
PHYSICAL REVIEW E 86, 016705 (2012)

Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear
stress or the strain rate tensor
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In this work, the effect of the forcing term (or external force) in the multiple-relaxation-time lattice Boltzmann
equation (MRTLBE) on the shear stress or the strain rate tensor is studied theoretically and numerically. Through
a Chapman-Enskog analysis and numerical simulations, we show that the shear stress (or the strain rate tensor)
derived from the MRTLBE is second-order accurate in space. We then examine the influence of the forcing term
on the shear stress or the strain rate tensor, and demonstrate that the forcing term effect must be included when
the shear stress or the strain rate tensor is computed with the nonequilibrium part of the distribution function.
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I. INTRODUCTION

The lattice Boltzmann equation (LBE), as a mesoscopic
numerical method, has gained significant success in simulating
complex fluid flows because of its kinetic characteristics [1–4].
Recently, the LBE has also been extended to the study of blood
flows and non-Newtonian fluid flows [5–12], in which one
important issue is that the distribution of the shear stress or the
strain rate tensor affects the rupture of arterial aneurysms and
histological structures of blood vessels [13,14]. Additionally,
the shear stressor the strain rate tensor is also a key issue
in large eddy simulation of turbulent flows [15], multiphase
flows [16], and the polymer and rheology fields [17,18]. For
the above reasons, the accurate computation of the shear stress
or the strain rate tensor in the LBE is an important issue, and
thus has received increasing attention over the past several
years [16,19,20]. Generally speaking, the existing strategies
for computing the shear stress or the strain rate tensor in
the LBE can be classified into two groups: the first is to
derive the shear stress or the strain rate tensor directly with the
finite difference method [7,20], while the second one is, in the
framework of the LBE, to obtain the shear stress or the strain
rate tensor from the nonequilibrium part of the distribution
function [6,8,9,11,16,19,20]. In the first method, an improper
difference scheme to compute the velocity gradient may
cause a numerical instability problem or inaccurate numerical
results. Moreover, the first method is not suitable for the study
of the shear stress or the strain rate tensor of flows in complex
geometries. On the other hand, the second method has been
proven to be suitable for the study of complex flows because
it computes the shear stress or the strain rate tensor locally.
For this reason, we focus on the second method in the present
work.

Although a number of papers have been published on
the study of the shear stress or the strain rate tensor
[6,9,11,16,19,20], the forcing term effect on the shear stress
or the strain rate tensor in the LBE, especially in the multiple-
relaxation-time lattice Boltzmann equation (MRTLBE), has
not been studied systematically. In this paper, we study the
forcing term effect on the shear stress or the strain rate tensor,
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and show that this effect must be included in the MRTLBE. In
the following, we first present a Chapman-Enskog analysis for
derivation of the Navier-Stokes equations and the theoretical
expression of the shear stress or the strain rate tensor from the
MRTLBE. We then examine the influence of the forcing term
on the shear stress or the strain rate tensor, and demonstrate
numerically that the forcing term effect must be included when
the shear stress or the strain rate tensor is computed with the
nonequilibrium part of the distribution function.

II. CHAPMAN-ENSKOG ANALYSIS OF THE
MULTIPLE-RELAXATION-TIME LATTICE

BOLTZMANN EQUATION

The lattice Boltzmann equation can be viewed as a
successor of lattice gas automata [21] or a special discrete
form of the continuous Boltzmann equation [22]. Based on
the collision operator, the models of the LBE can be classified
into the Bhatnagar-Gross-Krook (BGK) model (or the so
called single-relaxation-time model) [23] and the generalized
lattice Boltzmann model [or multiple-relaxation-time (MRT)
model] [24,25]. Here we regard the LBE coupling with the
MRT model as the MRTLBE. In the present work, we focus
on the MRT model for its superiority over the BGK model in
studying single-phase and multiphase flows [25–27].

A. Hydrodynamic equations of the multiple-relaxation-time
lattice Boltzmann model

For simplicity, we focus on the multiple-relaxation-time
lattice Boltzmann equation in the two-dimensional space only.
The evolution equation of the MRTLBE coupling the forcing
term reads as [24–29]

fi(x + ciδt,t + δt) − fi(x,t) = �i + δtF ′
i , (1)

where �i is the collision operator and defined by

�i = −(M−1SM)ij
[
fj (x,t) − f

(eq)
j (x,t)

]
. (2)

fi is the density distribution function associated with the
molecular velocity ci at position x and time t , and satisfies
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the following equations:

ρ =
∑

i

fi, (3)

ρu =
∑

i

cifi + δt

2
F, (4)

where F = (Fx,Fy) represents the external force. F ′
i is the

discrete forcing term accounting for the external force F and
defined as [28,29]

F′ = M−1

(
I − S

2

)
MF̃, (5)

where I is the unit matrix, and F′ = (F ′
0,F

′
1, . . . ,F

′
b)�

with b representing the number of discrete velocities; F̃ =
(F̃0,F̃1, . . . ,F̃b)�, and is defined by

F̃i = wi

[
ci · F
c2
s

+ (uF + Fu) :
(
cici − c2

s I
)

2c4
s

]
. (6)

It should be noted that, if all elements of S are equal to each
other, the MRT model will reduce to the BGK model, and
simultaneously, the forcing term proposed for the BGK model
[30] can also be derived from Eq. (5).

