

〈(�x)2(t)〉T = 2

3q − 1

1

CT (t)
, (17)

〈(�x)2(t)〉G = 1

CG(t)
.

2. Fractional model

For Eq. (5) the Green’s function is (in the following, the
index F corresponds to the fractional model)

GF (x,t ; x0) = 1

2
√

D̃α

fα/2−1,α/2

(
t ;

|x − x0|√
D̃α

)
, (18)

where

fν,β(t ; a) = 1

t1+ν

∞∑
k=0

1

�(−kβ − ν)k!

(
− a

tβ

)k

, (19)

β,a > 0, the function f can also be expressed in terms of the
Fox function [51]. We should add here that the methods of
solving Eq. (5) are presented, among others, in [2,16,51,52].

C. First passage time

Let us assume that a particle is located at x0 at the initial
moment t = 0. The time when the particle reaches the point xM

for the first time is a random variable described by a probability
density of F , calculated according to the formula for t > 0

F (t ; x0,xM ) = −dR(t ; x0,xM )

dt
, (20)

for t � 0 we put F (t ; x0,xM ) = 0, and where R(t ; x0,xM )
denotes the probability of finding the particle at time t starting
from x0 in the system with a fully absorbing wall located at
xM (in the following we assume that x0 < xM )

R(t ; x0,xM ) =
∫ xM

−∞
Gabs(x,t ; x0)dx. (21)

The cumulative function of F is 1 − R(t ; x0,xM ). The mean
first time 〈T 〉 is defined as

〈T 〉 =
∫ ∞

0
tF (t ; x0,xM )dt.

Assuming that tR(t ; x0,xM ) → 0 when t → ∞, one obtains

〈T 〉 =
∫ ∞

0
R(t ; x0,xM )dt. (22)

III. GREENS’ FUNCTIONS GENERATED RELATION (2)
AND FIRST PASSAGE TIME DISTRIBUTIONS

Greens’ functions (8), (9), and (10), presented in the
previous section, depend on the parameters q (which can
be interpreted as a measure of entropy nonadditivity) and
the fluctuation strength Qi , here the index i denotes the
model, i = SM,T ,G for the Sharma-Mittal, Tsallis, and
Gauss models, respectively. Sharma-Mittal Green’s function
additionally depends on the parameter r . The Green’s function
for the Tsallis and Gauss models can be treated as specific cases
of the Sharma-Mittal one, using q = r for the Tsallis model
and having as a limit r → 1− for the Gauss model. However,
retaining the commonly used terminology, we consider these
functions separately.

We look at two sets of subdiffusive models having different
physical origins. The first contains the models derived from
nonadditive entropy and the second contains the fractional
model. In general, both of these sets can describe the same
physical processes. However, processes also occur which can
be described by models from one set alone, the other set
of models cannot be applicable in describing such a process
(this problem will be briefly discussed in the Final Remarks).
We are going to find the accordance conditions between
models from both sets using the FPT distributions. Our further
considerations are based on the following assumptions: The
first, since the models describe the same subdiffusion process,
all of Greens’ functions should provide the same relation
which defines subdiffusion (2); the second, the parameters
α and Dα are measured experimentally. The examples of such
measurements, where the empirical results were compared
with the theoretical functions derived within the fractional
model, are presented in [16,17,53]. Taking into account
Eqs. (2), (11), (12), (13), (16), and (17) we come to the
conclusion that relation (2) will be satisfied by all of Greens’
functions Gi(x,t ; x0) when

q = 2

α
− 1 (23)
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for all models, while the fluctuation strength must be chosen
for each model separately. The fluctuation strength Qi , which
in general depends on q and r , plays the key role in expressing
the parameters of the models based on nonadditive entropy
by α and Dα . When q = r = 1 we are dealing with normal
diffusion and then Qi is identified as the normal diffusion
coefficient D1 = Qi for each model. Taking into account (23)
they read

QSM = α[2Dα(3r − 1)]1/α

4rKr,2/α−1|zr |2(1−1/α)
, (24)

QT = α2[2Dα(6/α − 4)]1/α

4(2 − α)|z2/α−1|2(1−1/α)
, (25)

QG = α(2Dα)1/α

2(
√

2πe)2(1−1/α)
. (26)

In the following sections, we apply Eqs. (23) to (26) to
eliminate the parameters q and Qi from Greens’ functions
(8), (9), and (10) and then we use Greens’ modified functions
to calculate the functions Fi(t ; x0,xM ) and Ri(t ; x0,xM ) from
Eqs. (20) and (21). In the last section we will find these
functions for the fractional model.

