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Phase diagram and quench dynamics of the cluster-XY spin chain
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We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY
model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase
diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a
critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches
presents a nontrivial behavior depending on the phase of the initial state and the critical point.
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I. INTRODUCTION

In recent years, the understanding of quantum phases and
quantum phase transitions has gained incredible momentum.
This is due to both strong theoretical advances, stimulated
by the richness of quantum phases, and experimental ad-
vances. On the theoretical side, there has been great progress
in understanding how quantum critical points affect the
finite-temperature regime [1] and quantum entanglement [2].
Moreover, we are realizing that quantum phases host rich
novel quantum orders and phases of matter [3]. From the
experimental side, ultracold-atom gases have proven to be the
ideal arena to see coherent quantum evolution for many-body
systems [4–6].

The study of closed quantum systems out of equilibrium
is important for manifold reasons. To start with, one is
interested in applications to quantum information in which
decoherence and entanglement dynamics play a fundamental
role. An important theoretical perspective concerns the un-
derstanding of the notion of universality for a system away
from equilibrium, where the traditional concepts of phase,
renormalization group, and fixed point fail. Recently, the study
of the equilibration of quantum many-body systems has given
insight into the foundations of statistical mechanics [7–10].

Driving a system out of equilibrium can be accomplished
in many ways. Most of the efforts have focused on quantum
quenches [10], namely, sudden global or local changes of
the external parameters of the Hamiltonian governing the
unitary evolution of the closed system. One of the ways of
understanding the dynamics of a system after a quench is the
Loschmidt echo, which is a measure of the partial recurrences
with the original state as a function of time [11,12]. Recently,
the time behavior of the Loschmidt echo has been investigated
in various models, in particular the XY spin chain [13–16].

In this paper we will consider a one-dimensional model that
extends the XY spin chain with a three-body cluster term. The
exact solution becomes available using well-known techniques
and this allows us to study the complete phase diagram. We find
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that a particular critical region has a behavior quite different
from the one found in the XY model. We then study the behavior
of the Loschmidt echo after critical quenches for two different
critical points. We find qualitative differences derived from the
nontrivial nature of the phase space.

II. CLUSTER-XY SPIN CHAIN

Cluster states have emerged recently as a physical system
for implementing one-way quantum computation. In particu-
lar, it has been shown that two-dimensional cluster states serve
as fiducial states for universal measurement-based quantum
computation [17–21].

The cluster state can be defined using a so-called stabilizer
Hamiltonian. Consider a finite-dimensional lattice L com-
posed of N vertices, each vertex containing a two-dimensional
quantum system (qubit). The cluster state for this system can be
defined as the unique +1 eigenstate of the stabilizer operators

Kμ = σ z
μ

∏
ν∼μ

σ x
ν , μ,ν ∈ L, (1)

where ν ∼ μ denotes that ν is connected to μ and σα are the
Pauli matrices [22]. The stabilizer Hamiltonian is simply

HC = −
∑
μ∈L

Kμ

and the cluster state is defined as its ground state. This
preparation can also be achieved by preparing all the qubits
in the |0〉 state (σ z |0〉 = |0〉) and then performing a con-
trolled sign operator U = exp(iπ |+〉 〈+| ⊗ |+〉 〈+|) (where
σx |+〉 = |+〉) on every pair of connected vertices [23]. The
model we study incorporates the one-dimensional version of
the cluster phase competing with the XY model in a transverse
field. The Hamiltonian is

H = −
N∑

i=1

σx
i−1σ

z
i σ x

i+1 − h

N∑
i=1

σ z
i

+ λy

N∑
i=1

σ
y

i σ
y

i+1 + λx

N∑
i=1

σx
i σ x

i+1, (2)
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where σα
n (α = x,y,z) are the Pauli matrices acting on

the site n of the lattice and we impose periodic boundary
conditions (σα

N+1 ≡ σα
1 ). Similar models were considered in

Refs. [22–25]. Defining local raising and lowering operators
σ±

n = 1
2 (σx

n ± iσ
y
n ), we obtain global canonical anticommuta-

tion relations by using a Jordan-Wigner transformation [1]

c
†
l =

(
l−1∏
m=1

σ z
m

)
σ+

l , (3)

so that the model is mapped to a quadratic Hamiltonian of
spinless fermions {cn,cm} = 0,{cn,c

