
PHYSICAL REVIEW E 86, 021102 (2012)

Crossover from isotropic to directed percolation

Zongzheng Zhou,1 Ji Yang,1 Robert M. Ziff,2,* and Youjin Deng1,†
1Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and

Technology of China, Hefei, Anhui 230027, People’s Republic of China
2Michigan Center for Theoretical Physics and Department of Chemical Engineering, University of Michigan,

Ann Arbor, Michigan 48109-2136, USA
(Received 13 January 2012; revised manuscript received 7 June 2012; published 1 August 2012)

We generalize the directed percolation (DP) model by relaxing the strict directionality of DP such that
propagation can occur in either direction but with anisotropic probabilities. We denote the probabilities as
p↓ = p pd and p↑ = p(1 − pd ), with p representing the average occupation probability and pd controlling the
anisotropy. The Leath-Alexandrowicz method is used to grow a cluster from an active seed site. We call this
model with two main growth directions biased directed percolation (BDP). Standard isotropic percolation (IP)
and DP are the two limiting cases of the BDP model, corresponding to pd = 1/2 and pd = 0,1 respectively. In
this work, besides IP and DP, we also consider the 1/2 < pd < 1 region. Extensive Monte Carlo simulations
are carried out on the square and the simple-cubic lattices, and the numerical data are analyzed by finite-size
scaling. We locate the percolation thresholds of the BDP model for pd = 0.6 and 0.8, and determine various
critical exponents. These exponents are found to be consistent with those for standard DP. We also determine the
renormalization exponent associated with the asymmetric perturbation due to pd − 1/2 �= 0 near IP, and confirm
that such an asymmetric scaling field is relevant at IP.
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I. INTRODUCTION

Directed percolation (DP), introduced in 1957 by Broad-
bent and Hammersley [1], is a fundamental model in non-
equilibrium statistical mechanics and represents the most
common dynamic universality class [2]. DP has a very wide
application, including flow in a porous rock in a gravitational
field, forest fires, epidemic spreading, and surface chemical
reactions [3]. The DP process can be illustrated in the simple
example of bond DP on the square lattice. Along the horizontal
(vertical) edges of the lattice, the propagation occurs in a
particular direction only, e.g., toward the right (up). Frequently,
the preferred spreading direction is termed “temporal,” and the
perpendicular one is called “spatial”; the two-dimensional DP
is thus often called “(1 + 1)-dimensional DP.” The DP process
has two distinct phases: the inactive phase for small occupation
probability p where the propagation quickly dies out, and the
active phase for large p < 1. Between these two phases, a
transition occurs at pc. As the threshold pc is approached, the
temporal (‖) and the spatial (⊥) correlation lengths diverge but
with distinct critical exponents: ξ‖ ∼ |p − pc|−ν‖ and ξ⊥ ∼
|p − pc|−ν⊥ . The anisotropy is characterized by the so-called
dynamic exponent z = ν‖/ν⊥. For p > pc, the order parameter
P∞, defined as the probability that a randomly selected site can
generate an infinite cluster, becomes nonzero and its behavior
can be described as P∞ ∼ (p − pc)β , with β another critical
exponent. Below the upper critical dimensionality (dc + 1)
with dc = 4, the three independent critical exponents, ν‖, β,
and z, are sufficient to describe the DP universality class. While
analytical results are scarce for DP, even in (1 + 1) dimensions,
approximation techniques such as series expansion [4–8] and
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Monte Carlo simulations [9–12] have produced fruitful results.
Moreover, after a great deal of effort, experimental realization
of the DP process has been achieved [13–15] in nematic liquid
crystals, where the DP transition occurs between two turbulent
states.