A. Sharma-Mittal model

Using Eqs. (8), (23), and (24), the Green’s function for the
homogeneous unrestricted system, provided by the Sharma-
Mittal entropy model, reads

GSM(x,t ; x0)

= 1√
2Dα(3r − 1)tα|zr |

[ {
1 − (r − 1)(x − x0)2

2Dα(3r − 1)tα

}
+

] 1
r−1

,

(27)

where r > 1/3 and r �= 1. The function has different properties
depending on the value of the parameter r . In the following,
we consider the cases r > 1 and 1/3 < r < 1 separately.

1. The case of r > 1

The function (27) has a finite support for r > 1, so the
probability of finding the particle differs from zero only in the
interval

x ∈ [x0 − W (t),x0 + W (t)],

where W (t) = Btα/2, B =
√

2Dα (3r−1)
r−1 (see Fig. 1). The bound-

aries of the interval move with the speed vg given by the
relation

vg = dW (t)

dt
= αB

2t1−α/2
. (28)

The finiteness of vg ensures that there is a minimum time
Tx2,x1 of the passing of the particle from the point x1 to x2,
which is given by the relation

Tx2,x1 =
[

(x2 − x1)2

B2

]1/α

. (29)

-100 -50 0 50 100x
0

0.0025

0.005

0.0075

0.01

G
(x

,t
;x

0)

1.125
2
5
10
50
100

=10α=0.7, αD
t =100

FIG. 1. Green’s function for SM model in the case of r > 1 with
finite support, W = 154.7 for r = 1.125, 79.3 for r = 2, 66.4 for
r = 5, 63.7 for r = 10, 61.8 for r = 50, and 61.7 for r = 100, here
x0 = 0. Values of the parameter r are given in the legend.

Using Eqs. (7), (21), (27), and (29), we obtain

RSM,r>1(
¯
t ; x0,xM )

= �
(
TxM,x0 − t

) + �
(
t − TxM,x0

) 2

|zr |
√

r − 1

×
(

TxM,x0

t

)α/2

2F1

[
1

2
,

−1

r − 1
;

3

2
;

(
TxM,x0

t

)α]
, (30)

where � is the Heaviside function and 2F1[a,b; c; z] denotes
the hypergeometric function

2F1[a,b; c; z] =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, (31)

(a)n is the Pochhammer symbol, (a)n = �(a + n)/�(a). From
Eqs. (20) and (30) we obtain

FSM,r>1(t ; x0,xM ) = �
(
t − TxM,x0

) α

|zr |
√

r − 1

×
(
TxM,x0

)α/2

t1+α/2

[
1 −

(
TxM,x0

t

)α] 1
r−1

.

(32)

2. The case of 1/3 < r < 1

For this case the Green’s function is unrestricted. The tails
for a specific given t reads G(x,t ; x0) ∼ 1/x2/(1−r) when x →
±∞. The graphs of the Greens’ functions for this case are
presented in Fig. 2. By repeating the procedure presented above
we obtain

RSM,r<1(t ; x0,xM )

= 2√
1 − r|zr |

[
(xM − x0)2

2Dαtα
(

3r−1
1−r

) + (xM − x0)2

] 1
2

×2F1

[
1

2
,

1 − 3r

2(1 − r)
;

3

2
;

(xM − x0)2

2Dαtα
(

3r−1
1−r

) + (xM − x0)2

]
,

(33)
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=10,α=0.7, αD t =1000

FIG. 2. Green’s function GSM for 1/3 < r < 1. Values of the
parameter r are given in the legend.

and

FSM,r<1(t ; x0,xM )

= α|xM − x0|
|zr |

√
1 − r

[
2Dα

(
3r−1
1−r

)] 1+r
2(1−r) t

α(1+r)
2(1−r) −1

[
2Dα

(
3r−1
1−r

)
tα + (xM − x0)2

] 1
1−r

. (34)

Equations (30), (31), and (33) provide the same for-
mula for long times, namely for t � tSM, where tSM =
[ (xM−x0)2

2Dα |(3r−1)/(1−r)| ]
1/α , we obtain

RSM(t ; x0,xM ) =
√

2|xM − x0|√
Dα(3r − 1)|zr |

1

tα/2
, (35)

for r > 1/3 and r �= 1.