†
m} = δnm. Note that the

parity operator Q ≡ ∏
n σ z

n commutes with the Hamiltonian
and can be diagonalized simultaneously with it. Using the fact
that the system has translational invariance, we may perform
a Fourier transform

ck = 1√
N

N∑
n=1

eikncn, k = π

N
(2m + 1 − q),

where we decompose the Hilbert space so that Q = (−1)q and
m = 0, . . . ,N − 1. We can then rewrite the Hamiltonian as

H = 2
∑

0�k�π

[εk(c†kck + c
†
−kc−k) + iδk(c†kc

†
−k + ckc−k)]

up to a constant, where

εk = cos(2k) − (λx + λy) cos(k) − h, (4a)

δk = sin(2k) − (λx − λy) sin(k). (4b)

We diagonalize the Hamiltonian by means of a Bogoliubov
transformation

γk = cos(θk/2)ck − i sin(θk/2)c†−k, (5)

imposing θ−k = −θk so that {γk,γ
†
k′ } = δkk′ . The Hamiltonian

becomes

H = 2
∑

0�k�π

�k(γ †
k γk + γ

†
−kγ−k − 1) + const, (6)

where we define the energy for the so-called Bogoliubov
quasiparticles �k =

√
ε2
k + δ2

k and cancel the unwanted γ γ

terms by choosing εk sin θk + δk cos θk = 0 or, equivalently,

θk = − arctan

(
δk

εk

)
. (7)

The ground state has the form of a BCS state in terms of the
original operators

|�〉 =
∏

0�k�π

[cos(θk/2) + i sin(θk/2)c†kc
†
−k] |0〉c , (8)

where ck |0〉c = 0 ∀k.

III. PHASE DIAGRAM

At this point, we can draw the phase diagram by finding
the regions of quantum criticality where the system becomes
gapless in the thermodynamics limit, that is, �k = 0 for some
k ∈ [−π,π ) when N → ∞. First, note that trivially δk = 0 for
k = 0, ± π . In that case, εk vanishes for

h = ±(λx + λy) + 1. (9)

FIG. 1. (Color online) Reduced phase diagrams for (a) λx = 0 and
(b) h = 0. We use the following conventions: P, polarized, given by∑

σ z; C, cluster; AFM, antiferromagnetic; and FM, ferromagnetic.

Now, if k 
= 0,π , δk vanishes if cos(k) = λx−λy

2 . Using this
relation for εk , we get the critical region

h = λ2
y − λxλy − 1, − 2 � λx − λy � 2. (10)

We see an asymmetry between λx and λy . This should be no
surprise as this is already evident in the cluster term of the
Hamiltonian. Note also that the union of the critical regions
is invariant under λy �→ −λy , λx �→ −λx . We can understand
this by noting that both local unitary transformations

U1 : σx
2n �→ −σx

2n, σ
y

2n �→ −σ
y

2n, σ z
2n �→ σ z

2n

acting only on even sites and

U2 : σx
2n+1 �→ −σx

2n+1, σ
y

2n+1 �→ −σ
y

2n+1, σ z
2n+1 �→ σ z

2n+1

acting only on odd sites map H (λx,λy,h) to H (−λx, − λy,h).
This is a consequence of the Z2 × Z2 symmetry of the cluster
state implemented precisely by U1 and U2 [25].

One of the interesting features of this model is the existence
of phases that appear because of the competition between the
XY and cluster terms. Consider first λx = 0 [Fig. 1(a)]. The
Hamiltonian in this case does not have Ising interactions of
the type σx

n σ x
n+1. However, two of the regions next to the

cluster phase can be connected adiabatically to ferromagnetic
and antiferromagnetic states in the x direction, respectively.
Something similar happens for h = 0. The Hamiltonian does
not have a transverse term that tries to polarize all the spins in
the same z direction, nevertheless this phase is present in the
reduced phase diagram [Fig. 1(b)].