A lattice Boltzmann model with q velocities in d-
dimensional space is usually denoted as a DdQq model. In
the D2Q9 model [23], the discrete velocities ci in Eq. (1) are
given by

ci =
⎧⎨
⎩

(0,0), i = 0,

(cos[(i − 1)π/2], sin[(i − 1)π/2])c, i = 1–4,

{cos[(2i − 9)π/4], sin[(2i − 9)π/4]}√2c, i = 5–8,

(7)

where c = δx/δt (set to be 1 in this work), with δx and δt

representing the lattice spacing and time step, respectively;
f

(eq)
i (x,t) is the equilibrium distribution function, and defined

as

f
(eq)
i = wiρ

[
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− |u|2
2c2

s

]
, (8)

where w0 = 4/9, w1–4 = 1/9, w5–8 = 1/36; cs = 1/
√

3 is
the speed of sound. M is a transformation matrix,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(9)

which can be used to project the distribution function fi and
equilibrium distribution function f

(eq)
i in velocity space onto

macroscopic variables in the moment space,

m := Mf

=
(

ρ,e,ε,ρux − δt

2
Fx,qx,ρuy − δt

2
Fy,qy,pxx,pxy

)�
,

(10)

m(eq) := Mf(eq)

= (
ρ,e(eq),ε(eq),ρux,q

(eq)
x ,ρuy,q

(eq)
y ,p(eq)

xx ,p(eq)
xy

)�
,

(11)

where f = (f0, . . . ,f8)� and f(eq) = (f (eq)
0 . . . ,f

(eq)
8 )�.

The equilibrium variables of the nonconserved moments
e(eq), ε(eq), q

(eq)
x , q

(eq)
y , p

(eq)
xx , and p

(eq)
xy can be derived from

Eq. (11),

e(eq) = −2ρ + 3ρ|u|2, (12a)

ε(eq) = ρ − 3ρ|u|2, (12b)

q(eq)
x = −ρux, (12c)

q(eq)
y = −ρuy, (12d)

p(eq)
xx = ρ

(
u2

x − u2
y

)
, (12e)

p(eq)
xy = ρuxuy. (12f)

S is a non-negative relaxation matrix. To keep the relaxation
matrix S consistent with the moment m, we write it in the
following form:

S = diag(sρ,se,sε,sj ,sq,sj ,sq,sν,sν), (13)

where 0 < si < 2.
Note that, in the same fashion as in the BGK model, the

evolution process of the MRTLBE also consists of two parts:
collision and propagation. However, unlike in the BGK model,
the collision including the forcing term effect in the MRT
model is executed in momentum space,

f +
i (x,t)

= fi(x,t) − (M−1SM)ij
[
fj (x,t) − f

(eq)
j (x,t)

] + δtF ′
i , (14)

whereas the propagation of the MRT model remains in velocity
space,

fi(x + ciδt,t + δt) = f +
i (x,t). (15)

Clearly, the evolution process of the MRTLBE is involved
in the transformation between the momentum space and the
velocity space.

In what follows, we present a detailed analysis of the
derivation of the Navier-Stokes equations from the MRTLBE.
To this end, we first adopt the Chapman-Enskog analysis, and
expand the density distribution function, the derivatives of time
and space, and the external force as

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + · · ·, (16a)

∂t = ε∂t1 + ε2∂t2 , (16b)

∂α = ε∂α1 , (16c)

F = εF1, (16d)

where F1 = (Fx1,Fy1). Substituting the above expansions
into Eq. (1), we can obtain the zero-, first-, and
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second-order equations in ε,

ε0 : f
(0)
i = f

(eq)
i , (17a)

ε1 : D1if
(0)
i = − 1

δt
(M−1SM)ij f

(1)
j +

[
M−1

(
I − S

2

)
M

]
ij

F̃ 1
j , (17b)

ε2 : ∂t2f
(0)
i + D1if

(1)
i + δt

2
D2

1if
(0)
i = − 1

δt
(M−1SM)ij f

(2)
j , (17c)

where D1i = ∂t1 + ciα∂α1 and F̃ 1
i = wi[

ci ·F1
c2
s

+ (uF1+F1u):(cici−c2
s I)