B. Tsallis model

As we mentioned previously, the Tsallis Green’s function
can be treated as a specific case of the Sharma-Mittal one.
The results presented in the previous section are valid for the
Tsallis model in which

r = 2

α
− 1. (36)

Let us note that the Tsallis model corresponds to the case of
r > 1 for subdiffusion. As a formality, we present the functions
derived in Sec. III A 1, taking into account Eq. (36)

GT (x,t ; x0)

=
√

α√
2Dα(3 − 2α)|z2/α−1|tα/2

×
[{

1 − (1 − α)(x − x0)2

(6 − 4α)Dαtα

}
+

] α
2(1−α)

, (37)

where

z2/α−1 = α
�

(
α

2(1−α)

)
�

(
1

2(1−α)

)√
απ

2(1 − α)
,

RT (t ; x0,xM )

= �
(
T̃xM,x0 − t

) + �
(
t − T̃xM,x0

) 2�
(

1
2(1−α)

)
α
√

π�
(

α
2(1−α)

)
×

(
T̃xM,x0

t

)α/2

2F1

[
1

2
,

−α

2(1 − α)
;

3

2
;

(
T̃xM,x0

t

)α
]

,

(38)

where

T̃xM,x0 =
[

(2 − α)(xM − x0)2

4Dα(3 − 2α)

]1/α

,

and the distribution of the FPT is

FT (t ; x0,xM )

= �
(
t − T̃xM,x0

) �
(

1
2(1−α)

)
√

π�
(

α
2(1−α)

)

×
(
T̃xM,x0

)α/2

t1+α/2

[
1 −

(
T̃xM,x0

t

)α
] 1

r−1

. (39)

For long times t � tT , where tT = [ (2−α)(xM−x0)2

4Dα (3−2α) ]1/α ,
Eq. (38) can be approximated as follows:

RT (t ; x0,xM ) =
|xM − x0|

√
2(1 − α)�

(
1

2(1−α)

)
α
√

πDα(3 − 2α)�
(

α
2(1−α)

) 1

tα/2
.

C. Gauss model

The Green’s function for the Gauss entropy model can be
obtained from Eq. (27) in the limit r → 1− and reads

GG(x,t ; x0) = 1

2
√

πDαtα
exp

(
− (x − x0)2

4Dαtα

)
. (40)

From Eqs. (21) and (40) we obtain

RG(t ; x0,xM ) = erf

(
xM − x0√

4Dαtα

)
, (41)

where erf(u) is the error function

erf(u) ≡ 2√
π

∫ x

0
e−u2

du = 2√
π

∞∑
n=0

(−1)nu2n+1

(2n + 1)n!
. (42)

Using Eqs. (20) and (41) we get

FG(t ; x0,xM ) = |xM − x0|
2
√

πDα

1

t1+α/2
e− (xM −x0)2

4Dαtα . (43)

For t � tG, where tG = [ (xM−x0)2

4Dα
]1/α , from Eqs. (41) and (42)

we obtain

RG(t ; x0,xM ) = |xM − x0|√
πDα

1

tα/2
.

D. Fractional model

The Green’s function (18) provides the relation (2) if

D̃α = �(1 + α)Dα. (44)
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Applying Eqs. (7), (18), and (21) we get

RF (t ; x0,xM ) = 1 − f−1,α/2

(
t ;

xM − x0√
D̃α

)
, (45)

and from Eqs. (45) and (20) we obtain

FF (t ; x0,xM ) = f0,α/2

(
t ;

xM − x0√
D̃α

)
. (46)

For t � tF , where tF = [ |xM−x0|�(1−α/2)√
2D̃α�(1−α)

]2/α , Eqs. (19), (25),

and (45) give

RF (t ; x0,xM ) = |xM − x0|√
Dα�(1 + α)�(1 − α/2)

1

tα/2
. (47)

We should add here that the equivalent results to Eqs. (45),
(46), and (47) were previously obtained by Barkai [43].

IV. COMPARISON OF THE MODELS

In this section we compare the functions obtained from
the different models. Putting the functions (30), (33), (38),
(41), (45) into Eqs. (22) respectively, we get 〈T 〉 = ∞ for all
models.

