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The pseudopotential lattice Boltzmann (LB) model is a widely used multiphase model in the LB community.
In this model, an interaction force, which is usually implemented via a forcing scheme, is employed to mimic
the molecular interactions that cause phase segregation. The forcing scheme is therefore expected to play an
important role in the pseudoepotential LB model. In this paper, we aim to address some key issues about forcing
schemes in the pseudopotential LB model. First, theoretical and numerical analyses will be made for Shan-Chen’s
forcing scheme [Shan and Chen, Phys. Rev. E 47, 1815 (1993)] and the exact-difference-method forcing scheme
[Kupershtokh et al., Comput. Math. Appl. 58, 965 (2009)]. The nature of these two schemes and their recovered
macroscopic equations will be shown. Second, through a theoretical analysis, we will reveal the physics behind
the phenomenon that different forcing schemes exhibit different performances in the pseudopotential LB model.
Moreover, based on the analysis, we will present an improved forcing scheme and numerically demonstrate that
the improved scheme can be treated as an alternative approach to achieving thermodynamic consistency in the
pseudopotential LB model.
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I. INTRODUCTION

Multiphase flows are of great interest in natural phenomena
and industrial processes, such as chemical, electronic, and
power-generation industries [1]. Owing to the inherent com-
plexity of the phenomena involved in multiphase flows, simu-
lating the behavior of multiphase flows is very challenging. In
recent years, the lattice Boltzmann (LB) method is becoming
an increasingly important method for simulating multiphase
flows [2–5]. Unlike conventional numerical methods, which
are based on the discretization of macroscopic governing
equations, the LB method is based on the mesoscopic
kinetic equation for particle distribution functions [6–8]. In
particular, for multiphase flows, the phase segregation can
emerge naturally in the LB method as the result of particle
interactions [9,10] and therefore avoids tracking the interface
between different phases, which is often required by many
other numerical methods for simulating multiphase flows.

In the LB community, the first multiphase LB model
was proposed by Gunstensen et al. [11]. Ever since, many
multiphase LB models have been developed. Generally, these
models can be classified into four categories: the color-gradient
model [11,12], the pseudopotential model [9,10,13–17], the
free-energy model [18–22], and the kinetic-theory-based
model [23–25]. Among these models, the pseudopotential
LB model, which is also called Shan-Chen model, has attracted
much attention. In this model, the fluid interactions are
modeled by an artificial interparticle potential, and the phase
separation is achieved by imposing a short-range attraction
between different phases. Because of its conceptual simplicity
and computational efficiency, the pseudopotential model is
widely used in LB simulations of multiphase flows. However,
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it has also received extensive criticism on the problems of large
spurious currents and thermodynamic inconsistency [14,25].
The problem of spurious currents has been recently addressed
by many researchers, and some techniques that can reduce the
spurious currents have been proposed, such as using higher-
order isotropic discrete gradient operator [13] or midrange
pseudopotential [14].

In the pseudopotential LB model, the interaction force is
usually incorporated via a forcing scheme. Therefore, the
forcing scheme is expected to play an important role and
affect the numerical accuracy and the numerical stability of
the model. Currently, two forcing schemes are widely used in
the pseudopotential model: One is Shan and Chen’s forcing
scheme [9,10], and the other is the Exact-Difference-Method
(EDM) scheme, which is proposed by Kupershtokh et al. [26].
Recently, Huang et al. [27] and Sun et al. [28] have numerically
investigated the performance of different forcing schemes in
the pseudopotential model. Both studies found that, in terms
of numerical stability, the EDM scheme is better than the
Shan-Chen scheme when the nondimensional relaxation time
τ < 1. However, when τ > 1, the Shan-Chen scheme is better.
In addition, it was found that both schemes give τ -dependent
coexistence curves.

The above findings are interesting. However, the reasons
for these findings were not clearly discussed. Particularly, the
physics behind the phenomenon that different forcing schemes
have different performances has not been revealed. In this
paper, we aim to address these issues through theoretical and
numerical study of forcing schemes in the pseudopotential
model. First, we will make theoretical analyses of the
Shan-Chen and EDM schemes. The macroscopic equations
recovered from these two schemes will be given, and we will
show that the numerical stability (against the temperature) of
the Shan-Chen and EDM schemes is related to an additional
term in their recovered macroscopic equations. Furthermore,

016709-11539-3755/2012/86(1)/016709(9) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1016/j.camwa.2009.02.024
http://dx.doi.org/10.1103/PhysRevE.86.016709


Q. LI, K. H. LUO, AND X. J. LI PHYSICAL REVIEW E 86, 016709 (2012)

a theoretical analysis will be made to reveal the physics
behind the phenomenon that different forcing schemes exhibit
different performances in the pseudopotential model. Based
on the analysis, we will present an improved forcing scheme
for the pseudopotential model and numerically demonstrate
that the improved scheme can be treated as an alterna-
tive approach to achieving thermodynamic consistency in
the pseudopotential model.