Analogously, standard isotropic percolation (IP) [16] is a
fundamental model in equilibrium statistical mechanics. IP
has attracted extensive research attention both in the physical
and the mathematical communities, and the critical behavior
is now well understood. Due to the isotropy, there exists only
one spatial correlation length, which scales as ξ ∼ |p − pc|−ν

near pc. Numerous exact results are now available in two
dimensions (2D). For bond IP on the square lattice, the
self-duality yields the threshold pc = 1/2 [17]; the values
of pc are also exactly known for bond and site percolation
on several other lattices [18–20], or have been determined to
a high precision [21]. Thanks to conformal field theory and
Coulomb gas theory [22–25], the critical exponents ν and β

are also exactly known as ν = 4/3 and β = 5/36.
In this work, we introduce a generalized percolation

propagation process that contains DP and IP as two special
cases. On a given lattice, each edge is assigned to one of
the three possible states: occupied by a directed bond along
a particular direction, occupied by a directed bond against
the particular direction, or unoccupied. This is illustrated in
Fig. 1(a), and the associated probabilities are denoted as p↓,
p↑, and 1 − p↓ − p↑, respectively. As a result, the percolation
process has two main growth directions. For p↓ = p↑, the
symmetry between the two opposite directions is restored,
and the system reduces to standard bond IP. In the limiting
case p↓ = 0 or 1, propagation against or along the particular
direction is forbidden, and one has standard DP. We call this
percolation model with two main growth directions biased
directed percolation (BDP). We note that the BDP model is
described by the field-theoretic equation in Ref. [26].
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FIG. 1. (a) State of an edge. (b) A typical cluster in the BDP
process. The seed is at site o, and the “infected” sites are denoted as
solid dots. Dashed lines represent vacant bonds.

A natural question arises: in between standard DP and IP,
what is the nature of phase transition for BDP? For later
convenience, we replace parameters p↓ and p↑ with two new
variables,

p↓ = ppd, p↑ = p(1 − pd ). (1)

The parameter p is the average bond-occupation probability
(irrespective of the bond direction), and pd accounts for the
anisotropy. DP corresponds to pd = 0 or 1, while pd = 1/2 is
for IP.

In this work, extensive Monte Carlo simulations are carried
out for BDP in two and three dimensions. A dimensionless
ratio is defined to locate the percolation threshold. The data are
analyzed by finite-size scaling, and the critical exponents are
determined. The numerical results suggest that the asymmetric
perturbation due to pd − 1/2 �= 0 is relevant near IP, and thus
that, as long as pd �= 1/2, BDP is in the DP universality class.
These results further raise the following questions, remaining
to be explored. For IP, is the asymmetric renormalization
exponent a “new” critical exponent or related in some way
to the known ones such as ν and β? Particularly, can this
“new” exponent be exactly obtained in two dimensions? If so,
what is the exact value?

The remainder of this work is organized as follows.
Section II introduces the BDP model, the sampled quantities,
and the associated scaling behavior. Numerical results are
presented in Secs. III and IV. A brief discussion is given in
Sec. V.

II. MODEL, SAMPLED QUANTITIES,
AND SCALING BEHAVIOR

A. Model

We shall describe in details the BDP model on the
square lattice. The generalization to higher dimensions is
straightforward.

As usual in the study of DP or IP, we view the BDP model as
a stochastic growth process, and use the Leath-Alexandrowicz
method [27,28] to grow the percolation cluster starting from a

seed site. Given the square lattice and the seed “o” in Fig. 1(b),
for each of the neighboring edges of site o, a random number
is drawn to determine the edge state. If and only if the edge
is occupied and the direction originates from the seed o, the
neighboring site is activated and belongs to the growing cluster.
For instance, in Fig. 1(b), the four neighboring edges of site o
are all occupied, but site c remains unactivated because of the
“wrong” direction. After all the four neighboring edges have
been visited, one continues the growing procedure from the
newly added sites. In other words, one grows the percolation
cluster shell by shell (the breadth-first scheme). The growth
of the cluster continues until the procedure dies out or the
maximum distance is reached, which is set at the beginning of
the simulation.

B. Sampled quantities

In the cluster-growing process, the number of activated sites
N (s) is recorded as a function of the shell number s. Let us
count the shell of site o to be the first shell; the configuration in
Fig. 1(b) has N = 3,5,6 for s = 2,3,4, respectively. Besides
N (s), one also records the Euclidean distance r of each
activated site to the seed o for IP and to the y axis for the
anisotropic case. The reason for using different definitions of
r is that, for the anisotropic case, the average center of activated
sites is expected to move linearly along the preferred direction,
as s increases. Accordingly, we define a revised gyration radius
R(s) as

R(s) =
{

0 if N (s) = 0,√∑N
i=1 r2

i /N if N (s) � 1.
(2)

The statistical averages N (s) ≡ 〈N (s)〉 and R(s) ≡ 〈R(s)〉 are
then measured, as well as their statistical uncertainties. We
also measure the survival probability P(s) that at least one site
remains activated at the sth shell and the accumulated activated
site number A(s) ≡ 〈∑s

s ′=1 N (s ′)〉.
In Monte Carlo study of critical phenomena and phase

transitions, it is found that dimensionless ratios such as the
Binder cumulant are very useful in locating the critical point.
Therefore, we also define a dimensionless ratio QN (s) =
N (2s)/N (s).

