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Radiative or neutron transport modeling using a lattice Boltzmann equation framework
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In this paper, the lattice Boltzmann equation (LBE)-based framework is used to obtain the solution for the
linear radiative or neutron transport equation. The LBE framework is devised for the integrodifferential forms of
these equations which arise due to the inclusion of the scattering terms. The interparticle collisions are neglected,
hence omitting the nonlinear collision term. Furthermore, typical representative examples for one-dimensional
or two-dimensional geometries and inclusion or exclusion of the scattering term (isotropic and anisotropic) in
the Boltzmann transport equation are illustrated to prove the validity of the method. It has been shown that the
solution from the LBE methodology is equivalent to the well-known Pn and Sn methods. This suggests that the
LBE can potentially provide a more convenient and easy approach to solve the physical problems of neutron and
radiation transport.
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I. INTRODUCTION

The radiation transport equation (RTE) has been used
for astrophysical studies, and it plays an important role in
the design of furnaces and burners. In recent times, there
are several everyday examples in which matter-radiation
interactions are becoming important, e.g., in radiation therapy
to cure cancer. The RTE and neutron transport equation (NTE)
address practical applications such as nuclear reactor physics,
solar collectors, and medical imaging. In order to advance
and improve the design of these systems, it is essential to
understand the interacting physics of radiation transport and
material systems. However, due to the complexity and large
difference in their mathematical formulation, they are usually
treated independent of one another. Recently, researchers
have made efforts to study these coupled interactions [1]. In
nuclear engineering, the coupling of neutronics and thermal
hydraulics is gaining importance for better safety analysis
of nuclear reactors [2,3]. It is difficult to obtain insightful
results from the existing nonunified methods of solution using
computational fluid dynamics (CFD) and neutron transport
codes. A unified algorithm to solve CFD and neutron transport
is necessary. Recently, Asinari and co-workers [4,5] described
the advantage of having common data structures for radiation
intensity and fluid flow in radiative heat transfer and fluid
mechanics problems. In this context, the lattice Boltzmann
equation (LBE) method-based approach for fluid dynamics
has been developed extensively, and hence, it may be useful
to solve the RTE and NTE with the LBE as well. The RTE
and NTE are similar in their mathematical formulations;
henceforth, only the RTE will be used for description purposes.
In this paper, a framework of a kinetic-based LBE method is
used for the solution of the RTE.

The RTE can be considered as a linear variant of the
Boltzmann equation [6,7]. The general Boltzmann equation
is used to describe an evolution of the particle density distri-
bution for a near-equilibrium rarefied gas whereas the linear
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Boltzmann transport equation captures the variation in the
density distribution of neutrons and radiative particles due
to transport. The major difference in the general Boltzmann
equation and the linear Boltzmann equation is the formulation
of a scattering kernel. In the RTE, the scattering of radiation
particles or neutrons is from the media of propagation. Further-
more, for the RTE, interparticle collisions are negligible. This
implies neither collisions nor the nonlinear term in the Boltz-
mann equation, which represents relaxation to equilibrium due
to interparticle collisions. Here, “no interparticle collisions” is
equivalent to the Boltzmann equation in the Knudsen gas limit.
Various analytical, approximate, and numerical procedures of
solving problems described by these transport equations have
been devised in the past [6,8]. In the RTE analysis, the follow-
ing numerical approaches are widely used, namely, the discrete
ordinate method (DOM) developed by Chandrashekhar [9]
(the transport theory coding for nuclear engineering applica-
tions historically has been based on the DOM) (for recent
literature on the DOM, Refs. [10,11] and references therein
may be referenced), the discrete transfer method (DTM) [12],
the collapsed dimension method (CDM) [13], and the finite
volume method (FVM) [14]. The DOM is computationally
efficient [15]; however, other methods have advantages in
terms of angular discretization in various types of geometries.