IV. FIDELITY SUSCEPTIBILITY

The phase diagram can be studied [26] by considering
the fidelity susceptibility introduced in Ref. [27], namely, the
response of the ground state to small changes of the external
parameters. Consider a many-body system described by a
Hamiltonian

H (λ) = H0 + λHI , (11)

where λ is an external parameter used to control the system.
There is no loss of generality if we write the Hamiltonian
this way, especially if the system is large enough so that the
critical point is well localized. Here HI is called the driving
Hamiltonian. We may now diagonalize the system and obtain
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both the energy spectrum and the eigenstates

H (λ) |n(λ)〉 = En(λ) |n(λ)〉 . (12)

If we change λ to λ + δλ and we are away from possible critical
points, the physics described by the neighboring ground states
will be similar. However, note that in the thermodynamic limit
different ground states will become orthogonal, as was realized
by Anderson in the so-called orthogonality catastrophe [28].
For finite-size systems, we expect that the new ground state
will remain close to the original ground state and we may
study how fast the overlap goes to zero. In order to quantify
this notion we use the fidelity [27,29]

F(λ,λ′) ≡ |〈�(λ)|�(λ′)〉|, (13)

where |�(λ)〉 represents the ground state of H (λ). The
response of the fidelity after an infinitesimal change of the
external parameter up to second order reads

F(λ,λ + δλ) = 1 − δλ2

2
χF + O(δλ4), (14)

where the fidelity susceptibility [29–31] is defined by

χF (λ) ≡ 〈∂λ�(λ)|∂λ�(λ)〉
− 〈∂λ�(λ)|�(λ)〉 〈�(λ)|∂λ�(λ)〉 . (15)

If we have more than one external parameter, we may gener-
alize this result and obtain the so-called quantum geometric
tensor [31]

Tab ≡ 〈∂λa
�(λ)|∂λb

�(λ)〉
− 〈∂λa

�(λ)|�(λ)〉 〈�(λ)|∂λb
�(λ)〉. (16)

In general, this tensor will be complex. Both the real and
imaginary parts have nice physical interpretations [26]. The
real part will be an induced Riemannian metric on the manifold
of parameters

gab ≡ Re(Tab). (17)

The geodesics with respect to this metric give information
about the optimal adiabatic path that connects to points inside
the same quantum phase. Also, the scalar curvature may
be used to distinguish different phases and characterize the
behavior of critical regions [26]. The imaginary part is related
to the appearance of geometrical phases through the Berry
curvature

Fab ≡ Im(Tab)

= 〈∂λa
�(λ)|∂λb

�(λ)〉 − 〈∂λb
�(λ)|∂λa

�(λ)〉
= ∂aAb − ∂bAa, (18)

where A ≡ 〈�|∂λb
�〉 is the adiabatic Berry connection

[31,32].
Returning to the cluster-Ising model, we may compute the

fidelity between neighboring ground states |�(λi)〉 (8) for
different values of {λi}. If we change the external parameters
λ

(1)
i → λ

(2)
i , we can express the “old” ground state |�(λ(1)

i )〉 in
terms of the operators that diagonalize the “new” Hamiltonian
H (λ(2)

i ). The form of the wave function remains the same,

∣∣�(
λ

(1)
i

)〉 =
∏
k>0

[
cos

(
χk

2

)
+ i sin

(
χk

2

)
γ
†
k γ

†
−k

]∣∣�(
λ

(2)
i

)〉
,

(19)

where γk and γ
†
k are the fermionic operators that diagonalize

the Hamiltonian H (λ(2)
i ) and we define

χk = θk

(
λ

(1)
i

) − θk

(
λ

(2)
i

)
. (20)

After a straightforward calculation, we obtain

F(λx,λy,h; λ′
x,λ

′
y,h

′) =
∏

0�k�π

∣∣∣∣cos

(
θk − θ ′

k

2

)∣∣∣∣ .
From this expression, we compute the quantum geometric
tensor [31]

Tab =
∑

0�k�π

1

4

∂θk

∂λa

∂θk

∂λb

using the convention λ1 = λx , λ2 = λy , and λ3 = h, where

∂θk

∂λx

= −cos(k)δk − sin(k)εk

�2
k

,

∂θk

∂λy

= −cos(k)δk + sin(k)εk

�2
k

,
∂θk

∂h
= − δk

�2
k

.

