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Broadband computation of the scattering coefficients of infinite arbitrary cylinders
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We employ a time-domain method to compute the near field on a contour enclosing infinitely long cylinders
of arbitrary cross section and constitution. We therefore recover the cylindrical Hankel coefficients of the
expansion of the field outside the circumscribed circle of the structure. The recovered coefficients enable the
wideband analysis of complex systems, e.g., the determination of the radar cross section becomes straightforward.
The prescription for constructing such a numerical tool is provided in great detail. The method is validated by
computing the scattering coefficients for a homogeneous circular cylinder illuminated by a plane wave, a problem
for which an analytical solution exists. Finally, some radiation properties of an optical antenna are examined by
employing the proposed technique.
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I. INTRODUCTION

The study of electromagnetic (EM) wave interaction with
particles is enjoying an increasing level of popularity. Scien-
tists from a wide variety of disciplines—including atmospheric
physics, electrical engineering, nanotechnology, etc.—are
faced with problems involving light scattering. The scattering
problem of a plane wave falling upon a homogeneous circular
cylinder at perpendicular incidence was first solved by Lord
Rayleigh in 1881 [1]. The problem has therefore been
thoroughly explored, and the solutions for more complicated
configurations—viz., oblique incidence, elliptical cylinders,
concentric cylinders—were consecutively given. The scattered
cylindrical waves are usually expressed by infinite series
that involve Bessel functions. Each term of the expansion is
weighted by a scattering coefficient that contains the informa-
tion about the amplitude and phase of the corresponding partial
wave. The series converge slowly when the radius of the object
is appreciable compared to the wavelength. Techniques such as
the Watson transformation (see [2], p. 784) enable the solution
to be converted into rapidly convergent series.

Deviating from the above-mentioned ideal configurations
considerably complicates the derivation of the general solu-
tion. For aggregates of cylinders, the scattered field for an
individual object is an incoming wave from the other clusters’
perspective, resulting in a challenging problem. The analytical
solution for the scattering of two infinitely long, parallel
cylinders of different radii and materials at oblique incidence
has been given in [3], while a theory of scattering by a finite
number of cylinders of arbitrary cross section is presented
in [4]. The complete general solution for aggregates of spheres
has been derived by Xu [5], who obtained the expansion
coefficients for all the particles through the resolution of a
large number of linear equations by an asymptotic iteration
method. The use of computational resources is unavoidable in
the last two references; hence the corresponding techniques
can be considered as semianalytical.

Light diffraction by arbitrary-shaped and/or inhomoge-
neous objects becomes insurmountable to work out by an
analytical treatment. As a result, numerical methods must be
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employed. The counterpart is that the spatial discretization
makes the knowledge of the EM field sparse while, most
importantly, the size of the computational domain cannot
be extended at will. The former issue can be overcome
by using interpolation techniques from the values at the
neighboring grid points (a simple Lagrangian interpolation is
often sufficient). The lattercan constitute a significant problem
given that it prevents the determination of the EM field far
away from the scatterer.

In this paper we use the Transmission Line Modeling
(TLM) time-domain method [6–8] to compute the near
field scattered by an arbitrary finite aggregate of cylinders
(not necessarily circular). Then we recover the scattering
coefficients by integration along a circular contour that
encloses the scatterers. With these coefficients it is in
particular possible to calculate the diffracted field everywhere
outside the computational domain. Note that we are dealing
with concepts that differ from the so-called near-to-far-field
transformation [9,10], for the distance from the scatterers
to the point of observation is not considered as infinite. The
proposed method is rather similar to that used in [11] (but
in this reference, the Bessel functions are actually replaced
by their large-argument asymptotic expansions) and [12], in
which the scattering coefficients of an antenna are determined
from measurements, made with a probe, of the near fields on
a cylinder containing the antenna. In contrast to our method,
these two works were, however, of experimental nature while
the source was restricted to emit cylindrical waves.

The extension of our method to three-dimensional struc-
tures is conceptually identical to the developments reported
in this paper, albeit much more computationally demanding.
The results and prescriptions presented here are useful given
that cylindrical particles are not uncommon in nature, while
applications based on arrays of micro- or nanorods are diverse.
In addition, it should be noted that many problems involving
cylindrical structures can be treated adequately within the
framework of infinite cylinder theory [13].