In recent years, the LBE method has been a popular choice
for numerically solving the Boltzmann equation with a sim-
plified interparticle collision term (most often the Bhatnagar,
Gross, Krook (BGK) model [16]) on a discrete phase-space
lattice [17–19]. Over the years, the LBE has been applied
to solve the conductive-radiative and convective-radiative heat
transfer problems using a decoupled approach [20,21] wherein
the radiation transport was solved using the FVM or DOM.
Recently, the LBE itself has been adopted for solving radiation
transport problems [5,22] in which one-dimensional (1D)
and two-dimensional (2D) examples of radiative transfer are
discussed. Furthermore, the scattering term from the media of
propagation is not considered in Ref. [22]. However, this term
is important to model as it is present in most of the radiation
transport cases [23,24] and is the only angular variation term
which contributes to the transport processes. In the present
paper, a systematic inclusion of the scattering kernel within
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the lattice Boltzmann method framework for solving problems
related to radiative or neutron transport is formulated.

The numerical examples with relevant physical significance
are examined to show the implementation of the proposed
method. The first example is a Heaviside source problem
which represents a nuclear system of discrete radiation or
neutron sources in a moderator-fuel matrix. This numerical
exercise also examines present data against the results by Ma
et al. [22]. In the next case, a classic problem of the isotropic
scattering of radiation in the atmosphere [24] is chosen. The
final work demonstrates an extension of the approach to the 2D
geometry using a standard D2Q4 lattice to obtain the solution.
The classical benchmark example of radiative heat transfer in
a closed square cavity is studied. In this example, first, a case
with no scattering and a uniform source term is solved. This
is followed by the solution of an isotropic scattering case with
one wall radiated and the system at equilibrium. Finally, we
show the anisotropic scattering case for both backward and
forward scattering with one wall radiated and the system at
equilibrium.

The rest of the paper is organized as follows. In Sec. II,
theoretical formulations for the radiative transport equation
and corresponding LBE are described. In Sec. III, fundamental
radiative transport cases, i.e., numerical examples, are investi-
gated. Final remarks and conclusions are made in Sec. IV.

II. MATHEMATICAL FORMULATION

A. The radiative or neutron transport equation

The general form of the one-speed (monoenergetic) trans-
port equation for the radiation or neutrons is a linear Boltzmann
integrodifferential equation as

1

ν

∂�(r,�,t)

∂t
+ � · ∇�(r,�,t) + κa�(r,�,t)

=
∫

4π

�(r,�′,t)f (r,� → �′,t)∂�′. (1)

Here, � is the angular direction, and �(r,�,t) is the radiation
particle distribution function in the corresponding angular
direction at a given location r and at time t . Furthermore,
ν is the particle speed, and κa is an absorption coefficient. �′
represents the after-scattering angular direction. It is noted that
� is used to denote the collision term in the LBE literature and
should not be confused with the meaning adopted in this paper.
The term f (r,� → �′,t) represents the radiative scattering
term. Practically relevant problems such as atmospheric
scattering, radiative heat transfer in a furnace, and optimization
of a solar collector are described as three-dimensional (3D)
forms of this transport equation. Analytical solutions for these
3D problems are tedious or for some cases not possible,
and hence, numerical solutions are preferred. Few standard
numerical methods such as the finite difference method exist
for the treatment of the space and time dependence of the
integrodifferential equation [Eq. (1)]. Furthermore, the angular
dependence of Eq. (1) is treated usually by employing the
DOM or Sn method [9]. In this approach, a finite number of
discrete angular directions are chosen, and the integral term
is approximated with a summation over the chosen discrete

directions as

1

ν

∂�(r,�i,t)

∂t
+ �i · ∇�(r,�i,t) + κa�(r,�i,t)

=
∑

j

�(r,�j ,t)f (r,�i → �j,t)∂�j . (2)

Here, the subscripts i and j represent discrete directions.
Hence, the integrodifferential equation [Eq. (1)] is reduced to
a system of linear differential equations. In the literature, these
systems of linear differential equations are solved by conven-
tional finite-element or finite-volume techniques [25,26].

Furthermore, an accurate approach to provide benchmark
solutions to these integrodifferential equations in a less com-
plicated but impractical scenario is the so-called Pn method
or the method of spherical harmonics [6,27]. In this method,
an angular distribution in �(r,�,t) is expanded into spherical
harmonics as

�(r,�,t) = 1

4π

∞∑
n=0

Pn(�)ψ(r,t). (3)

However, for the irregular geometries and complex problems,
other methods may be useful. For a further understanding of
these convectional numerical methods, readers are referred to
the original papers [20,21]. In this work, a recently developed
LBE technique for the solutions of the RTE and NTE is
compared with the benchmarks from the Pn and Sn methods.