The rest of the present paper is organized as follows.
Section II will briefly introduce the pseudopotential LB model.
Theoretical and numerical analyses of the Shan-Chen and
EDM schemes will be given in Sec. III. In Sec. IV, the physics
behind the phenomenon that different forcing schemes exhibit
different performance in the pseudopotential model will be
described, and an improved forcing scheme will be presented.
Finally, a brief conclusion will be made in Sec. V.

II. PSEUDOPOTENTIAL LB MODEL

In the LB method, the motion of a fluid is descried by a set
of discrete single-particle density distribution function. With
the BGK collision operator [29], the evolution equation of the
density distribution function can be written as

fα(x + eαδt , t + δt ) − fα(x, t)

= − 1

τ

[
fα(x, t) − f eq

α (x, t)
] + Fα, (1)

where fα is the density distribution function, t is the time,
x is the particle position, eα is the discrete particle velocity
along the α th direction, τ is the nondimensional relaxation
time, δt is the time step, Fα is the forcing term, and f

eq
α is the

equilibrium density distribution function, which can be given
by

f eq
α = ωαρ

[
1 + eαiui

c2
s

+ uiuj

(
eαieαj − c2

s δij

)
2c4

s

]
, (2)

where cs is the sound speed and ωα are the weights. For the
two-dimensional nine-velocity (D2Q9) lattice, the weights ωα

are given by w0 = 4/9, ω1−4 = 1/9, and ω5−8 = 1/36.
In Shan and Chen’s pseudopotential LB model, the molec-

ular interactions that cause phase segregation are modeled
by an interaction force. The interaction force is calculated
from an interaction potential ψ , which is dependent on the
local fluid density. For single-component multiphase flows,
the interaction force is given by Refs. [13–15]

F = −Gψ(x)
N∑

α=1

w(|eα|2)ψ(x + eα)eα, (3)

where G is the interaction strength and w(|eα|2) are the
weights. For the case of nearest-neighbor interactions on
the D2Q9 lattice, the weights w(|eα|2) are w(1) = 1/3 and
w(2) = 1/12. Through the Taylor expansion, the leading terms
of the interaction force can be obtained as follows [15]:

F = −Gc2
[
ψ∇ψ + 1

2c2ψ ∇(∇2ψ) + · · ·], (4)

where c is the lattice constant. According to Eq. (4), the
equation of state is given by

p = ρc2
s + Gc2

2
ψ2. (5)

For the case of nearest-neighbor interactions, the model will
give the following relation [10,15]:

∫ ρl

ρg

(
p0 − ρc2

s − Gc2

2
ψ2

)
ψ ′

ψ
dρ = 0, (6)

where ψ ′ = dψ/dρ and p0 = p(ρl) = p(ρg), in which ρl is
the density of the liquid phase and ρg is the density of the
vapor phase.

Equation (6) is usually called the mechanical stability
condition. Meanwhile, in the thermodynamic theory, the
Maxwell construction which determines the thermodynam-
ics consistency is built in terms of the requirement that∫ ρl

ρg
[p0 − p(ρ)] dV = 0, where V ∝ 1/ρ [2,30]. With Eq. (5),

such a relation can be rewritten as follows:∫ ρl

ρg

(
p0 − ρc2

s − Gc2

2
ψ2

)
1

ρ2
dρ = 0. (7)

By comparing Eq. (6) with Eq. (7), it can be found that
the mechanical stability solution will not agree with the
thermodynamic theory unless ψ ∝ exp(−1/ρ) [10,15]. On the
other hand, in order to be consistent with the equation of state
in the thermodynamic theory, the potential ψ should be chosen
as [25,31]

ψ =
√

2
(
pEOS − ρc2

s

)
Gc2

, (8)

where the pressure pEOS is given by the equation of state in the
thermodynamic theory. Obviously, Eq. (8) does not satisfy the
relation ψ ∝ exp(−1/ρ), which means that, when the equation
of state is chosen as that in the thermodynamic theory, the
mechanical stability solution of the pseudopotential model
will be inconsistent with the solution given by the Maxwell
construction. This is the thermodynamic inconsistency of the
pseudopotential model.

In recent years several researchers [32] proposed to adjust
the equation of state by modifying the equilibrium distribution
function. However, it should be noted that, when the pressure is
changed via the equilibrium distribution function, the Galilean
invariance can not be ensured, which can be clearly seen in the
free-energy multiphase LB models [19,20]. Some correction
terms that involve the first-order derivative of density may
be added to the equilibrium distribution function, with the
consequence that the main advantages of the pseudopotential
model are lost.