Note that Tab may not be analytic when the system becomes
gapless, i.e., when �k → 0 for some k. Since Tab is a
real tensor, this system will have a trivial Berry curvature.
The above expressions for the quantum geometric tensor are
nontrivial. We expect to find a richness of features in their
scaling behavior [31], which can potentially be of use in the
optimization of quantum adiabatic algorithms [33]. A thorough
study of the scaling of the geometric tensor in the cluster-XY
model is to be found in Ref. [34].

By computing the fidelity in the cluster-XY model, we find
the expected critical lines. We illustrate this in Fig. 2, plotting
the phase diagram region that we already discussed in the
context of the exact solution.

We notice that there is a set of multicritical points that
present anomalous behavior. It is known that some multicritical
points may behave differently, giving rise to anomalous
dynamical scaling properties and, as a consequence, different
universality classes [35,36]. The multicritical points λ̃(c), given
by

(λx,λy,h) =
(

±h − 3

2
, ± h + 1

2
,h

)
∀h ∈ R, (21)

have properties that are not present in other multicritical
points, like the point (λx,λy,h) = (0,1,0) that was studied
extensively in Ref. [25]. In fact, the overlap between the
ground state corresponding to the critical points |�(λ(c)

i )〉 and
the neighboring ground states is very large. Moreover, also the
overlap F1(λ′

i) between such multicritical ground states and
the subspace generated by excited pairs {γ †

k γ
†
−k|�(λ(c)

i )〉}k is
quite large:

F1(λ′
i) =

∑
0�k�π

∣
∣〈�(λ′

i)|γ †
k γ

†
−k

∣∣�(
λ

(c)
i

)〉∣
∣

2
. (22)

This overlap region will roughly follow the truncated surface
given by Eq. (10).
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FIG. 2. (Color online) Contour plot of the fidelity F(λy,λy +
δλy), δλy = 0.05, and N = 500 for constant h: (a) h = −1.5, (b)
h = −1, (c) h = 0, (d) h = 1, and (e) h = 2. (f) Constant λx = 0.

We can gain some physical intuition about these multicrit-
ical if we rewrite the Hamiltonian as

H (h) = 3

(
±

∑
i

σ x
i σ x

i+1 +
∑

i

σ z
i

)

+
(

−
∑

i

σ x
i−1σ

z
i σ x

i+1 ±
∑

i

σ
y

i σ
y

i+1

)

+ (h + 3)

(
±1

2

∑
i

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1

) −
∑

i

σ z
i

)
.

This corresponds to the sum of three critical Hamiltonians,
namely, a critical Ising model, a critical cluster-Ising model,
and a critical XX model with a transverse field. Note that
for |h| � 1, the XX model term dominates. The ground
state of this Hamiltonian corresponds, after a Jordan-Wigner
transformation, to a completely empty (full) Fermi sea [1].
This state is trivial from the entanglement point of view since
it corresponds to a product state [37], but it affects the behavior
of the fidelity susceptibility in its vicinity [38,39].

FIG. 3. (Color online) (a) Overlap between |�(P 1)〉 and
the neighboring ground states (N = 500, q = 1, and h = 0).
(b) Overlap F1(λ) between the two-particle states of P 1 and the
neighboring ground states (N = 500, q = 1, and h = 0).