2c4
s

].
If we rewrite Eqs. (17) in the vector form and multiply the matrix M on both sides of them, the corresponding equations in the

moment space can be easily derived,

ε0 : m(0) = m(eq), (18a)

ε1 : D̃1m(0) = −S′m(1) +
(

I − S
2

)
MF̃1, (18b)

ε2 : ∂t2 m(0) + D̃1

(
I − S

2

)
m(1) + δt

2
D̃1

(
I − S

2

)
MF̃1 = −S′m(2), (18c)

where S′ = S/δt , D̃1 = MD1M−1, and D1 = ∂t1 I + ∂α1 diag(c0α,c1α,...,c8α). Based on Eqs. (10) and (11), one can find that the
elements of m(1) corresponding to the conservative variables ρ and ρu are zero and −δtF1/2, so we can further rewrite Eq. (18) as

∂t1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

− 2ρ + 3ρ|u|2
ρ − 3ρ|u|2

ρux

−ρux

ρuy

−ρuy

ρu2
x − ρu2

y

ρuxuy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ∂x1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρux

0
−ρux

ρ

3 + ρu2
x

− ρ

3 − ρu2
x + ρu2

y

ρuxuy

ρuxuy

2ρux

3
ρuy

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ∂y1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρuy

0
−ρuy

ρuxuy

ρuxuy
ρ

3 + ρu2
y

− ρ

3 + ρu2
x − ρu2

y

− 2ρuy

3
ρux

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−s ′

ee
(1)

−s ′
εε

(1)

δt
2 s ′

jFx1

−s ′
qq

(1)
x

δt
2 s ′

jFy1

−s ′
qq

(1)
y

−s ′
νp

(1)
xx

−s ′
νp

(1)
xy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

6
(
1 − se

2

)
u · F1

−6
(
1 − sε

2

)
u · F1(

1 − sj

2

)
Fx1

−(
1 − sq

2

)
Fx1(

1 − sj

2

)
Fy1

−(
1 − sq

2

)
Fy1

2
(
1 − sν

2

)
(uxFx1 − uyFy1)(

1 − sν

2

)
(uxFy1 + uyFx1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(19)

Similarly, we can also derive the second-order hydrodynamic equations in ε, but we present only the ones corresponding to the
conservative variables ρ and ρu,

∂t2ρ = 0, (20a)

∂t2 (ρux) − δt

2
∂t1

[(
1 − sj

2

)
Fx1

]
+ 1

6
∂x1

[(
1 − se

2

)
e(1)

]
+ 1

2
∂x1

[(
1 − sν

2

)
p(1)

xx

]
+ ∂y1

[(
1 − sν

2

)
p(1)

xy

]

+ δt

2

{
∂t1

[(
1 − sj

2

)
Fx1

]
+ ∂x1

[
sν

2
(uyFy1 − uxFx1) − se

2
(uxFx1 + uyFy1) + 2uxFx1

]

+ ∂y1

[(
1 − sν

2

)
(uxFy1 + uyFx1)

]}
= 0, (20b)

∂t2 (ρuy) − δt

2
∂t1

[(
1 − sj

2

)
Fy1

]
+ ∂x1

[(
1 − sν

2

)
p(1)

xy

]
− 1

2
∂y1

[(
1 − sν

2

)
p(1)

xx

]
+ 1

6
∂y1

[(
1 − se

2

)
e(1)

]

+ δt

2

{
∂t1

[(
1 − sj

2

)
Fy1

]
+ ∂x1

[(
1 − sν

2

)
(uxFy1 + uyFx1)

]

+ ∂y1

[
sν

2
(uxFx1 − uyFy1) − se

2
(uxFx1 + uyFy1) + 2uyFy1

]}
= 0. (20c)

Under the incompressible condition [the term O(|u|3) is neglected] and with the aid of Eq. (19), we can obtain the following
equations for e(1), p(1)

xx and p(1)
xy :

−s ′
ee

(1) = 6p
(
∂x1ux + ∂y1uy

) + 3seu · F1, (21a)

−s ′
νp

(1)
xx = 2p

(
∂x1ux − ∂y1uy

) + sν(uxFx1 − uyFy1), (21b)

−s ′
νp

(1)
xy = p

(
∂x1uy + ∂y1ux

) + sν

2
(uxFy1 + uyFx1), (21c)
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where p = ρc2
s = ρ/3. Substituting Eq. (21) into Eq. (20),

the second-order hydrodynamic equations in ε can be
derived,

∂t2ρ = 0, (22a)

∂t2 (ρux) = ∂x1

[
ρν

(
∂x1ux − ∂y1uy

) + ρξ
(
∂x1ux + ∂y1uy

)]
+ ∂y1

[
ρν

(
∂x1uy + ∂y1ux

)]
, (22b)