III. ANALYSES OF SHAN-CHEN AND EDM SCHEMES

A. Shan-Chen and EDM schemes

In the original pseudopotential LB model proposed by Shan
and Chen, the interaction force is incorporated into the model
by shifting the velocity in the equilibrium distribution function,
and the evolution equation is given by

fα(x + eαδt , t + δt ) − fα(x, t) = − 1

τ

[
fα − f eq

α (ρ, ueq)
]
.

(9)
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The shifted equilibrium velocity ueq is given as follows:

ueq = u + τδtF
ρ

, (10)

where u = ∑
α fαeα/ρ. By averaging the moment before and

after the collision, the actual fluid velocity can be defined
as v = u + δtF/(2ρ). Equation (9) together with Eq. (10)
constitutes the Shan-Chen forcing scheme.

Another forcing scheme that is widely used in the pseu-
dopotential model is the EDM scheme, which is proposed by
Kupershtokh et al. [26]. In this scheme, the forcing term in
Eq. (1) is given as follows:

Fα = f eq
α (ρ, u + �u) − f eq

α (ρ, u), (11)

where u = ∑
α fαeα/ρ and �u = Fδt/ρ. Similarly, the actual

fluid velocity in the EDM scheme is also defined as v = u +
δtF/(2ρ).

B. Theoretical analysis

In this section, a theoretical analysis will be made for the
Shan-Chen and EDM schemes. Before doing this, we first
introduce the general form of forcing schemes summarized by

Guo et al., which is given by Ref. [33]

Fα = ωαδt

[
Bieαi

c2
s

+ Cij

(
eαieαj − c2

s δij

)
2c4

s

]
, (12)

where B and C are functions of F. In 2002, Guo et al.
investigated the discrete lattice effects of some previous
forcing schemes, and they found that, in order to recover the
exact Navier-Stokes equations, B and C should be chosen as
follows [33]:

Bi = BeFi, Cij = Ce(vjFi + Fivj ),
(13)

Be = Ce =
(

1 − 1

2τ

)
.

Meanwhile, the velocity used in the equilibrium distribution
function should be equal to the actual fluid velocity v = u +
δtF/(2ρ) (u = ∑

α fαeα/ρ). Equations (12) and (13) are the
so-called Guo et al. forcing scheme.

In what follows we will show that the Shan-Chen and EDM
schemes can also be written in the form of Eq. (12). For the
Shan-Chen scheme, the equilibrium distribution function can
be rewritten as

f eq
α (ρ, ueq) = ωαρ

[
1 + eαiu

eq

i

c2
s

+ u
eq

i u
eq

j

(
eαieαj − c2

s δij

)
2c4

s

]

= f eq
α (ρ, u) + ωατδt

[
eαiFi

c2
s

+
(
vSC

j Fi + vSC
i Fj

) (
eαieαj − c2

s δij

)
2c4

s

]
, (14)

where vSC = u + τδtF/(2ρ). Substituting Eq. (14) into Eq. (9), the following forcing term can be obtained for the Shan-Chen
scheme:

Fα, SC = ωαδt

[
eαiFi

c2
s

+
(
vSC

j Fi + vSC
i Fj

) (
eαieαj − c2

s δij

)
2c4

s

]
. (15)

The main difference between Eqs. (15) and (13) is that the velocity used in the forcing term and the parameters (Be and Ce) are
different. Similarly, the forcing term of the EDM scheme can be rewritten as follows:

Fα, EDM = f eq
α (ρ, u + �u) − f eq

α (ρ, u) = ωαρ

[
eαi�ui

c2
s

+ (�ui�uj + uj�ui + ui�uj )
(
eαieαj − c2

s δij

)
2c4

s

]

= ωαδt

[
eαiFi

c2
s

+
(
vEDM

j Fi + vEDM
i Fj

)(
eαieαj − c2

s δij

)
2c4

s

]
, (16)

where vEDM = u + �u/2 = u + δtF/(2ρ). It can be seen that
the velocity used in the EDM scheme’s forcing term is the
actual fluid velocity v.

The above analysis demonstrates that the Shan-Chen and
EDM schemes can also be written in the general form
of forcing schemes. With Eqs. (15) and (16), the nature
of the Shan-Chen and EDM schemes is uncovered, and
the differences between these two schemes with the other
forcing schemes can be found from Table I. For example,
the differences between the EDM scheme and the Guo et al.
scheme can be summarized as follows: (1) the parameters
Be and Ce are different: in the EDM scheme Be = Ce =

1, while in the Guo et al. scheme Be = Ce = 1 − 1/2τ ;
(2) the velocity used in the equilibrium distribution function
is different: in the EDM scheme the used velocity is u, but
in the Guo et al. scheme the used velocity is the actual fluid
velocity v = u + δtF/(2ρ). In addition, it can be seen that the
only difference between the Shan-Chen scheme and the EDM
scheme lies in that velocity used in the forcing term is different,
and the two schemes will be identical when τ = 1.