For the sake of concreteness we will concentrate on two of
these points

(λx,λy,h) = (− 3
2 , 1

2 ,0
)

(P 1), (23)

(λx,λy,h) = (−2,0, − 1) (P 2). (24)

The overlap with the neighboring ground states is illustrated
in Figs. 3 and 4. We see a significant overlap between the state
at the quantum critical point and the neighboring ground states
of the antiferromagnetic phase. This phenomenon is due to the
fact that the perturbation corresponding to the parameter λi is
not sufficiently relevant [31]. The overlap F1(λ′

i) (22) is also
considered, showing that the most significant overlap is with
either the ground state or just a few pairs of excitations. Note
that F1 is symmetric, so we also get the overlap between the
subspace of a pair of excitations of the neighboring states and
the critical point ground state.

The other critical points that do not belong to these critical
lines present a behavior similar to the one obtained for the
XY model in previous studies [27]. In those cases, the overlap
with all the neighboring ground states decays very fast even for
finite systems. In the present model, we expect this behavior
for asymptotically large values of all the couplings λx , λy ,
and h since the cluster interaction in the Hamiltonian (2)
becomes negligible in comparison and we obtain the usual XY
model. This fact implies that the two planes given by Eq. (9)
correspond asymptotically to the Ising critical lines and the
hyperbolic surface (10) corresponds asymptotically to the XX
critical line. Note, however, that the universality class may be

FIG. 4. (Color online) (a) Overlap between |�(P 2)〉 and
the neighboring ground states (N = 500, q = 1, and h = −1).
(b) Overlap F1(λ) between the two-particle states of P 2 and the
neighboring ground states (N = 500, q = 1, and h = −1).
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affected as we get close to the multicritical region we have
been considering [36].

V. QUANTUM QUENCHES AND LOSCHMIDT ECHO

At this point, we are ready to study the dynamics of the
system after a quantum quench. In order to quantify this we
use the Loschmidt echo (LE). This quantity is widely used
in many-body physics, in particular in the field of quantum
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L(
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t

(c)

0
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0.03
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L(
t)

t

(d)

FIG. 5. The LE starting from the cluster phase to the critical point
λx = − 3

2 , λy = 1
2 , and h = 0 with N = 400 starting from (λy and h

kept fixed) (a) λx = −1.3, q = 1, (b) λx = −1.3, q = 0, (c) λx = −1,
q = 1, and (d) λx = −1, q = 0.

chaos [11–14]. Suppose we want to compare the dynamics
under the Hamiltonians H1 and H2 (possibly time dependent)
imposing the same initial conditions |ψ(t = 0)〉 = |ψ0〉. In that
case, we define the LE as

L(ψ0,t) = |〈ψ0|U1(−t)U2(t)|ψ0〉|2, (25)

where Ua(t) = T̂ exp[−i
∫ t

0 Ha(t ′)dt ′] and T̂ denotes time
ordering. Note that L(t = 0) = 1. In this paper, we will limit
ourselves to ground states of one of the Hamiltonians, so
that one of the unitaries in Eq. (25) acts trivially. This can
be interpreted operationally as preparing the system in the
ground state of the Hamiltonian with parameters λ

(1)
i , suddenly

switching λ
(1)
i → λ

(2)
i , and letting the system evolve with the

new Hamiltonian. The LE reads

L
(
λ

(1)
i ,λ

(2)
i ,t

) = ∣
∣〈�(

λ
(1)
i

)∣∣U (t)
∣∣�(

λ
(1)
i

)〉∣
∣

2
. (26)

In this sense, the LE is a dynamical version of the ground-state
fidelity. High values of the LE mean that the system is
approaching the initial state. Typically, the LE will decay
exponentially at first and then start oscillating around a
well-defined value [13,14]. If the system is finite, we expect
the time evolution to be quasiperiodic, driving the system
arbitrarily close to the initial state for long enough times. The
system will experience revivals, i.e., times when the value
of the LE is greater than two standard deviations from the
average. The structure of these revivals may be greatly affected
by criticality [15]. The time evolution in the cluster-XY model
after a quantum quench is given by

|ψ(t)〉=
∏

0�k�π

[
cos

(
χk

2

)
+ie−i4t�k sin

(
χk

2

)
γ
†
k γ

†
−k

]∣∣�(
λ

(2)
i

)〉
(27)

0
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L(
t)

t

(a)
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0.86

0.88
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L(
t)

t

(b)