B. The lattice Boltzmann equation method
for the RTE and NTE

The LBE method is shown to be derived from the
Boltzmann equation with the use of the DOM [28] and by
employing the low-Mach-number approximation [29,30]. A
new approach for solving the radiation transport with the
LBE is recently formulated based on the Chapman-Enskog
expansion [22]. The LBE for a 3D system without the
scattering term given in Ref. [22] is written as

��(r + ν�	t,t + 	t) − ��(r,t)

= −	t

τ

[
��(r,t) − �

eq
� (r,t)

]
+ S�(r,t)	t − νκa��(r,t)	t. (4)

The above equation represents the LBE evolution with the
combination of the collision and streaming steps. Here, τ is the
relaxation time, and the equilibrium intensity �

eq
� (r,t) obeys

the conservation equations for energy, flux, and momentum,
i.e., the zeroth, first, and second moments of intensity,
respectively. S�(r,t) represents the rate of energy emission.
For further details on this approach, readers are referred
to Ref. [22]. However, in the case of radiative and neutron
transport, interparticle collisions are negligible. Hence,
the collision kernel is neglected in the linear Boltzmann
equation representing the RTE and NTE. This implies the
term −(1/τ )[��(r,t) − �

eq
� (r,t)] is redundant in Eq. (4) for

radiation transport. Therefore, Eq. (4) may be simply modified
for the nonscattering linear LBE as

��(r + ν�	t,t + 	t) − ��(r,t)

= S�(r,t)	t − νκa��(r,t)	t. (5)
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Next, it is proposed here that a similar technique as described in
Ref. [22] may be utilized to solve the general form of the linear
Boltzmann transport equation inclusive of the scattering term.
The scattering integral term may be substituted with the sum-
mation over the chosen lattice directions. The approach is sim-
ilar to the method of discrete ordinates in which the integral is
summed over discrete directions [31,32]. Abe [28] derived the
LBE method using the discrete ordinate form of the integrod-
ifferential Boltzmann equation. Here, a similar methodology
is followed for the general form of the RTE with the scattering
function p(�,�′). The LBE form can be be written as

��(r + ν�	t,t + 	t) − ��(r,t)

= S�(r,t)	t − νκa��(r,t)	t

+
∑
�′

W (�′)p(�,�′)��′(r,t)	t. (6)

Here, W (�′) is the weighting function. The scattering term of
Asinari et al. [4] is included as the “collision” term although the
treatment of the scattering integral is similar. It is noted that the
formulation in Ref. [4] is subjected to the case with isotropic
scattering. In this paper, we demonstrate the application of
the above formulation to the anisotropic scattering RTE. In
the next section, classical (1D and 2D) radiative or neutron
transport cases are described. Furthermore, the analytical or
conventional numerical method is used for each case to obtain
the benchmark data. The details of these methods and the
corresponding LBE formulation used is given.

III. NUMERICAL EXAMPLES

A. The Heaviside source problem using the D1Q2 lattice

This example problem was solved by Ma et al. [22] using
the LBE developed in their work and was shown to be
equivalent to the analytical solution. The Heaviside source
problem represents nuclear reactor systems in which the
neutron or radiation generation source is present only in certain
discrete locations such as the nuclear fuel and moderator
matrix. The simplest case is shown with the source present in a
half-domain of the slab geometry. Here, it is shown that using
a 1D form (without the relaxation term, which is redundant as
stated earlier), the solution compares well with the analytical
solution (see Fig. 1). The following steady-state problem with a
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FIG. 1. (Color online) Radiative intensity comparison with κa =
1. The maximum relative error between the LBE and analytical
solutions is less than 10−5.

Heaviside source term has been solved with the new approach:

μ
∂�(x,μ)

∂x
+ κa�(x,μ) = S(x) = H (x − 0.5),

x ∈ (0,1), μ = ± 1√
3
. (7)

Here, the following boundary conditions are imposed:

�(xw,μ) = S(xw)

κa

, xw =
{

0, μ > 0,

1, μ < 0.
(8)

For the LBE method, a pseudotime marching is performed
with a two-velocity lattice model in 1D (D1Q2). The evolution
equation is given as

�μ(x + μ	t,t + 	t) − �μ(x,t)

= Sμ(x,t)	t − κa�μ(x,t)	t. (9)

The exact steady-state analytical solution to Eq. (7) is obtained
as

�(x,μ) = �(xw,μ) exp

[
−κa

μ
(x − xw)

]

+ 1

κa

{
1 − exp

[
−κa

μ
(x − 0.5)

]}
H (x − 0.5)

+ 1

κa

{
exp

[
−κa

μ
(x − 0.5)

]

− exp

[
−κa

μ
(x − xw)

]}
H (x − xw). (10)

The two particle velocity directions ±μ in this example are
considered with a magnitude of 1√

3
as specified in Ref. [22].