II. SCATTERING COEFFICIENTS OF THE EXPANSION

We shall suppose an infinite cylinder of radius Rcyl to
be embedded in an infinite and homogeneous medium. The

016711-11539-3755/2012/86(1)/016711(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.016711


BLANCHARD, GUIZAL, AND FELBACQ PHYSICAL REVIEW E 86, 016711 (2012)

propagation constants in these media are denoted k and k1,
respectively. The cylinder axis is taken to coincide with the
z axis. The object is illuminated by a linearly polarized
wave with its electric vector parallel to the z axis, i.e.,
the polarization is transverse magnetic. The cross section
of the cylinder is arbitrary, while there is no restriction on
the constitutive parameters (permittivity ε, permeability μ,
and conductivity σ ). The expansion of the complex spatial
form of the scattered field, which propagates in the outward
direction, can be represented by cylindrical wave functions:

E
s = ẑ

∞∑
n=−∞

anH
(2)
n (k1r) exp(inφ), (1)

where H (2)
n are the Hankel functions of the second kind, while

r and φ are the radial and angular cylindrical coordinates,
respectively. The choice of eiωt as the time convention to
denote the time-harmonic dependence is made, which leads
to the use of Hankel functions of the second kind. The
determination of the expansion coefficients an is the key to
the problem as they ensure the knowledge of the scattered EM
field. This turns out to be a trivial task if the cross section
is circular and the cylinder homogeneous. However, if these
conditions are no longer realized, the an may be tough to
derive.

We propose to numerically calculate the an and then, by
using Eq. (1), to obtain E

s
as a continuous function of r and

φ. Multiplying Eq. (1) by e−ipφ , integrating over a closed
circular contour C of radius R > Rcyl, and with the help of
orthogonality relations, we readily obtain

an =
1

2π

∫ 2π

0 Es
z (R,φ) exp(−inφ)dφ

H
(2)
n (k1R)

. (2)

It is plain from Eq. (2) that knowledge of Es
z over C allows

the calculation of the expansion coefficients. The problem is
therefore reduced to the determination of Es

z (R,φ) which can
be calculated by numerical simulation. At first examination,
Eq. (2) seems to suggest that the an coefficients depend on
R. Nevertheless, this is certainly not the case because in the
rigorous derivation of Eq. (2) one should be able to use any
circumcircle to perform the integration and then obtain the an

coefficients. A way to figure this out is to notice that the R

dependence is in both the numerator (through the scattered
field on the contour) and the denominator (through the Hankel
functions). This overall makes the coefficients independent of
R. On the other hand, the integral in Eq. (2) will be obtained
numerically over the perimeter of the circle of radius R, i.e.,
the sample points Ez(R,φ(i)) will be taken over a contour
whose length is 2πR. Therefore, it is obvious that the smaller
R is, the closer the samples are to each other, i.e., the better
the estimation of the integral. To summarize, although the an

do not depend on R, it is better to choose the latter as small as
possible. Note also that choosing R to be small goes together
with a minimal TLM computational window.

To give more generality to our approach, it is judicious to
chose a time-domain technique to perform the calculation. A
time-domain method directly calculates the impulse response
of an EM system; as a result a single simulation provides
broadband temporal wave forms. In our problem, this means

we have access to the an in terms of the frequency in a single
simulation. We have chosen to carry out this calculation with
TLM, which is recognized as a powerful method for scattering
problems in the realm of EM [14] as well as acoustics [15].
The very versatile TLM Symmetrical Condensed Node is
employed so that the polarization of the incident wave can
be changed to transverse electric with almost no impact on the
numerical implementation [7].

III. NUMERICAL IMPLEMENTATION

The numerical calculation of the integral of Eq. (2) is of
no difficulty. However, it must be ensured that the number of
samples that describes C is large enough to reach a reasonable
precision. By using interpolation, as will be explained in the
next paragraph, we can evaluate the integrand at as many points
as desired. In our calculation, the field is calculated at every
0.1◦ of C , that is Es

z (R,φ) is calculated at 3600 different
locations. In contrast, we have verified that scanning C with a
1◦ step may not be enough, depending on the frequency under
consideration.

The spatial discretization usually involves Cartesian ele-
mentary cells, called nodes in the TLM jargon. Even though
lattices made up of Cartesian nodes have proven to be flexible
and robust, certain bodies are more accurately modeled by
means of other coordinate systems. A cylinder with circular
cross section would be judiciously simulated by employing a
cylindrical grid for which the elementary cells are cylinders
whose cross sections are plane figures bounded by two radii
and the arcs of two concentric circles. Cylindrical grids prevent
the undesirable staircase approximations in the modeling of a
curved object, improving the numerical simulation of certain
devices [16], but are unadapted to the modeling of other
configurations such as aggregates of scatterers. That is the
reason why this work has been performed with Cartesian
nodes; there is however a counterpoint: the use of interpolation
is unavoidable. This statement arises from the fact that the EM
field is computed at the centers of the Cartesian nodes while the
path of C does not necessarily coincide with those particular
locations. In the following, we will use a simple Lagrangian
interpolation of order 3—i.e., the nine closest nodes (three
along the x direction and three along the y direction) are
involved.