In the Huang et al. study [27], a similar theoretical analysis
has been made. Nevertheless, they were not aware that the
Shan-Chen and EDM schemes can be written in the general
form of forcing schemes. As a result, the nature of these
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TABLE I. Comparison of different forcing schemes.

Scheme Velocity in f eq
α Velocity in Fα Actual fluid velocity Be, Ce

Shan-Chen [9] u u + τδt F
2ρ

u + δt F
2ρ

1

EDM [26] u u + δt F
2ρ

u + δt F
2ρ

1

Guo et al. [33] u + δt F
2ρ

u + δt F
2ρ

u + δt F
2ρ

1 − 1
2τ

Luo [34] u u u 1

Ladd [35] u u u + δt F
2ρ

1

two schemes was not revealed. Specifically, several terms
were neglected in the Huang et al. analysis, and they drew
the conclusion that the Shan-Chen and EDM schemes are
approximately identical to Luo’s forcing scheme [34]. For
comparison, Luo’s forcing scheme is also listed in Table I,
from which the differences between the Shan-Chen and EDM
schemes with Luo’s scheme can be clearly observed.

Through the Chapman-Enskog (C-E) analysis, the macro-
scopic equations recovered from different forcing schemes
can be readily obtained [33]. For convenience, we use u∗ =
u + mδtF/ρ to represent the velocity used in the equilibrium
distribution function and use v̄ to denote the velocity used in
the forcing term. Then the macroscopic equations recovered
from different forcing schemes take the following unified form:

∂tρ + ∂i(ρu∗
i ) = δt

(
m − 1

2

)
∂iFi, (17)

∂t (ρu∗
j ) + ∂i(ρu∗

i u
∗
j )

= −∂jp + ∂i(2μS∗
ij ) + Fj + εδt

(
m − 1

2

)
∂t1Fj

+ δt∂i

[(
τ − 1

2

)
(u∗

jFi + Fiu
∗
j ) − τCe(v̄jFi + Fiv̄j )

]
,

(18)

where ε is the expansion parameter, ∂t = ε∂t1 + ε2∂t2, and
S∗

ij = (∂ju
∗
i + ∂iu

∗
j )/2.

For the Guo et al. scheme (m = 1/2, u∗ = v̄ = v, and
Ce = 1 − 1/2τ ), the exact Navier-Stokes equations will be
recovered. For the Shan-Chen scheme (m = 0, u∗ = u, v̄ =
u + τδtF/2ρ, and Ce = 1), Eqs. (17) and (18) can be rewritten
as

∂tρ + ∂i (ρui) = −δt

2
∂iFi, (19)

∂t (ρuj ) + ∂i(ρuiuj )

= −∂jp + ∂i(2μSij ) + Fj − εδt

2
∂t1Fj

+ δt∂i

[
−1

2
(ujFi + Fiuj ) − τ 2 FiFj

ρ

]
. (20)

Similarly, for the EDM scheme (m = 0, u∗ = u, v̄ = u +
δtF/2ρ, and Ce = 1), we have

∂tρ + ∂i (ρui) = −δt

2
∂iFi, (21)

∂t (ρuj ) + ∂i(ρuiuj )

= −∂jp + ∂i(2μSij ) + Fj − εδt

2
∂t1Fj

+ δt∂i

[
−1

2
(ujFi + Fiuj ) − τδt

FiFj

ρ

]
. (22)

From the above equations we can see that the macroscopic
equations recovered from the Shan-Chen and EDM schemes
both contain some additional terms. These additional terms
will definitely affect the numerical performance of the model.
Moreover, it can be seen that Eqs. (20) and (22) are nearly the
same except that the coefficient before the term ∂i(ρ−1FiFj )
is different.

C. Numerical analysis

In the above section, the Shan-Chen and EDM schemes
have been theoretically analyzed. In this section, we will
show that the numerical stability (against the temperature)
of the Shan-Chen and EDM schemes is related to the term
∂i(ρ−1FiFj ) in their recovered macroscopic equations. In
simulations, the Carnahan-Starling (C-S) equation of state is
adopted, which is given by Ref. [31]

pEOS = ρRT
1 + η + η2 − η3

(1 − η)3 − aρ2, (23)

where a = 0.4963R2T 2
c /pc and η = bρ/4, in which b =

0.187 27RTc/pc. In this work, we set a = 1, b = 4, R = 1,
c = 1, δt = 1, Tc = 0.094, and ρc = 0.130 44.