C. Scaling behavior

Near the percolation threshold pc, one expects the following
scaling behavior:

P(s,ε) ∼ s−YP P (εsYε ),

N (s,ε) ∼ sYNN(εsYε ),

A(s,ε) ∼ sYAA(εsYε ), (3)

R(s,ε) ∼ sYRR(εsYε ),

QN (s,ε) ∼ 2YNQ(εsYε ),

where ε = p − pc represents a small deviation from pc.
Symbols YP , YN , YA, YR , and Yε denote the associated critical
exponents, and P , N, A, R, and Q are universal functions.
For simplicity, only one scaling field, which accounts for the
effect due to deviation from pc, is explicitly included in Eq. (3).
Right at pc, as s increases, the survival probabilityP(s) decays
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to zero while the other quantities diverge, except for the ratio
QN which goes to a constant. A trivial relation is YA = YN + 1.

For standard DP (pd = 0 or 1), exponents YP and YN are
normally denoted as δ and η, respectively (YN is also denoted as
θ in Ref. [29]). It can be shown that exponent Yε is Yε = 1/ν‖.
Further, exponent YR relates to δ and the dynamic exponent z as
YR = −δ + 1/z, where −δ arises from the behavior P(s) ∼
s−δ . Below the upper critical dimensionality (dc + 1) with
dc = 4, there exist three independent exponents, which can
be chosen as ν‖, β, and z. The others can be obtained by the
scaling relations [29]

ν⊥ = ν‖/z, δ = β/ν‖, η = (dν⊥ − 2β)/ν‖, (4)

where the last one involves the spatial dimensionality d and
is called the hyperscaling relation. In (1 + 1) dimensions,
these exponents have been determined to high precision: ν‖ =
1.733 847(6), β = 0.276 486(8), and z = 1.580745(10) [7].
In (2 + 1) dimensions, these exponents are ν‖ = 1.2890(7),
β = 0.581 2(6), and z = 1.7665(4) [10,11,30,31].

For standard IP (pd = 1/2), the shell number s is frequently
called “chemical distance” [32], accounting for the minimum
length among all the possible paths between the seed site
and the activated sites on the sth shell. At pc, the length
s of the chemical path relates to the Euclidean distance r

as s ∼ rdmin [33,34], with dmin � 1 denoting the shortest-path
exponent. In terms of the Euclidean distance r , it is known that
the survival probability scales as P(r) ∼ r−β/ν , the accumu-
lated site number A(r) ∼ rγ/ν , and the pc-deviating scaling
behavior εr1/ν . This immediately yields YP = −β/(νdmin),
YA = γ /(νdmin), YN = γ /(νdmin) − 1, YR = (1 − β/ν)/dmin,
and Yε = 1/(νdmin). For IP, one has the scaling relation

γ /ν = d − 2β/ν. (5)

In 2D, ν and β are exactly known as ν = 4/3 and β = 5/36,
which yield γ /ν = 43/24 ≈ 1.79166 . . . and β/ν = 5/48 ≈
0.104166 . . .. The shortest-path exponent dmin, together with
the so-called backbone exponent, is among the few critical
exponents of which the exact values are not known for the 2D
percolation universality class. It was conjectured to be dmin =
217/192 = 1.13020 . . . [35], and some recent estimates are
1.1306(3) [36] and 1.13078(5) [37]. In three dimensions, no
exact results are available, and the numerical estimates are
dmin = 1.374(4) [38], β/ν = 0.4774(1), and ν = 0.8734(6)
[39], which yield β = 0.4170(4).