The probability densities of FPT are presented in Figs. 3
and 4. In both graphs the functions obtained for the fractional
model are represented by a dashed line, for the Tsallis model
by a solid one with empty circles, and for the Gauss model
by a dotted line; the other lines are assigned to Sharma-Mittal
functions with various r . All graphs are prepared for x0 = 0
and xM = 100. The values of the rest of the parameters are
given in each figure separately (all quantities are given in the
arbitrary chosen units). In Fig. 3 we have presented graphs for
relatively short times calculated for all models studied in this
paper, and in Fig. 4 we have presented these functions for long
times (in the log-log scale). We can observe that for a very
short t the function FSM is larger for a smaller r value (for r >

1 this function equals zero for t < TxM,x0 ). For intermediate
length times we observe the opposite situation, but the Gauss
function is the largest now. For very long times, the situation

0 10000 20000 30000 40000 50000 60000
t

0

2e-05

4e-05

6e-05

8e-05

F(
t,

x 0,x
M

)

0.375
0.5
0.59
1.125
100
Fractional
Gauss
Tsallis

α=0.7, α=5D

FIG. 3. Comparison between F (t ; x0,xM ) for the Sharma-Mittal
model for different r values and the other models.

60+e150+e1 1e+07
log10(t)

1e-08

1e-07

1e-06

lo
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(t

,x
0,x

M
)]
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100
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FIG. 4. The same situation as in Fig. 3, but in the log-log scale
for long times.

again changes to the opposite and the largest value takes the
function for the smallest r value, whereas the Gauss function
takes medial values. In the log-log scale (Fig. 4) we observe
that for sufficiently long times, the tails of F (t ; x0,xM ) for all
models and different r values are parallel, and according to the
functions (32), (34), (39), (43), and (46) there is F ∼ 1/t1+α/2.
Let us note that the functions become parallel for a different
time, and this time depends on the values of the “reference
time” ti , i = SM,G,T ,F . The tSM depends heavily upon the
parameter r and for the cases presented in the graphs there
are tSM = 192 417 for r = 0.375, 19 307 for r = 0.5, 7650 for
r = 0.59, 288 for r = 1.125, and 3981 for r = 100, the other
reference times are: tT = 1767, tG = 7173, and tF = 794. We
would like to add that the graphs of the functions FSM for
various 1.125 < r < 100 are located between the functions
corresponding to r = 1.125 and r = 100 (for graphical clarity
these functions are not presented in graphic figures), for r �
100 all functions are very similar, and in practice they are
difficult to distinguish. Let us note that some of the functions
F calculated from the Sharma-Mittal model are very similar to
the ones obtained from the fractional equation for sufficiently
long times for some r parameters. We are going to find the
conditions which ensure that the probability densities of FPT
and their cumulative functions will be the same over the long
time limit. For t � max{tSM,tF } the agreement condition reads

FSM(t ; x0,xM ) = FF (t ; x0,xM ), (48)

which is equivalent to

RSM(t ; x0,xM ) = RF (t ; x0,xM ).

From (35), (47) and (48) we get

1

�(1 − α/2)

1√
�(1 + α)

=
√

2√
3r − 1|zr |

. (49)

The numerical solution to Eq. (49) has a good approximation
in the following form (see Fig. 5)

r = 3.008α5 − 5.471α4 + 3.768α3

− 0.869α2 + 0.101α + 0.463. (50)
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FIG. 5. Comparison of the numerical solutions of Eq. (49)
(circles) and the plot of the function (50) (solid line).

We should note that function (50) gives r → 1 when
α → 1−; this result is to be expected since for r = α = 1
all models provide Green’s function for normal diffusion.
The functions GSM(x,t ; x0) and GF (x,t ; x0) are also similar
to each other for r given by Eq. (50), which is shown in
Figs. 6 and 7. In Fig. 6 the Greens’ functions for the Sharma-
Mittal and the fractional models calculated for α = 0.7 and
various times are presented, in Fig. 7 for different α and
t . Obviously, this similarity and the fact that the functions
provide the relations (2) and (48) does not necessarily imply
any equivalence between Greens’ functions [e.g., for fixed
t and for x → ±∞ GSM(x,t ; x0) → (1/|x|)2/(1−r) while the
asymptotic form GF (x,t ; x0) ∼ |x|exp(−a|x|1/(1−α/2)) (a is a
positive constant) has an exponential character and depends
on α [2]]. In Fig. 8 we can observe that the Greens’ functions
of the Sharma-Mittal and the fractional models are similar for
r , which are calculated from Eq. (50), in contrast to the Gauss

-50 0 50x
0

0.02

0.04

0.06

0.08

G
(x

,t
;x

0)

10
50
100
500
1000

α=0.7, α r =0.64D =5,

FIG. 6. Comparison between Greens’ functions for the Sharma-
Mittal (solid lines) and the fractional (dashed lines) models for
different times given in the legend for r given by Eq. (50).
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FIG. 7. Comparison between Green’s function for different α and
times given in the legend; r is calculated from Eq. (50) for each α

separately. The additional description is the same as in Fig. 6.

and Tsallis models, which do not fit each other. This is rather
obvious since the subdiffusive Tsallis model corresponds to
r > 1, whereas the Gauss one is only applicable for r → 1−.