The potential ψ is calculated from Eq. (8). A 200 × 200
lattice is adopted, and a circular droplet with a radius of r0 = 30
is initially placed at the center of the domain with the liquid
phase inside the droplet. The periodical boundary conditions
are applied in the x and y directions. The density field is
initialized as follows [27]:

ρ (x,y) = ρl + ρg

2
− ρl − ρg

2
tanh

[
2 (r − r0)

W

]
, (24)

where W is the initial interface width and r =√
(x − x0)2 + (y − y0)2, in which (x0, y0) is the central po-

sition of the computational domain.
The lowest reduced temperature (Tmin/Tc) predicted by

different forcing schemes at τ < 1 is presented in Fig. 1.
From the figure we can see that the EDM scheme’s numerical
stability is better than that of the Shan-Chen scheme, which
in turn is better than that of the Guo et al. scheme. From
the numerical results we also find that, although the spurious
velocity field given by the three forcing schemes is different
in terms of structure, there is no significant difference in
the maximum spurious velocity between different forcing
schemes. The maximum spurious velocities at τ = 0.8 with
different T/Tc are illustrated in Table II. From the table only
some minor differences can be observed. In particular, at
the transition points such as T/Tc = 0.81 for the Guo et al.
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T

/T
c

τ

 EDM
 Shan-Chen
 Guo et al.

FIG. 1. (Color online) Comparison of the achievable lowest
temperature between the Shan-Chen scheme, the EDM scheme, and
the Guo et al. scheme.

scheme (numerical instability will appear when T/Tc � 0.8)
and T/Tc = 0.77 for the Shan-Chen scheme, there are still no
obvious differences, which implies that the numerical stability
of these schemes has no direct relationship with the maximum
spurious velocity.

In fact, in the above section we have shown that the
macroscopic equations recovered from the Shan-Chen and
EDM schemes are nearly identical except that the coefficient
before the term −∂i(ρ−1FiFj ) is different. For the Shan-Chen
scheme, the coefficient is τ 2, while for the EDM scheme,
the coefficient is τδt . On the basis of the fact that τδt > τ 2

(δt = 1) when τ < 1 and the finding that the EDM scheme
performs better than the Shan-Chen scheme when τ < 1, it is
believed that the term −∂i(ρ−1FiFj ) is capable of enhancing
the numerical stability.

To numerically illustrate the above point, a modified EDM
scheme is introduced, in which the parameter Ce is set to
be 1/τ . As a result, in the recovered momentum equation,
the coefficient before the term −∂i(ρ−1FiFj ) will be given
by δt . Considering δt > τδt when τ < 1, we expect that the
modified EDM scheme will be more stable than the original
EDM scheme. The numerical results are shown in Fig. 2.
As expected, the modified EDM scheme exhibits a better
performance. For example, at τ = 0.7, the achievable smallest
reduced temperature is lowered to 0.57 from 0.67.

IV. IMPROVED FORCING SCHEME

In Sec. III, we have preliminarily shown that the numerical
stability of the Shan-Chen and EDM schemes is related to
an additional term in their recovered macroscopic equations.
In this section, a theoretical analysis will be made to reveal

TABLE II. Comparison of the maximum spurious velocity at τ =
0.8.

T/Tc Guo et al. [33] Shan-Chen [9] EDM [26]

0.90 0.000 49 0.000 49 0.000 49
0.85 0.001 19 0.001 22 0.001 20
0.81 0.002 05 0.002 06 0.002 07
0.77 NA 0.003 26 0.003 21

0.60 0.65 0.70 0.75 0.80

0.50

0.55

0.60

0.65

0.70

0.75

T/
T c

τ

 original EDM
 modified EDM

FIG. 2. (Color online) Comparison of the achievable lowest
temperature between the modified EDM scheme and the original
EDM scheme.

the physics behind. Later, based on the analysis, an improved
forcing scheme will be presented.

A. Theoretical analysis

By noting that ∂i(ρ−1FiFj ) is the divergence of the tensor
ρ−1FiFj , it can be found that pressure tensor in the pseudopo-
tential model will be changed when the Shan-Chen and EDM
schemes are employed. For the problem of one-dimensional
flat interface, the analytical expression (up to second-order
derivatives) for the normal pressure tensor is given by Ref. [15]

Pn = ρc2
s + Gc2

2
ψ2 + Gc4

12

[
α

(
dψ

dn

)2

+ βψ
d2ψ

dn2

]
, (25)

where n denotes the normal direction of the interface, and α and
β are coefficients determined by the discrete gradient operator.
For the fourth-order isotropic discrete gradient operator (the
case of nearest-neighbor interactions), α and β are given by
α = 0 and β = 3, respectively.