III. RESULTS

In this work, we consider the BDP model on the square
lattice for 2D and the simple-cubic lattice for 3D. The
simulation applies the aforementioned Leath-Alexandrowicz
growth method. The dimensionless ratio QN is used to locate
the percolation threshold pc. According to Eq. (3), ratio QN
is expected to have an approximate common intersection at pc

for different shell number s. At the threshold pc, as s → ∞,
the common intersection converges to a universal value 2YN

and the slope of QN increases as sYε .
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FIG. 2. (Color online) Ratio QN for IP in 2D (top) and 3D
(bottom).

A. Standard IP

Standard IP corresponds to pd = 1/2. Monte Carlo simu-
lation was carried out up to smax = 8192 for 2D and 2048 for
3D. About 108 samples were taken for each data point on each
lattice. The QN data are shown in Fig. 2. Indeed, we find an
approximate common intersection near p = 1 and 0.4976 for
2D and 3D, respectively. This agrees with the known threshold
pc/2 = 1/2 (2D) and 0.248 812 6(5) (3D) [40]. Note that,
since the occupied bond can propagate the growth process only
if it has the correct orientation, there is a factor-of-2 difference
between the bond-occupation probability p here and the p of
the equivalent bond percolation probability.

To have a better estimate of pc, according to a least-squares
criterion, the QN data are fitted by

QN (s,ε) = QN ,c +
4∑

k=1

qkε
kskYε + b1s

y1

+ b2s
−2 + cεsYε+y1 + nε2sYε + · · · , (6)

which is obtained by Taylor-expanding Eq. (3) and taking into
account finite-size corrections due to the leading irrelevant
scaling field and analytical background contribution. These
are described by the two terms with amplitudes b1 and b2,
of which the term with n arises from the nonlinearity of the
relevant scaling field in terms of the deviation ε, and the one
with c accounts for the combined effect of the leading relevant
and irrelevant scaling fields. In the fits, various formulas are
tried, which correspond to different combinations of those
terms in Eq. (6). For a given formula, the QN data for small
s < smin are gradually excluded from the fits to see how the
residual χ2 changes with respect to smin. The results from
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different formulas are compared with each other to estimate the
possible systematic errors. In two dimensions, we obtain pc =
1.000 000(4), QN ,c = 1.499 5(1), Yε = 0.664(3), and y1 =
−0.96(6). Note that the leading irrelevant thermal scaling field
is ω = −2 for 2D percolation universality [41]; apparently, the
leading correction exponent y1 = −0.96 does not correspond
to ω. Instead, y1 should be associated with the chemical
distance. From the relations QN ,c = 2YN , YN = γ /(νdmin) −
1, and Yε = 1/(νdmin), and the exact values γ /ν = 43/24 and
1/ν = 3/4, we determine dmin = 1.130 76(10) from QN ,c =
1.499 5(1), and dmin = 1.130(6) from Yε = 0.664(3).

In three dimensions, our results are pc = 0.497 624(1),
QN ,c = 1.400(1), Yε = 0.830(1), and y1 = −0.8(2). Our es-
timate of pc/2 = 0.248 812 0(5) agrees with the existing one
0.248 812 6(5) [40], and has a comparable error margin.

To estimate other critical exponents, we simulate right at
the threshold p/2 = 1/2 for 2D and 0.248 812 0 for 3D. The
simulation was carried out for s up to smax = 8192 for 2D
and 2048 for 3D. Further, to eliminate one more unknown
parameter in the fits, we measure the dimensionless ratios
QP (s) = P(2s)/P(s) and QR = R(2s)/R(s). These Q data
are fitted by

Q(s) = Qc + b1s
y1 + b2s

−2. (7)

In two dimensions, the results are QP,c = 0.9382(1) and y1 =
−0.80(7) for QP , and QR,c = 1.7318(2) and y1 = −0.9(1)
for QR. For all these three ratios, the leading correction is
described by an exponent y1 ≈ −1. Taking into account the
exact values β/ν = 5/48, one has dmin = 1.132(2) from QP,c

and dmin = 1.130 7(3) from QR,c.
In three dimensions, the results are QP,c = 0.7865(2)

and y1 = −0.7(2) for QP , and QR,c = 1.3020(3) and y1 =
−0.9(2) for QR. Combining the estimate QP,c and QR,c

together, one has β/ν = 0.4765(8) and dmin = 1.375(1). Our
result dmin = 1.375(1) agrees well with the existing result
dmin = 1.374(4) [38], and significantly improves the error
margin.