The incident electric field is modeled by the Gaussian time
function source

f (t) = e−G2(t−t0)2
, (3)

where G allows control of the width of the pulse in the
time domain. The time wave form of the pulse is centered
at time t0. This common low-pass source condition radiates
a numerical signal that is then altered, in the mesh, by the
presence of any modification of the specified EM parameters
in the grid. A Fourier analysis of the complete time histories of
this radiation, obtained in a single run, provides the field over
a wide frequency band that spreads out from direct current
regime to an arbitrary high-frequency regime. Note, however,
that the latter is restricted by the specifications of the TLM
grid, e.g., the size of the nodes and the value of the refractive
index of the simulated medium, as well as the value of G.
What is more, using Eq. (3) as source directly provides the
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magnitude and phase of the field, which is interesting given
that Eq. (2) requires Es

z (R,φ) to be expressed in its complex
form. There is a remaining question: assuming such a low-pass
source, what is the relation between the numerical values that
are obtained at all points of the grid and the physical electric
field? We suppose that the pulse of Eq. (3) is generated at
the origin and propagates along the x direction in free space,
i.e., with velocity c0. Furthermore, we assume the source
to generate a plane wave form. If we define the Fourier
transform as 1√

π

∫ +∞
−∞ f (t) exp(−iωt) (note the minus sign

in the argument of the exponential to conform to the eiωt

time convention), we readily obtain F [f (t)] = e
−iωt0− ω2

4G2

G
. At

coordinate x, the pulse should be of the form e−G2(t−t0−tret)2
,

where tret = x/c0 = k0x/ω. It is obvious that the Fourier
transform of this new function differs from F [f (t)] by a
slight modification in the exponential’s argument: t0 must
be substituted by (t0 + tret). The ratio of the new Fourier
transform to F [f (t)] yields the expression e−iωtret = e−ik0x ,
which precisely corresponds to the spatial part of an individual
harmonic component of an electric field that propagates along
the x direction. In conclusion, each harmonic of the computed
signal must be divided by the corresponding harmonic of the
incident signal to recover the complex scattered field. Note
that it is important to take into account the eventual phase
shift that results from the spatial distance between the location
of the source and the origin (in the literature, the analytical
derivations of the diffraction of a plane wave by a circular
infinite cylinder usually assume that the center of the cross
section is located at the origin).

IV. VALIDATION OF THE METHOD

In order to validate the proposed technique, we first consider
that the scattering cylinder is homogeneous and has a circular
cross section. For the sake of simplicity, we suppose that the
relative permittivity of the cylinder, of radius Rcyl = 20 nm, is
constant in the whole operating frequency range (a dispersive
case will be examined in the next section) and amounts to ε =
4. Concerning the numerical specifications, the dimensions
of the TLM nodes are �l = �x = �y = 1 nm, while G =
1015 s−1 and t0 = 3.6/G s. The cylinder is located at the
center of the computational grid, which is a square whose
sides are 200 nm long. A uniform plane wave, whose electric
field is linearly polarized along the z direction, is normally
incident upon the cylinder. The plane wave source is realized
by employing the total-field–scattered-field technique (also
referred to as the Huygens’ technique): the lattice is divided
into an outer and an inner region in which only the scattered
and total field, respectively, are computed (see [9], p. 186). By
locating C in the scattered-fields region, the scattered field is
directly obtained.

The prescriptions of Sec. III allow the computation of the
expansion coefficients an for each sampled frequency. By using
Eq. (1), the scattered field—as a continuous function of r and
φ, and for the number of frequencies that depend on the length
of the temporal source signal—can thus be determined. In
Fig. 1, the real and imaginary parts of the scattered electric field
(blue and red circles, respectively) for r = 200 nm and φ = 0

FIG. 1. (Color online) (a) Real part and (b) imaginary part of
the scattered electric field in terms of frequency by a homogeneous
circular cylinder at the point of observation r = 200 nm and φ = 0.
The continuous lines represent the analytical result while the markers
represent the numerical calculation.

(note that this point is outside the mesh) are plotted in terms
of frequency. It is worth stressing that the series of Eq. (1) is
infinite; the truncation must be treated with care if we want the
field to converge. The numerical calculation can be compared
with the well-known analytical solution [17], which has been
plotted in the same figures (continuous lines). The agreement is
good irrespective of the frequency, which validates the present
approach. The highest frequency, 104 THz, corresponds to
the wavelength λ = 30 nm in vacuum, which is of the order
of magnitude of Rcyl and much larger than �l. Hence, we
can make the assumption that such a wavelength is not small
enough to reveal the actual staircase shape of the simulated
object far away from it. However, this result may no longer be
true in the near-field region.