V. FINAL REMARKS

We have compared two models describing subdiffusion:
The model based on Sharma-Mittal nonadditive entropy, which
provides the nonlinear subdiffusion equation with derivatives
of a natural order and the one based on CTRW formalism which
provides the linear differential equation with fractional time
derivative. Sharma-Mittal formalism contains three parameters
q, QSM and r whereas the fractional model is determined by
two parameters α and Dα .

The main results are as follows.
(1) We have shown that the Green’s function obtained

within Sharma-Mittal entropy formalism fulfils the relation

-200 -100 0 100 200x
0

0.005

0.01

0.015

G
(x

,t
;x

0)

Sharma-Mittal
Fractional
Gauss
Tsallis

α=0.7,    =0.59,  α=10
=1000t

Dr

FIG. 8. Comparison between the Greens’ functions obtained from
different models.
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(2) (this relation is obvious within the fractional model) only
if the parameters q and α fulfill the relation (23) and QSM,
Dα , α, r fulfill the relation (24). We note that relation (24) is
ambiguous if the relation between r and the other parameters
remains unknown.

(2) We have also shown that the first-passage time probabil-
ity distribution F and the probability R that a particle has not
reached the arbitrary chosen point xM until time t , calculated
within the Sharma-Mittal model for r given by the formula
(50) [the other parameters fulfill the relations (23) and (24)],
coincide over the long time limit with the ones obtained from
the fractional model. This coincidence is independent of the
subdiffusion coefficient Dα . The functions F and R obtained
from the Sharma-Mittal model for r > 1 (which includes
the Tsallis model) and for the Gauss entropy model (which
corresponds to the limit r → 1− of Sharma-Mittal functions)
do not coincide with the results of the fractional model.

The conditions 1 and 2 have a more general character since a
lot of characteristics of the system derived within both models
will also coincide with each other, as, for example, the time
evolution of an amount of substance leaving a semi-infinite
medium occupying the region (−∞,xM ) (then the surface
located at xM can be treated as a fully absorbing mem-
brane) M(t ; xM ) = ∫ xM

−∞ C(x0,0)[1 − R(t ; x0,xM )]dx0, or the
flux J (t ; xM ) = ∫ xM

−∞ C(x0,0)F (t ; x0,xM )dx0 flowing through
a thin membrane located at xM . Let us note that under
conditions 1 and 2 the “similarity” of the Greens’ functions
also occur. This “similarity” is not here a strict definition. It
means that the plots of these functions are so similar that
we cannot decide in an unambiguous way which of these
fits better the experimental data. As we mentioned earlier,
the Green’s function can be interpreted as a normalized
concentration of a large number of particles starting from the
same point at the initial time, thus we can suppose that this
“similarity” will occur for concentrations with various initial
distributions.

When r is not given by the formula (50) (which includes
the cases r > 1 and 1/3 < r < 0.463), the Greens’ functions
derived within nonadditive entropy formalism fulfill the
relation (2) and Eqs. (23), (24), (25), and (26) are still valid, but
r appears to be independent of α and Dα . As we have shown
in [28], subdiffusion described by the Sharma-Mittal entropy
formalism has a stochastic interpretation for 1/3 < r < 1.
Namely, it is a process described by the generalized Langevin
equation in which the strength of the random force is disturbed
by the external noise described by the Gamma distribution;
then, the parameter r is controlled by the mean value of the
Gamma distribution. When the parameters of both models are
related by Eqs. (23), (24), and (50), the internal and external
noise provides “similar” effects as the noise generating random
walk within the fractional model. When 1/3 < r < 0.463, the
random walk gives the effect that the random walk is more
hindered by the external fluctuations than the random walk
described by fractional model (α and Dα are the same for both
models). For r > 1, the support of Green’s function (27) is
finite. In consequence, the subdiffusion process is achieved if
the velocity of the borders decreases over time according to
formula (28). Let us note that there are two mechanisms of
the subdiffusion process. The first one depends on the motion
of the borders which limit the area penetrated by the walker,

the second is the process of the walker’s movement within the
allowed region. Since Greens’ functions with finite support
and nonzero variance cannot describe an infinitely divisible
process [54], the second mechanism cannot be considered
as a random walk process in contrast with the fractional
model. For r → ∞ the Green’s function approaches a constant
distribution [55], thus r can be interpreted as the “measure” of
the deviation of the probability density of constant distribution.
Therefore, r represents the “uncertainity” of finding the walker
in the near-border regions.