For comparison, these results are summarized in Table I.

B. Standard DP

We simulate standard DP by taking pd = 1. The simulation
was carried out for s up to smax = 16384 for 2D, and 2048
for 3D. The number of samples for each data point is about
8 × 108 in 2D and 1.6 × 108 in 3D.

The QN data are shown in Fig. 3. A good intersection is
observed for both 2D and 3D, which yields pc = 0.64470
for 2D and 0.38222 for 3D, from a rough visual fitting.
We fit the QN data more precisely using Eq. (6). On
the square lattice, we obtain pc = 0.644 700 5(8), QN ,c =

 0.9
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FIG. 3. (Color online) Ratio QN for standard DP in 2D (top) and
3D (bottom).

1.242 9(2), Yε = 0.576(3), and y1 = −0.9(1). The estimate
of the percolation threshold agrees well with the existing
more precise result 0.644 700 185(5) [7]. From the relations
QN ,c = 2YN = 2η and Yε = 1/ν‖, we have η = 0.313 7(2) and
ν‖ = 1.736(9). On the simple-cubic lattice, our results are
pc = 0.382 225 6(5), Yε = 0.777(2), and QN ,c = 1.1738(1),
which yield η = 0.2312(1) and ν‖ = 1.287(4). Here the y1

is too small to estimate since the numerical data of s � 24
can be well described even though we do not include any
corrections. The agreement of pc with the existing estimate
pc = 0.382 224 64(4) [31] is within two standard deviations.

Analogously, we simulate right at the percolation threshold
pc = 0.644 700 185 for 2D and pc = 0.382 224 64 for 3D.
The dimensionless ratios QP and QR are measured, and
the data are fitted by Eq. (7). For 2D, the results are
QP,c = 0.89537(5), y1 = −0.98(5) and QR,c = 1.3882(1),
y1 = −1.1(1), which yield YP = δ = 0.159 44(9) and YR =
(−δ + 1/z) = 0.47322(10). Taking into account the estimates
of ν‖ and δ, one has ν⊥ = 1.098(6). For 3D, the results are
QP,c = 0.7311(4) and QR,c = 1.0822(1), which yield that
δ = 0.4519(8) and ν⊥ = 0.728(4).

These results are listed in Table II.

TABLE I. Percolation thresholds and critical exponents for IP.

β ν dmin pc/2

2D (known) 5/36 [16,22–25] 4/3 [16,22–25] 1.130 6(3) [35–37] 1/2 [16,17]
(present) 0.138 7(10) 1.332(6) 1.130 76(10) 0.500 000(2)

3D (known) 0.4167(4) 0.873 4(6) [39] 1.374(4) [38] 0.248 812 6(5) [40]
(present) 0.417(1) 0.876(2) 1.375(1) 0.248 812 0(5)
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TABLE II. Percolation thresholds and critical exponents for standard DP (pd = 1) and BDP (pd < 1). The numbers in the rows with
references are the existing results. Clearly, standard DP and BDP with pd = 0.8,0.6 share the same critical exponents.

D Ref. pd pc β ν‖ z η δ

2 [7] 1 0.644 700 185(5) 0.276 486(8) 1.733 847(6) 1.580 745(10) 0.313 686(8) 0.159 464(6)
1 0.644 700 5(8) 0.277(2) 1.736(9) 1.5806(3) 0.3137(2) 0.159 44(9)
0.8 0.768 708(1) 0.278(2) 1.74(1) 1.577(5) 0.3141(4) 0.1595(1)
0.6 0.929 668(3) 0.279(2) 1.754(6) 1.578(5) 0.3161(8) 0.159(1)

3 [31] 1 0.382 224 64(4) 0.581 2(6) 1.289 0(7) 1.7665(2) 0.230 81(7) 0.4509(2)
1 0.382 225 6(5) 0.582(5) 1.287(4) 1.767(3) 0.2312(1) 0.4519(8)
0.8 0.430 941(2) 0.577(5) 1.289(5) 1.77(1) 0.229(3) 0.448(2)
0.6 0.481 310(2) 0.583(8) 1.292(5) 1.76(2) 0.226(9) 0.452(4)

C. BDP

For the purpose of studying BDP, we choose pd = 0.6 and
0.8. The simulation was carried out for s up to smax = 16384
for 2D and 2048 for 3D. About 2 × 108 samples were taken
for each data point in each case.