According to Eq. (25) and the requirement that at equi-
librium Pn should be equal to the constant static pressure in
the bulk, the following mechanical stability condition will be
obtained [15]:∫ ρl

ρg

(
p0 − ρc2

s − Gc2

2
ψ2

)
ψ ′

ψ1+ε
dρ = 0, (26)

where ε = −2α/β. In some previous work [25,27], it was
stated that ε is given by ε = 1 for the case of nearest-neighbor
interactions. Shan has clarified this issue in Ref. [15] and
demonstrated that ε will be given by ε = 0 when the nearest-
neighbor interactions are applied.

The above analysis is based on the assumption that no
additional terms are introduced into the macroscopic equations
by the forcing scheme. However, when the Shan-Chen and
EDM schemes are used, an additional term will be introduced
into the normal pressure tensor Pn. From Eq. (4), the leading
part of −∂i(ρ−1FiFj ) is given by

−∂i

(
FiFj

ρ

)
= −G2c4∂i

(
ψ2

ρ
∂iψ ∂jψ

)
+ O(∂5). (27)
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       (a) density of the liquid phase                    (b) density of the vapor phase 

FIG. 3. (Color online) Analytical mechanical stability solutions at ε = 1 and ε = 2. The dotted dash lines represent the results given by the
thermodynamic consistency requirement.

With Eq. (27), the normal pressure tensor should be modified
as follows:

Pn = ρc2
s + Gc2

2
ψ2 + Gc4

12

[
(α + 12Gγ )

(
dψ

dn

)2

+βψ
d2ψ

dn2

]
, (28)

where γ is dependent on the coefficient before the term
−∂i(ρ−1FiFj ) and the value of ψ2/ρ. According to Eq. (28),
the parameter ε in Eq. (26) will be given by ε = −2(α +
12Gγ )/β. Note that, when the potential ψ is calculated by
Eq. (8), the value of G will become unimportant [31], and the
only requirement for G is to ensure that the whole term inside
the square root in Eq. (8) is positive. For the C-S equation of
state adopted in the present paper, G is set to be G = −1.

Now the phenomenon that different forcing schemes exhibit
different performances in the pseudopotential model can be
explained: Different forcing schemes will lead to different
values of ε, and consequently the corresponding solutions will
be different. For example, for the case of nearest-neighbor
interactions, if γ = 1/4, ε will be given by ε = 2. Then the
related mechanical stability condition is given by∫ ρl

ρg

(
p0 − ρc2

s − Gc2

2
ψ2

)
ψ ′

ψ3
dρ = 0. (29)

After some standard algebra, Eq. (29) can be transformed to

(
p0 − ρc2

s

) (
− 1

2ψ2

)∣∣∣∣
ρl

ρg

− Gc2

2
ln ψ

∣∣∣∣
ρl

ρg

+
∫ ρl

ρg

c2
s

(
− 1

2ψ2

)
dρ = 0. (30)

Using Eq. (30) and the equation of state in both phases p0 =
p(ρl) = p(ρg), the analytical mechanical stability solution
(p0,ρl , and ρg) of the pseudopotential model can be obtained
to arbitrary precision via numerical integration.

The mechanical stability solutions of the cases ε = 1 and
ε = 2 are plotted in Fig. 3. For comparison, the solution given
by the thermodynamic consistency requirement (the Maxwell
construction) is also presented. From Fig. 3 it can be observed
that there are nearly no difference in ρl between different cases

and the mechanical stability solutions are in good agreement
with the solution given by the Maxwell construction. However,
for the vapor phase, ρg is found to be greatly affected by ε: ρg

of the case ε = 1 significantly deviates from the results of the
case ε = 2 and those obtained via the Maxwell construction
when T/Tc � 0.9.

The analytical density ratios (ρl/ρg) of the cases ε = 1
and ε = 2 are depicted in Fig. 4, which can illustrate why
different schemes exhibit different numerical stability against
the temperature. It can be seen that the density ratio profile of
the case ε = 1 is far sharper than the profiles of the case ε =
2 and the solution given by the thermodynamic consistency
requirement. Particularly, from T/Tc = 0.7 to T/Tc = 0.65,
the density ratio of the case ε = 1 rapidly increases from 128
to 4252. According to Fig. 4, it is not hard to understand that,
if the highest density ratio is fixed, the numerical stability
of the forcing scheme that gives ε = 2 will be much better
than that of the scheme with ε = 1. Similarly, the scheme that
gives ε = 1 will be more stable than the scheme with ε = 0.
And this is the reason why the Guo et al. scheme gives the
worst numerical stability: The Guo et al. scheme introduces
no additional terms into the macroscopic equations, and the

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

10

100

1000

ε = 1
ε = 2

 thermodynamic consistency

de
ns

ity
 r

at
io

T/T c

FIG. 4. (Color online) The density ratios given by the analytical
mechanical stability solutions at ε = 1 and ε = 2. The dotted dash
line represents the results given by the thermodynamic consistency
requirement.
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parameter ε is given by ε = 0 for one-dimensional flat interface
in the case of nearest-neighbor interactions.