The mesh size N for the LBE calculations is 500, and 	t =
1/N . The initial condition for the distribution functions is
�±μ = 0, and 500 time iterations are required to obtain the
steady-state solution.

B. Isotropic scattering using the D1Q2 lattice

Isotropic scattering means the incident ray is scattered to
all directions uniformly. The scattering of solar radiation in a
thick uniform atmosphere is a perfect example of isotropic
scattering. Although in this problem, an isotropic source
is also added to present a more general case. The general
one-dimensional form of the one-speed transport equation is
the integrodifferential equation with the scattering function
f (x,μ → μ′):

1

ν

∂�(x,μ,t)

∂t
+ μ

∂�(x,μ,t)

∂x
+ κa�(x,μ,t)

= c

2

∫ 1

−1
�(x,μ′,t)f (x,μ → μ′,t)∂μ′ + S(x,μ,t)

2
.

(11)

The isotropic scattering is the most common and simplest case
in which the scattering function has no directional dependence
[f (x,μ → μ′) = g(x)]. We will now show an extension of the
LBE-based approach to solve this isotropic scattering problem.
The steady-state example problem for demonstration and
comparison purposes is Eq. (12) wherein [f (x,μ → μ′) = 1].
The corresponding discrete time-dependent LBE form for the
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transport equation can be written as Eq. (13):

μ
∂�(x,μ)

∂x
+ κa�(x,μ) = c

2

∫ 1

−1
�(x,μ′)∂μ′ + S(x,μ)

2
,

(12)

�μ(x + μ	t,t + 	t) − �μ(x,t)

= Sμ(x,t)

2
	t − κa�μ(x,t)	t + c

2

∑
μ

�μ(x,t)	t. (13)

It should be noted that the velocity magnitude for two
directions of motion for the 1D (D1Q2) problem will remain
fixed as μ = ±(1/

√
3) as the directions can only be the

zeros of the second-order Legendre polynomial [23]. The
previous works on solving similar integrodifferential prob-
lems semianalytically in 1D without a source term include
Refs. [23,24]. The source term S(x,±μ) is a constant S0, and
the boundary conditions given by

�(xw,μ) = 0, μ ∈ [−1,1]. (14)

Here, we will compare our LBE solution with the P1

approximation of Eq. (12). The P1 approximation leads to
the formation of two first-order coupled ODEs [Eqs. (15) and
(16)] instead of the integrodifferential equation for x ∈ (0,1):

dφ0(x)

dx
+ 3φ1(x) = 0, (15)

dφ1(x)

dx
+ (1 − c)φ0(x) = S0. (16)

The boundary condition given by Eq. (14) has a P1 approxi-
mation form as

1

2
φ0(xw) + 3

2
μφ1(xw) = 0, xw =

{
0, μ > 0,

1, μ < 0.
(17)

Furthermore, the analytical solution for this P1 approximate
form is given as

φ0(x) = A

[
cosh(λx) + 1

μ0λ
sinh(λx)

]

+ 3S0

μ0λ3
sinh(λx) + 3S0

λ2
, (18)

where

A = −3S0

λ2

1 + cosh λ + sinh λ
μ0λ

2 cosh λ + (
μ0λ + 1

μ0λ

)
sinh λ

,

(19)
λ =

√
3(1 − c), μ0 = |μ|.

The quantity φ0 implies the average flux, and φ1 implies the
average current in a physical system (see Fig. 2). In the LBE
method, the quantities φ0 and φ1 are

φ0(x) =
∫ 1

−1
�(x,μ)dμ =

∑
μ

�(x,μ), (20)

φ1(x) =
∫ 1

−1
μ�(x,μ)dμ =

∑
μ

μ�(x,μ). (21)

The LBE numerical simulation setup has a mesh size of N =
1000 and 	t = 1/N . The � values are initialized to zero. The
steady state is achieved in 5000 time steps with a maximum

0 0.5 1

0.9

1

1.1

1.2

x

φ 0

P
1

approximation

LBM

FIG. 2. (Color online) Steady-state average flux φ0 computed by
the LBE method and the P1 approximation with c = 1, κa = 1, and
S0 = 1.

absolute error over analytical values being on the order of
10−3.