FIG. 6. The LE for the quenched cluster-Ising model to the critical
point λx = − 3

2 , λy = 1
2 , and h = 0 with N = 400 starting from

(a) λy = 0.7, q = 1 (λx and h kept fixed, polarized) and (b)
λx = −1.7, q = 1 (λy and h kept fixed, ferromagnetic).
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and the LE is thus

L(t) = |〈ψ(t)|ψ(0)〉|2

=
∏

0�k�π

[1 − sin2(χk) sin2(2t�k)]. (28)

In the following, we show the detailed analysis of the LE for
different types of quenches.
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FIG. 7. The LE for the quenched cluster-Ising model to the critical
point λx = 0, λy = 1, and h = 0 with N = 400 starting from (λx

and h kept fixed) (a) λy = 0.8, q = 1 (cluster), (b) λy = 0.8, q = 0
(cluster), (c) λy = 1.2, q = 1 (antiferromagnetic), and (d) λy = 1.2,
q = 0 (antiferromagnetic).

Consider the critical point h = 0, λx = − 3
2 , λy = 1

2 . The
critical Hamiltonian is

H = −
N∑

i=1

σx
i−1σ

z
i σ x

i+1 − 3

2

N∑
i=1

σx
i σ x

i+1 + 1

2

N∑
i=1

σ
y

i σ
y

i+1.

As we see in Fig. 1(b), this point lies between three different
phases. If we increase λx (λy) we will be in the cluster (po-
larized) phase. Decreasing λy or λx results in a ferromagnetic
state in the x direction.

For this critical point the behavior of the LE depends on
which phase the system is prepared in. For the cluster state
(Fig. 5) the numerical simulations show that it will oscillate
strongly away from the mean value. We also get a noticeable
spreading of the revivals. If we start further from the critical
point (i.e., a stronger quench), the lines get closer, but we keep
the insensitivity to the parity of the ground state [Q = (−1)q].
Note that the stronger the quench, the sooner the revivals will
happen. If we start from the polarized phase [Fig. 6(a)], the
behavior of the LE is somewhat different. Once again, the
oscillations make the revival structure insensitive to the parity
sector.

In contrast, starting from the ferromagnetic phase changes
the LE completely [Fig. 6(b)]. The numerical simulations show
that it will oscillate randomly around a relatively high mean
value. There is no outstanding structure for the revivals as
we had in the previous quenches. Increasing the size of the
quench will give us basically the same result, only decreasing
the mean value. This is consistent with the significant overlap
of the ground state of this critical point with the neighboring
ferromagnetic ground states [Fig. 3(a)].
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FIG. 8. The LE for the quenched cluster-Ising model to the critical
point λx = 0, λy = 1, and h = 0 with N = 400 starting from (λy and
h kept fixed) (a) λx = −0.2, q = 1 and (b) λx = 0.2, q = 1.
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Consider now h = 0, λx = 0, λy = 1. For these values, the
critical Hamiltonian is

H = −
N∑

i=1

σx
i−1σ

z
i σ x

i+1 +
N∑

i=1

σ
y

i σ
y

i+1.

This critical point lies on the interface of four different phases
[Fig. 1(b)]. If λy is increased, we will be in a region that
can be connected to an antiferromagnet in the y direction. If
λy is decreased, we will be in the cluster region. A positive
λx will turn the system into an antiferromagnet in the x

direction, while a small negative λx will put it in a region
that can be connected to a separable state polarized in the
z direction.

The behavior of the LE after a quench of λy (Fig. 7) is
similar to the one obtained for critical quenches in the XY
model [16]. It features the same sensitivity to the parity that
cancels the odd revivals for even parity (q = 0). This can
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FIG. 9. (Color online) The LE for the quench to the critical point
λx = 0, λy = 1, and h = 0 along the critical line λ2

y − λxλy − 1 = 0
with N = 400 starting from (λy along the critical line and h = 0 kept
fixed) (a) λx = 0.1, q = 0 (notice that the revivals with odd parity
are destroyed by interference) and (b) λx = 0.1, q = 1. (c) Revival
time for critical quenches to the same critical point starting in the
neighboring ground states. Notice that the critical line is detected by
the revival time. (d) Group velocity 2∂k�k for the critical point. The
maximum value is 2∂k�k|max = 6.