B. Improved forcing scheme

Based on the above analysis, we propose an improved
version of the Guo et al. forcing scheme [Eq. (13)] by using a
modified velocity in the scheme, which leads to

Fα = ωαδt

(
1 − 1

2τ

)[
(eαi − v′

i)

c2
s

+ (eαjv
′
j )

c4
s

eαi

]
Fi. (31)

The modified velocity v′ is defined as v′ = v + σF/(υψ2),
where υ = (τ − 0.5) is the kinematic viscosity and σ is a
constant. Obviously, when σ = 0, the scheme will reduce to
the Guo et al. forcing scheme. According to Eqs. (17) and
(18), the macroscopic equations recovered from the improved
forcing scheme are given by

∂tρ + ∂i (ρvi) = 0, (32)

∂t (ρvj ) + ∂i(ρvivj ) = −∂jp + ∂i(2μSij ) + Fj

− δt∂i

(
2σ

FiFj

ψ2

)
. (33)

Here Sij = (∂jνi + ∂iνj )/2. It can be seen that, compared with
the macroscopic equations recovered from the Shan-Chen and
EDM schemes, the macroscopic equations recovered from the
improved scheme do not contain any other additional terms
except the needed term −∂i(2σψ−2FiFj ), which yields

−∂i

(
2σ

FiFj

ψ2

)
= −2G2c4σ ∂i(∂iψ ∂jψ) + O(∂5). (34)

Unlike Eq. (27), the term on the right-hand side of Eq. (34) is
no longer dependent on ψ2/ρ, which is a local quantity.

With Eq. (34), the pressure tensor of the model is now given
by

Pij = Pij, original + 2δtG
2c4σ ∂iψ ∂jψ, (35)

where Pij, original is the original pressure tensor. In the pseu-
dopotential model, the original pressure tensor takes the
following form: Pij, original = Pbδij + κ ∂iψ ∂jψ . It is obvious
that the added term in Eq. (35) will change the value of the
coefficient κ only. Hence, the nature of the pressure tensor is
retained. For the one-dimensional flat interface, the parameter
ε in Eq. (26) is now given by ε = −2(α + 24δtGσ )/β.

Actually, from Fig. 3(b) it can be seen that, for a given
temperature, the density ρg given by the thermodynamic
consistency requirement is larger than ρg of the case ε = 1
but is smaller than ρg of the case ε = 2. This indicates that
there exists an ε (1 < ε < 2) which will make the mechanical
stability solution approximately identical to the solution given
by the thermodynamic consistency requirement. In other
words, the thermodynamic consistency can be approximately
achieved by choosing an appropriate value of ε in the
mechanical stability condition. With the improved forcing
scheme, we can easily adjust ε via σ .

C. Numerical results

Now numerical simulations are conducted to validate the
proposed new forcing scheme. First, the problem of one-
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ε  = 1, numerical
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FIG. 5. (Color online) Simulation of one-dimensional flat in-
terface: comparison of the numerical coexistence curves with the
coexistence curves given by the analytical mechanical stability
solutions.

dimensional flat interface is considered. In simulations, a
100 × 100 lattice is employed and the Carnahan-Starling equa-
tion of state is adopted (G = −1). The periodical boundary
condition is applied in the y direction, and the density field is
initialized as follows:

ρ(y) = ρg + ρl − ρg

2
[tanh(y1) − tanh(y2)] , (36)

where y1 = 2(y − 25)/W and y2 = 2(y − 75)/W . The
nearest-neighbor interactions are applied (α = 0 and β = 3).
The coexistence curves of the cases σ = 0.0625 (ε = 1) and
σ = 0.125 (ε = 2) are shown in Fig. 5, from which we can
see that the numerical results are in good agreement with the
analytical mechanical stability solutions, which well validates
the proposed forcing scheme and confirms the expression
ε = −2(α + 24δtGσ )/β.

Since the density ρg obtained via the Maxwell construction
is close to the result of the case ε = 2 [see Fig. 3(b)], it is
expected that the value of the ε that makes the mechanical
stability solution approximately identical to the solution given
by the Maxwell construction will be close to 2. Correspond-
ingly, the value of σ will be in the region [0.0625, 0.125]
and close to 0.125. Through numerical investigations with
different values of σ , we find that the results obtained with
σ = 0.105 (ε = 1.68) fit well with the solution of the Maxwell
construction. The coexistence curves of the cases τ = 0.6 and
τ = 0.8 are shown in Fig. 6. Good agreement can be observed
in both cases.