The QN data are shown in Fig. 4 for 2D and Fig. 5 for 3D.
The transitions are also clearly observed, but the approximate
common intersections are not as good as those for standard
DP and IP. This suggests the existence of additional finite-size
corrections.

The QN data are also fitted by Eq. (6) according to a
least-squares criterion. To account for the possible existence
of additional corrections, we replace the terms in Eq. (6),
b1, b2, and c, with bis

yi + b1s
y1 + cεsyi+yε . The exponent

y1 is fixed at −1, in accordance with our above estimate
of y1 for both standard IP and DP. Indeed, the new source
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FIG. 4. (Color online) Ratio QN for BDP in 2D. The top (bottom)
panel corresponds to the pd = 0.8 (0.6) case.

of finite-size correction can be identified in the fits, which
yield yi = −0.5(2) both in 2D and 3D. The results for pc,
η = log2 QN ,c, and ν‖ = 1/Yε are summarized in Table II.

The determination of the critical exponents δ and z is
obtained in an analogous way by simulating at the estimated
percolation threshold, and the results are listed in Table II.

The results in Table II strongly suggest that, as long as
pd deviates from 1/2, the system falls into the standard DP
universality class. For an illustration, we make the log-log plot
of the critical quantity N versus the shell number s in Fig. 6.
Clearly, the slope for pd = 1/2 is distinct from those for the
other cases, which are independent of pd .

IV. CROSSOVER EXPONENT

The fact that BDP for pd �= 1/2 is in the DP universality
means that, in the language of renormalization group theory,
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bottom (top) panel is for 2D (3D). It is clearly seen that the slope is
identical for all the pd �= 1/2 cases, and is distinct from that of IP
(pd = 1/2).

the operator associated with the asymmetric perturbation is
relevant near the IP fixed point. To confirm this, we simulate
BDP near IP with p = pc = 1 by varying εd = pd − 1/2. The
simulation is up to smax = 8192, and εd is set at 0, 10−3, and
2 × 10−3. The results for QN in two dimensions are shown
in Fig. 7 versus ε2

d ; note that BDPs for ±εd are identical.
These QN data are also analyzed by Eq. (6) with Yε being
replaced by the exponent Yεd

for the symmetric scaling field
and the odd terms with respect to εd being set zero. We obtain
Yεd

= 0.500(5), which suggests that Yεd
may be exactly 1/2.

According to scaling theory, the phase transition line
(pc,pdc) approaches the critical IP (pc = 1,pdc = 1/2) as [42]

1 − pc ∝ |pdc − 1/2|1/φ, (8)

where φ = Yεd
/Yε is the so-called crossover exponent. We

carried out some Monte Carlo simulations and determined a
set of critical points near IP; there are 13 critical points with
pdc ∈ [0.52,0.6]. In Fig. 7, we plot pdc − 1/2 versus 1 − pc

in log-log scale, which indeed has slope approximately equal
to φ = Yεd

/Yε = 0.754.
We also perform a similar study near the critical IP in 3D,

and obtain Yεd
= 0.56(1) and φ = 0.67(1).

V. DISCUSSION

We introduce a biased directed percolation model, which
includes standard isotropic and directed percolation as two
special cases. Large-scale Monte Carlo simulations are carried
out in two and three dimensions. We find that the operator as-
sociated with the anisotropy is relevant near the IP fixed point,
which implies that BDP in the region pd �= 1/2 is in the DP
university class. On this basis, the phase diagram and the asso-
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g(
p d
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)
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slope 0.754
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FIG. 7. (Color online) Top: Ratio QN versus (pd − 1/2)2 with
p = 1 on the square lattice. For each pd , the value of QN raises as
s increases. Bottom: Log-log plot of pdc − 1/2 versus 1 − pc for the
transition line (pdc,pc) near IP. The dashed line has slope 0.754.