C. Radiative transfer in a square enclosure using
the D2Q4 lattice

The radiative heat transfer in a square black body is the
benchmark problem existing in the literature [33–36]. Hence,
a black-body radiative heat transfer problem in a closed square
(2D) enclosure is solved using the lattice Boltzmann approach
described in this paper. Similarly, 2D radiative transfer has
been solved using the LBM approach [4] and compared against
FVM results. Beforehand, it may be necessary to compare
against the discrete angular direction method (DOM). It is
understood that for the DOM as well as the LBM, the level
of accuracy increases with an increasing number of discrete
angular directions and discrete velocities, respectively. An
exact comparison between two schemes may be performed
only when the number of discrete directions are equivalent,
such as in the cases of S2 and D2Q4. Therefore, the following
study has been conducted to provide this comparison. In the
case of D2Q4, there are four particle velocities (±μ,±η) with
equal magnitudes of 1√

3
(Fig. 3). It is shown that the solution

conforms well with the previously developed [35] discrete
ordinate (S2) method for this problem. Although more accurate
DOM schemes have been discussed in previous works [34–36],
in this work we intend to compare the LBE (D2Q4) with the S2

method as both these methods have only four discrete angular
directions. The details of this radiative heat transfer problem
along with the appropriate boundary conditions are described

( )i,j
( )i ,j+1( )i ,j-1

( )i,j+1

( )i,j-1

+

+

-

-

FIG. 3. A 2D lattice geometry.
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as follows:

� · ∇�(r,�) = −κa�(r,�) + κa

∫
4π

�(r,�)d� + S(r,�),

(22)

�(rw,�) = �b(rw,�), rw =
{

0, � > 0,

1, � < 0.
(23)

The two terms κa

∫
4π

�(r,�)d� and the nonradiative volumet-
ric heat source term S(r,�) are usually [34–36] combined to
represent the black-body radiation intensity term κa�b(r,�):

� · ∇�(r,�) = −κa�(r,�) + κa�b(r,�). (24)

The quantity �b is the effective black-body radiation intensity
at the temperature of the medium or wall, Tb. We consider two
cases for this study: an isothermal medium and a medium
under radiative equilibrium. In the case of an isothermal
medium �b, the effective black-body radiation and the
temperature of the medium or wall Tb both are constant.
Black walls surrounding the gas and/or medium are kept at
a fixed temperature and radiative intensity, and the flux is
estimated inside the enclosure and boundaries. However, the
medium in a radiative equilibrium implies S(r,�) = 0 and
κa�b(r,�) = κa

∫
4π

�(r,�)d�. The integral
∫

4π
�(r,�)d�

can be numerically expressed as 1
4

∑
i �i , and 1/4 is the

weight factor due to the presence of four directions in the
D2Q4 lattice [4]. The LBE (note the time-dependent form) of
this problem can be written as

�i(x + ei,x	t,y + ei,y	t,t + 	t) − �i(x,y,t)

= −κa�i(x,y,t)	t + κa

4

∑
i

�i(x,y,t)	t. (25)

The Sn form of the same problem is given as

μi

�i(x + 	x,y) − �i(x,y)

	x
+ ηi

�i(x,y + 	y) − �i(x,y)

	y

= −κa�i(x,y) + κa�b(x,y). (26)

The numerical solution to this problem is obtained using both
these methods with the same mesh size Nx = Ny = 200 and
	t = 1/Nx . The initial condition is � = 0 for all grid points.
A steady-state solution is achieved in 1200 time iterations
for both methods. The results from both these methods are
compared in Fig. 4. Although the numerical accuracy and
computational effort is similar for both these methods, the
formulation for the LBE is much more convenient as compared
to the equivalent DOM form. Moreover, due to the widespread
popularity of the LBE method, more accurate forms and
variations for complex geometries are available in the case
of the LBE.