A potential application of the Sharma-Mittal model for
r > 1 is an animal searching for food. A similar problem
was considered in [46], where the diffusion searching process
was assumed to be at two stages. The first stage consisted of
searching for a diffusive type near the point where the animal
stopped its “quick movement” to find food, the second stage
was the relatively fast movement made by the animal to change
its searching region. This movement is assumed to be ballistic
(e.g., in constant motion). Changing these assumptions, we get
the model which, at least in our opinion, can be described by the
Sharma-Mittal Green’s function (27). Namely, we assume that
the animal movement in the restricted region (stage 2) is carried
out with a velocity decreasing over time according to formula
(28). This diminishing velocity is connected with the animal’s
energy, which is gradually lost, especially in the system of a
complex structure. In stage 1, searching inside the restricted
region can be governed by some specific mechanisms, which
are not, in fact, random walk.

Now we shall turn our attention to discussing a method of
extracting the subdiffusion parameters occuring in a nonaddi-
tive entropy model from experimental data (a similar problem
was considered in [56]). The parameters q and Qi can be
calculated from Eqs. (23), (24), (25), and (26). The parameters
α and Dα are defined by Eq. (2), but this equation does not lend
itself to experimental assignment. Therefore, one needs to use
other functions, which can be measured experimentally. One of
such function is M(t ; xM ) and J (t ; xM ) as defined above. When
r is given by Eq. (50), we get MSM(t ; xM ) = MF (t ; xM ) and
JSM(t ; xM ) = JF (t ; xM ) over a long time limit. Thus, assuming
that 0,463 < r < 1, each measurement of M and J gives the
parameter values which can be taken from the fractional model.
The fractional model gives the parameters using a different
method, for example, the time evolution of a near-membrane
layer [16,17]. To illustrate this we will now calculate the
parameters occuring in Sharma-Mittal entropy for the subdif-
fusion of glucose and sucrose in gel (1.5 percent water solution
of agerose). The subdiffusion parameters found in [16,17]
are α = 0.90 ± 0.01, D̃0.90 = (9.8 ± 1.0) × 10−4 mm2/s0.90

for glucose, and D̃0.90 = (6.3 ± 0.9) × 10−4 mm2/s0.90 for
sucrose. Taking r = 0.78 calculated from Eq. (50) and using
Eqs. (23), (24), and (44) we get q = 1.22 and QSM = 6.43 ×
10−4 mm2.22/s for glucose, QSM = 3.93 × 10−4 mm2.22/s for
sucrose (we have omitted here the error calculations).

To extract the subdiffusion parameters from the experi-
mental data for the Sharma–Mittal model when r > 1, it is
possible to measure the velocity of the borders v(t), which
allows one to determine the parameters α and B. We remark
that a similar approach was used to find the parameters of
the cutoff distribution of postural sway; the estimation of
the border locations allows us to calculate the distribution
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parameters [55]. However, in this case, the process was not
considered as a stochastic one continuously changing over
time, but only two arbitrary chosen “times” (postural sway for
the old and young) were taken into account.

Summarizing the above remarks, the obvious conclusion
results from the considerations presented in our paper: sub-
diffusion cannot be fully characterized by relation (2) alone.
This remark partially agrees with the one presented in [15],
where the authors concluded that relation (2) is not enough
to designate the process as subdiffusion, but its appropriate
stochastic interpretation is also needed. However, taking into
account the fact that there are situations in which the stochastic
model has not yet been found, but the models without the
stochastic interpretation (such as the ones based on nonadditive
entropy) are applicable in describing a process, we assume
that both the stochastic as well as the nonstochastic models

can be used to describe subdiffusion. Under this assumption
it seems to be reasonable to take relation (2) as the definition
of subdiffusion under the conditions that this relation does not
provide another important characteristic of the system and its
stochastic interpretation may not be obvious. In this context
the Sharma-Mittal model appears to be a relatively universal
model of subdiffusion where its interpretation and important
characteristics (such as first-passage time distribution) depends
on the parameter r . For special chosen r this model gives very
similar results to the ones provided by the fractional model.
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