be understood easily by noting that for k = π/N and t =
N
4 | ∂�k

∂k
|−1
max, we get χk ∼ π

2 (as can be seen in the fidelity) and
2t�k ∼ π

2 , canceling the LE [Eq. (28)].
Starting with a small nonzero value for λx and quenching

the system to this critical point, the LE will behave roughly in
the same way (Fig. 8). However, we get two small peaks before
the first revival. Strictly speaking, they will not be revivals
according to the definition because they are less than two
standard deviations away from the mean value of the LE. We
can understand them as dynamical responses given by the
Bogoliubov quasiparticles.

We can also quench to the neighboring critical points along
the critical curve λ2

y − λxλy − 1 = 0 (see Fig. 9). This means
that both the starting and quenching Hamiltionians lie on this
curve. In this case, the main difference will be the revival
time, which will be exactly one-third of the one found in the
previous quenches. Note that we do not get this phenomenon
for the critical line λy = −λx + 1, h = 0.

In Ref. [16], the phenomenon of the revivals after a
quantum quench is interpreted as a recombination of the
fastest quasiparticles in the system. In general, the fastest
excitations in the system have a speed that is upper bounded
by the Lieb-Robinson speed vLR [40–42]. This upper bound
gives a lower bound to the revival time Trev � N

2vLR
. Following

Ref. [43], we find vLR � 3.2e/
√

2 = 6.15 for the critical
point λy = 1, λx = 0, and h = 0 and therefore the maxi-
mum speed of quasiparticles given by the maximum group
velocity 2∂k�k|max = 6 [Fig. 9(d)] is compatible with the
Lieb-Robinson bound.

VI. CONCLUSION

In this paper, we studied the phase diagram and quench
behavior of the cluster-XY model, a spin chain where the
usual XY interactions in a transverse field are competing
with a cluster three-body term. This model also describes the
effective behavior of the edge in a two-dimensional fermionic
symmetry-protected topological state with Z2 symmetry [44].
The cluster-XY model is exactly solvable by standard tech-
niques and the study has been conducted using the tools of
fidelity susceptibility and Loschmidt echo. This model, in-
spired by proposed implementations of quantum computation,
provides a benchmark with an interesting phenomenology and
a much richer phase space resulting from the competition
of the different interactions. We were able to characterize
the critical regions and the distribution of phases using the
quantum geometric tensor. We found that the phase diagram is
completely characterized by the fidelity. It is noteworthy that
the ground state of some of the critical points presents a large
overlap with the ground state and few-excitation subspaces
of neighboring noncritical regions. The behavior away from
equilibrium is also nontrivial. We showed that different critical
points have qualitatively different effects on the LE. The
long-time structure and the revival times of the LE depend on
the initial phase of the quantum quench and the final critical
point. This provides further phenomenology for the study of
generic responses to critical quantum quenches.

In Refs. [24,45] it was shown that the cluster-Ising model
with open boundary conditions has a fourfold degenerate
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ground space that possesses symmetry-protected topological
order [46–48]. We expect that this model has similar features
[34], though the presence of the nontrivial phases between the
cluster phase and the ferromagnetic phase makes the situation
more complicated. A promising route to the characterization of
topological orders is the study of their entanglement spectrum
[49,50]. In a symmetry-protected one-dimensional spin-one
chain in the Haldane phase, the topological order is revealed
in a double degeneracy of the entanglement spectrum [51]. It
would hence be interesting to study the entanglement spectrum
of the cluster-XY model to gain more insight into the properties
of the symmetry-protected topological order. In particular, it
would be interesting to study the robustness of the information
encoded in such ground space after a quantum quench and

whether or not the quench breaks the symmetry that protects
the topological order. Finally, it would be interesting to study
the model in the presence of disorder. In order to obtain reliable
results, more sophisticated numerical techniques may be used
such as matrix product states.
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