D. Anisotropic radiative scattering using the D2Q4 lattice

The scattering is not necessarily isotropic in real-life
problems due to anisotropic properties of the participating
media. Hence, it is important to study the anisotropic form of
radiation scattering. This aspect has been studied in the past by
analytical and numerical methods [37,38]. The D2Q4 lattice
applied in the previous isotropic scattering example is extended
to the anisotropic scattering case. Here, forward and backward
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FIG. 4. (Color online) Angular radiative heat flux solution with
the LBE and S2 methods. (a) Isothermal cavity case �b = 0 for all
four walls and �b = 1 for the medium. The plot shows

∑
�/2 at the

wall surface. (b) The radiative equilibrium case �b = 1 for one wall
and the other three walls at �b = 0 and S = 0 in the medium. The
plot shows 	� at the hot wall surface.

scattering are employed, replacing the isotropic scattering.
The general form of radiative transfer with the nonisotropic
case can be expressed with the following modification of the
scattering term in Eq. (22):

� · ∇�(r,�)

= −κa�(r,�) + κa

∫
4π

�(r,�′)p(�,�′)d�′ + S(r,�),

(27)

wherein p(�,�′) represents the anisotropic scattering func-
tion. We consider two types of anisotropic scattering as
forward (+) and backward (−) scattering such that

p(ζ,ζ ′) = 1 ± ζ ζ ′. (28)

Here, ζ represents any of the four directions in the D2Q4
lattice. In the example problem, we choose the case of radiative
equilibrium in which one wall of the square enclosure is
exposed to �b = 1 and the other three walls are kept at �b = 0.
In the implementation of D2Q4, the scattering integral is
resolved into four lattice directions, and the respective integrals
are computed as∮

�(r,ζ ′)p(ζ,ζ ′)dζ ′

=
∫ 1

−1
�(r,μ′)p(ζ,μ′)dμ′ +

∫ 1

−1
�(r,η′)p(ζ,η′)dη′. (29)

For the D2Q4 LBE, each of these scattering integrals is
simplified and converted to its numerical form in the following
manner:∫ 1

−1
�(r,μ′)p(ζ,μ′)dμ′

=
∫ 0

−1
�(r,μ′)(1 ± ζμ′)dμ′ +

∫ 1

0
�(r,μ′)(1 ± ζμ′)dμ′,

(30)

∫ 1

−1
�(r,μ′)(1 + ζμ′)dμ′

= �(r,−μ)

(
1 ∓ ζ

2

)
+ �(r,μ)

(
1 ± ζ

2

)
. (31)
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FIG. 5. (Color online) Angular radiative heat flux solution with
the LBE for anisotropic scattering cases. Radiative equilibrium case
�b = 1 for one wall and the other three walls at �b = 0 and S = 0
in the medium. The plot shows 	� at the hot wall surface.

The LBE for this RTE with forward (+) and backward (−)
scattering can be written as

�i(x + ei,x	t,y + ei,y	t,t + 	t) − �i(x,y,t)

= −κa�i(x,y,t)	t + κa

4

∑
i

[
�i(x,y,t)

(
1 ± ei

2

)

+�−i(x,y,t)

(
1 ∓ ei

2

)]
	t. (32)

The solution to the forward and backward scattering case
is compared with the isotropic case (κa = 1) in Fig. 5. The
solution is obtained with a similar mesh size and number of

iterations as in Sec. III C. The results of the LBE method for
these scattering cases are compared with the results from the
S2 method and are shown to be equivalent (error less than
1%) in Fig. 5.

IV. CONCLUSIONS

In this work, the recently proposed LBE for solving
radiative transfer problems is reinvestigated and extended. The
nonlinear interparticle collision term or relaxation term used in
the previous work to solve the radiative transfer problem with
no scattering is shown to be redundant. The scattering integral
term in the integrodifferential transport equation is replaced
by summation over the Gaussian quadrature. Furthermore,
with the help of numerical examples it is shown to yield
accurate results as obtained by conventionally used spherical
harmonics Pn or discrete ordinate Sn methods. In 2D systems,
the D2Q4 lattice setup is equivalent to the S2 method.
Higher-order accurate D2Q9 and S4 in the LBE method and
the DOM, respectively, have different numbers of discrete
directions. Hence, direct comparison is not possible in this
case. Therefore, in the near future, attention to the development
of a higher-order accurate LBE scheme for radiative or neutron
transport is required.
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