Furthermore, numerical simulations are also conducted for
the problem of two-dimensional circular droplet. The results
obtained with σ = 0.105 are shown in Fig. 7. From the
figure we can see that the present numerical results agree
well with those given by the Maxwell construction, which
indicates that σ = 0.105 can also be approximately applied
to two-dimensional problems. Meanwhile, from Fig. 7 it can
be seen that, with the decrease of the temperature, the results
of the Guo et al. scheme (σ = 0) significantly deviate from
the results given by the Maxwell construction. In addition,
it is found that the droplet radius is greatly enlarged by the
Guo et al. scheme. The steady-state density contours given
by different forcing schemes at τ = 0.8 and T/Tc = 0.81 (the
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FIG. 6. (Color online) Simulation of one-dimensional flat in-
terface: comparison of the numerical coexistence curves obtained
by ε = 1.68 (σ = 0.105) with the coexistence curves given by the
thermodynamic consistency requirement.

transition point of the Guo et al. scheme) are shown in Fig. 8.
Quantitatively, the droplet radius predicted by the improved
scheme, Shan-Chen scheme, EDM scheme, and Guo et al.
scheme is 29.4 l.u., 35.5 l.u., 31.4 l.u., and 37.6 l.u. (lattice
units), respectively. The results obtained via the improved
scheme and the EDM scheme are basically in good agreement
with the analytical solution (30 l.u.), while the relative errors
given by the Shan-Chen scheme and the Guo et al. scheme are
around 18% and 25%, respectively. Moreover, as expected,
the proposed improved scheme is capable of enhancing the
numerical stability. For instance, at τ = 0.6, the improved
scheme works well when T/Tc � 0.63, while the Shan-Chen
scheme, EDM scheme, and Guo et al. scheme (σ = 0) will be
unstable when T/Tc < 0.86, 0.73, and 0.87, respectively.

In summary, an improved forcing scheme has been pre-
sented by using a modified velocity in the Guo et al.
forcing scheme. In the improved scheme, a constant σ is
introduced to adjust the mechanical stability condition of the
pseudopotential model. The value of σ can be numerically
determined by fitting the mechanical stability solution with
the solution given by the Maxwell construction. Moreover, it
can be seen that, in the proposed scheme, the main quantities

FIG. 8. (Color online) Simulation of two-dimensional circular
droplet: steady-state density contours at τ = 0.8 and T/Tc = 0.81.
The results of the improved scheme (a), Shan-Chen scheme (b), EDM
scheme (c), and the Guo et al. scheme (d).

needed are the force F and the potential ψ , which are the basic
quantities of the pseudopotential model. Hence the proposed
scheme can also be applied to the problems with solid walls
and can be readily extended to the multiple-relaxation-time
(MRT) pseudopotential model [15].

V. CONCLUSION

In this paper, some important issues about forcing schemes
in the pseudopotential model have been studied. First, the
Shan-Chen and EDM forcing schemes have been theoretically
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FIG. 7. (Color online) Simulation of two-dimensional circular droplet: comparison of the numerical coexistence curves obtained by
σ = 0.105, the coexistence curves obtained with the Guo et al. scheme, and the coexistence curves given by the thermodynamic consistency
requirement.
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analyzed. It has been found that these two schemes can also be
written in the general form of forcing schemes, which reveals
the nature of these two schemes and makes the comparisons
between these two schemes with other schemes transparent.
Meanwhile, the macroscopic equations recovered from the
Shan-Chen and EDM schemes have been shown, and it is
found that the numerical stability of these two schemes is
related to an additional term in their recovered macroscopic
equations.

Furthermore, through a theoretical analysis, we have
revealed the physics behind the phenomenon that differ-
ent forcing schemes exhibit different performances in the
pseudopotential model: The mechanical stability condition is
dependent on the used forcing scheme. To be specific, the Guo
et al. forcing scheme will reproduce the original mechanical
stability condition of the pseudopotential LB model, while the
Shan-Chen and EDM schemes will change the mechanical
stability condition and make it dependent on the relaxation
time, and this is the reason why these two schemes give
τ -dependent coexistence curves.

Based on the analysis, we have presented an improved
forcing scheme for the pseudopotential model by using a
modified velocity in the Guo et al. forcing scheme and
have numerically demonstrated that the proposed scheme
can be used to achieve thermodynamic consistency in the
pseudopotential model. An important finding is that there
exists a suitable ε which can make the mechanical stability
solution approximately identical to the solution given by the
thermodynamic consistency requirement in a wide range of
temperature. The theoretical analysis and the proposed forcing
scheme can also be applied to other equations of state and more
complex interactions, although only the C-S equation of state
and the nearest-neighbor interactions are considered in the
present paper.
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