V. OPTICAL ANTENNA ILLUMINATED
BY CYLINDRICAL RADIATION

The proposed technique is especially useful if the analytical
calculation is complex to derive or even unavailable. In the
present section, we focus on a complex structure that can serve
as an optical antenna. The device is depicted in the inset of
Fig. 2; it consists of two silver nanocylinders (of radius RAg

= 30 nm, gray color) and a dielectric nanocylinder (of radius
Rdiel = 250 nm, blue color). The distance between the centers
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FIG. 2. (Color online) Complex permittivity of silver in terms of
frequency. Blue solid line, real part; red dashed line, imaginary part.
The continuous lines represent the values that have been employed in
our simulation while the points are values taken from Palik [18]. Inset:
scheme of the simulated structure; the line source is equidistantly
located between the two silver cylinders (gray color).

of the two metallic structures is 68 nm, while xdiel = −280
nm. A similar system, involving spherical particles, was
investigated in depth by Devilez and colleagues in [19],
where it was shown that such an optical antenna exhibits
high directionality in the optical spectrum. Regarding potential
experimental realization of this hybrid antenna, it is worth
noting that the main difficulty would lie in the short distance,
8 nm, between the two metallic particles. However, techniques
allowing gaps of less than 5 nm have already been proposed.
Let us mention, for instance, the assembly of noble-metal
nanoparticles on DNA scaffolds [20] or gold nanoparticle
dimer resonators coated with active antibodies [21].

In our simulation, we suppose that εdiel = 2 in the whole
optical spectrum ranging from 400 to 800 THz. Concerning
the metallic particles, the permittivity is set to the negative
value −11.32 at 545.455 THz, in agreement with Palik [18].
For the other frequencies the permittivity is governed by
the inherent dispersion that occurs in the TLM nodes for
the modeling of negative refractive index materials. It was
established in [22] that such permittivity is of the form
ε(ω) = 1 − ω2

p/ω2, where ωp represents the plasma angular
frequency, which can be determined by knowledge of a
particular point of the curve ε(ω). We shall suppose the
conductivity of the silver cylinders to be constant; its value
is set to σ = 25 329 S/m. In Fig. 2 the resulting silver complex
permittivity is plotted and compared to the values provided by
Palik; it appears that the silver cylinder is correctly modeled
in the optical spectrum in spite of these approximations.

The incoming wave was thus far a plane wave. Interaction
between fields radiated by other sources, such as a simple line
source or a Gaussian or Bessel [23] beam, and any kind of
structures can also be investigated by means of our approach.
In this section the optical antenna is illuminated by a line source
generating waves radiating in the outward direction. The
source is equidistantly located between the two silver cylin-
ders, at the origin. Furthermore, the computational impressed
electric field has the temporal form given by Eq. (3). If there
is no scatterer the propagating EM field should be isotropic:

we first positively verify that, in that case, all the coefficients
of the expansion but the zero-order one amount to zero.

The natural application of the proposed method is the
retrieval of fields far away from the excited object by means
of the computation of the scattering coefficients. However,
the knowledge of the an is beneficial in various other
aspects such as the specification of the system in terms
of a multipole expansion, for each of the terms in the
scattered-field expansion in Eq. (1) can be viewed as the
partial component of an oscillatory multipole [24]. It is of
interest to characterize them in order, for instance, to detect
the dominant partial modes of the radiation or the resonant
frequencies. In Fig. 3(a) the amplitude of the an (normalized to
the corresponding maximum value) at 100 THz is represented;

FIG. 3. (Color online) Normalized amplitude of the scattering
coefficients for the individual partial modes at (a) 100, (b) 500, and
(c) 700 THz.
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FIG. 4. (Color online) Radiation diagram at r = 8000 nm.
Orange solid line, 100 THz; blue dotted line, 500 THz; purple dashed
line, 700 THz.

the first mode turns out to be highly dominant. The radiation
is therefore isotropic around this low frequency. When the
frequency increases other modes are excited. This is evinced
in Figs. 3(b) and 3(c) which represent the relative amplitudes
of the an at 500 and 700 THz, respectively. Accordingly, the
radiation is expected to become anisotropic. The radiation
diagram in Fig. 4 confirms that the radiation is isotropic at
100 THz, while a fairly high directionality around 180◦ is
observed at 500 and 700 THz. This directionality stresses

FIG. 5. (Color online) First four orders of the an.

the function of the near-field lens of the dielectric particle.
In Fig. 5, the antenna scattering coefficients are plotted in
terms of frequency for the first four orders. It permits one to
get a clear picture of the elementary cylindrical modes that
are involved in the scattering process. For example one can
identify the frequency bands where the zero order—which
leads to isotropic radiation—is dominant.

VI. CONCLUSION

We have proposed a detailed prescription for the compu-
tation of the scattering coefficients of any two-dimensional
system. We have shown that using a time-domain method, such
as the TLM, has the virtue of directly revealing the broadband
response of the diffraction phenomenon. The approach allows
the calculation of the field everywhere in space but is also
useful to characterize the system through the individual
behavior of the partial oscillations.
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