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Léonie Canet, Hugues Chaté, Bertrand Delamotte, and Nicolás Wschebor
(Received 10 July 2012; published 27 July 2012)

DOI: 10.1103/PhysRevE.86.019904 PACS number(s): 64.60.Ht, 05.10.Cc, 68.35.Fx, 05.70.Ln, 99.10.Cd

This Erratum corrects inconsistencies in the Fourier con-
ventions used in the paper. The Fourier conventions that were
chosen in this paper were those of Ref. [1], which are as
follows:

f̃ (ω, �p) =
∫

dd �x dt f (t,�x)e−i �p·�x+iωt , (1)

f (t,�x) =
∫

dd �p
(2π )d

dω

2π
f̃ (ω, �p)ei �p·�x−iωt (2)

≡
∫

p
f̃ (p)ei �p·�x−iωt , (3)

where p = (ω, �p). These equations should be substituted into
Eqs. (5)–(7) of the paper, respectively. With these conventions,
all the equations in the paper are correct, except those of
Appendix C, which should be complex conjugated. That is,
the substitution i → −i should be achieved in Eqs. (C3)–(C5),
(C8), and (C11).

These inconsistencies have consequences only in Sec. VI,
that is, in the one-dimensional case. The numerical codes
related to this section have been corrected and have been
rerun. The outcome is a significant improvement of the results
presented in Sec. VI. Below, we give the corrected versions of
Table II and Figs. 5 and 6 of the paper, which are, respectively,
Table I and Figs. 1 and 2 of this Erratum. The former Figs. 2–4
remain essentially the same.

Let us first comment on the new figures. The overall
agreement between the nonperturbative renormalization group
(NPRG) scaling functions (denoted F̃ and F ) and the exact
ones (denoted f̃ and f , respectively) of Ref. [2] is excellent.
Regarding F̃ , all the nontrivial features of the exact function f̃

are very accurately reproduced: the existence and the depth of

TABLE I. Characteristic parameters of the different scaling
functions from the exact results of Ref. [2] and from this Erratum:
(i) relative to f , universal amplitude ratio g0; (ii) relative to f̃ : position
of the first zero k0, coordinates of the negative dip (kd ,f̃d ), coefficient
of the stretched exponential b0, and pulsation of the oscillations a0;
(iii) correction to scaling exponent ω. The error bars reflect the weak
variations around plateau values when the α parameter of the cutoff
function is varied between 2 and 20.

Quantity Exact NPRG

g0 1.150 39 1.19(1)
k0 4.362 36 4.60(6)
kd 4.790 79 5.14(6)
f̃d −0.001 20 −0.0018(6)
a0

1
2 0.28(5)

b0
1
2 0.49(1)

ω 1.0(1)

the negative dip, the subsequent stretched exponential decay
with superimposed oscillations, of the form

f̃ (k) ∼ exp(−b0k
3/2) cos(a0 k3/2).

The behavior of the tail is recovered not only on the correct
scale k3/2 (which is not the case for the function obtained in
the mode-coupling (MC) approximation in Ref. [3]), but also
with the correct coefficient b0 for the decay and a comparable
pulsation a0 for the oscillations (see Table I). Considering the
tiny magnitude over which this behavior sets in (typically,
below a 10−6 level), the agreement is remarkable.

Regarding F , the NPRG function also precisely matches
the exact one f , although it is the less accurate of our three
scaling functions as it stems from two successive numerical
(oscillating) integrations of the function F̊ , which is the one
directly calculated at the NPRG fixed point (see the paper).
The tail of the function F is particularly sensitive to this loss
of precision. The exact function f (y) is found to decrease as
exp(−cy3) when y → ∞ in Ref. [2], whereas, the decay of
the function F (y), although it starts with the correct behavior,
rapidly crosses over to a simple exponential decay exp(−c′y).

This is manifest on the universal amplitude ratio g0 defined
as

g0 = 4
∫ ∞

0
dy yf (y). (4)

The contribution of the exponential tail of the NPRG function
F leads to an overestimation of the integral (4), compared
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FIG. 1. (Color online) Comparison of the red curve with dots:
scaling function F̃ (k) obtained in this Erratum with the black curve
with squares: exact one f̃ (k) from Ref. [2]. The inset shows the
stretched exponential behavior of the tail with the superimposed
oscillations, developing on the same scale k3/2. Note the vertical
scale: this behavior sets in with amplitudes below typically 10−6.
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FIG. 2. (Color online) Comparison of the red curve with dots:
scaling function F (y) obtained in this Erratum with the black curve
with squares: exact one f (y) from Ref. [2].

with the exact result where this contribution is very rapidly
suppressed by the exp(−cy3) factor (see Table I). Note that our

previous estimate of g0 was closer to the exact value, but this
was, in fact, a chance consequence of the greater discrepancy
in the bulk of the function, which happened to compensate the
contribution of the tail. We suspect that a similar mechanism
occurs for the MC estimate in Ref. [3]: The discrepancies
between the MC scaling function and the exact one, which
are much larger than those of Fig. 2, probably cancel out to
produce, in fine, a reasonable estimate for g0: g0 � 0.1137.

Finally, we report a misprint in one of the powers of λ in
Eqs. (63) and (66) that should read, respectively,

g(y) = lim
t→∞

C[(2λ2At2)1/3y,t](
1
2λA2t

)2/3 , (5)

and

f̊ (τ ) = − p7/2

25/3λ4/3A5/3t7/3
C

(
p

(2λ2At2)1/3
,τ

p3/2

t

)
. (6)

The authors are deeply indebted to T. Kloss for pointing
out to them the mismatch in the Fourier conventions and the
misprints corrected in this Erratum.
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