ciated renormalization flows are shown in Fig. 8. Since the up-
per critical dimensionality is different for standard IP and DP,
it is not clear whether the similar renormalization flows would
hold in higher dimensions. We mention that such crossover
phenomena have attracted much attention both in the fields of
equilibrium and nonequilibrium statistical mechanics [43–49].
In retrospect, it is not surprising that the asymmetric perturba-
tion is relevant near IP. At IP, all the directions are equivalent
and “spatial” and “temporal” directions cannot be defined.
However, as soon as pd − 1/2 �= 0, such a symmetry is broken

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  0.6  0.7  0.8  0.9  1

p d

p
 0.4  0.45  0.5  0.55  0.6

p

FIG. 8. (Color online) Phase diagram of the BDP model in 2D
(left) and 3D (right). The pd = 1/2 line corresponds to isotropic
percolation. The diagram for pd < 1/2 is drawn by symmetry. The
arrows represent the direction of the renormalization flows.
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and the center of the activated sites moves along the “temporal”
direction as the growing process continues. It is also plausible
that as long as the spatial and temporal symmetry is not
restored, such an asymmetric perturbation is irrelevant near
DP. This is similar to the fact that asymmetric diffusion on the
basic contact process is irrelevant [49]. In terms of the chemical
distance s, the effect from the anisotropy can be asymptotically
described as ∝ (pd − 1/2)sYεd with Yεd

(2D) = 0.500(5) and
Yεd

(3D) = 0.589(10). One can also use the Euclidean distance
r to describe such an anisotropic effect as ∝ (pd − 1/2)r1/νd

with Yεd
= 1/(νddmin). Substituting the dmin value into Yεd

, one
obtains νd (2D) = 1.77(1) and νd (3D) = 1.30(2).

When viewing standard isotropic percolation in the frame-
work of BDP, one observes that two independent critical
exponents, e.g., ν and β, are no longer sufficient to describe
the critical scaling behavior. In this case, the shortest-path
exponent dmin appears naturally and becomes indispensable,
and thus isotropic percolation also has three independent
critical exponents. Our estimate of dmin significantly improves
over the existing results both in two and three dimensions. Our
result dmin = 1.130 76(10) does not agree with the recently
conjectured value 217/192 [35] in two dimensions. This
result appears to refute the conjectured value. On the other
hand, we note that, in terms of the chemical distance s, a
new source of finite-size corrections occurs in the scaling
behavior, and these corrections are not well understood yet.
Further, we observe that the restored symmetry for IP can
be regarded as ν‖ = ν⊥ in the BDP model. In some cases,
the coincidence of two critical exponents may suggest the
existence of logarithmic corrections of the log or log-log

form, and they can be either additive or multiplicative. In
practice, logarithmic finite-size corrections have indeed been
observed for standard isotropic percolation in two dimensions
[21], which is in terms of Euclidean distance. In this sense,
we cannot entirely exclude the possibility that the tiny
difference between the present numerical result for dmin and
the conjectured value arises from some unknown corrections
that have not been taken into account in the numerical analysis.
Numerical investigation of this problem seems very difficult if
not impossible. Nevertheless, since the exact value of dmin is
conjectured as a function of q for the q-state Potts model [35],
one can accumulate more numerical evidence by studying the
q �= 1 case.

Finally, the numerical estimate of the critical exponent Yεd

or νd due to the asymmetric perturbation near IP raises a
question: Is it a “new” independent critical exponent or simply
related in some way to the known ones such as β, ν, and dmin?
In particular, in two dimensions, one would ask whether νd

or Yεd
can be exactly obtained in the framework of stochastic

Loewner evolution (SLE), conformal field theory, or Coulomb
gas theory.
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[39] Y. Deng and H. W. J. Blöte, Phys. Rev. E 72, 016126

(2005).
[40] C. D. Lorenz and R. M. Ziff, Phys. Rev. E 57, 230

(1998).
[41] R. M. Ziff, Phys. Rev. E 83, 020107 (2011).
[42] E. K. Riedel and F. J. Wegner, Z. Phys. 225, 195 (1969).
[43] P. Pfeuty and G. Toulouse, Introduction to the Renormalization

Group and Critical Phenomena (John Wiley & Sons, Chichester,
1994).

[44] A. Aharony, in Dependence of Universal Critical Behavior on
Symmetry and Range of Interaction in Phase Transition and
Critical Phenomena, edited by C. Domb and M. S. Green, Vol. 6
(Academic, London, 1976).
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