∂t2 (ρuy) = ∂x1

[
ρν

(
∂x1uy + ∂y1ux

)] + ∂y1

[
ρν

(
∂y1uy − ∂x1ux

)
+ ρξ

(
∂x1ux + ∂y1uy

)]
, (22c)

where ν and ξ are the kinematic and bulk viscosities and given
by

ν = c2
s

(
1

sν

− 1

2

)
δt, ξ = c2

s

(
1

se

− 1

2

)
δt. (23)

Combining the results at the t1 and t2 time scales, i.e., Eqs. (19)
and (22), we can obtain the following Navier-Stokes equations:

∂tρ + ∇ · (ρu) = 0, (24a)

∂t (ρu) + ∇ · (ρuu) = −∇p + ∇ · τ + F, (24b)

where τ is the shear stress and defined by

τ = 2ρνė + ρ(ξ − ν)(∇ · u)I, (25)

for incompressible flows. Equation (25) can be further simpli-
fied using τ = 2ρνė, where ė = 1

2 [∇u + (∇u)�] is the strain
rate tensor.

Finally, let us focus on discussing the relaxation matrix S.
In the process of deriving the Navier-Stokes equations, it is
found that the relaxation factors sρ and sj have no influence
on the macroscopic hydrodynamic equations, and thus their
values can be chosen arbitrarily. For simplicity, the relation
sρ = sj = 0 will be used in the present simulations. In addition
to sν , sρ , and sj , there are three adjustable parameters se,
sε, and sq . The relaxation parameter se is related to the bulk
viscosity ξ and usually adjusted to enhance the numerical
stability of the MRT model; similarly, sε can also be changed
to improve the numerical stability of the MRT model [26].
Compared to se and sε, the parameter sq is usually related

to implementation of boundary conditions and can be used
to improve the accuracy of the MRT model [26,29,31]. In
fact, numerical results in some previous works have shown
that more freedom in choosing the relaxation factors indeed
ensures that the MRT model possesses more potential than the
BGK model for studying some problems [26–29,31,32].

B. Shear stress and strain rate tensor in the
multiple-relaxation-time lattice Boltzmann equation

In this section, we focus on discussing the computation of
the shear stress or the strain rate tensor in the framework of
the MRTLBE with the nonequilibrium part of the distribution
function. Based on Eqs. (17b) and (19), we can obtain

− 1

δt

∑
i

ciα ciβ (M−1SM)ij f
(1)
j

=
∑

i

ciα ciβ D1if
(0)
i −

∑
i

ciα ciβ

[
M−1

(
I − S

2

)
M

]
ij

F̃ 1
j

= ∂t1

(
ρc2

s δαβ + ρuαuβ

) + ∂γ1

[
ρc2

s (uαδβγ + uβδαγ

+uγ δαβ)
] −

∑
i

ciα ciβ

[
M−1

(
I − S

2

)
M

]
ij

F̃ 1
j , (26)

∂t1ρ = −∂γ1 (ρuγ ), (27)

∂t1 (ρuαuβ) = −uβ∂α1p − uα∂β1p + uβFα1 + uαFβ1. (28)

Substituting Eqs. (27) and (28) into Eq. (26), we obtain

− 1

δt

∑
i

ciα ciβ (M−1SM)ij f
(1)
j

= ρc2
s

(
∂β1uα + ∂α1uβ

) + Fα1uβ + uαFβ1

−
∑

i

ciα ciβ

[
M−1

(
I − S

2

)
M

]
ij

F̃ 1
j . (29)

Multiplying ε on both sides of Eq. (29) and assuming εf
(1)
i =

f
(neq)
i = fi − f

(eq)
i to be valid, we can obtain the strain rate

tensor

ė = 1

2
[∇u + (∇u)�] =

δt
{∑

i cici

[
M−1

(
I − S

2

)
M

]
ij
F̃j − (uF + Fu)

} − ∑
i cici(M−1SM)ij f

(neq)
j

2ρc2
s δt

= [(sν − se)(u · F)I − sν(uF + Fu)]

4ρc2
s

−
∑

i cici(M−1SM)ij f
(neq)
j

2ρc2
s δt

. (30)

We can also use Eq. (30) to obtain the shear stress τ ,

τ = ν
[
(sν − se)(u · F)I − sν(uF + Fu)

]
2c2

s

− ν
∑

i cici(M−1SM)ij f
(neq)
j

c2
s δt

. (31)

The first term on the right hand side of Eqs. (30) and
(31) is considered as the forcing term effect on the strain
rate tensorand the shear stress. In addition, we also would

like to point out that, if the relaxation factors in the MRT
model are taken to be a single value sBGK, the strain
rate tensor and shear stress in the BGK model can be
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obtained:

ė = 1

2
[∇u + (∇u)�]

= − sBGK

4ρc2
s δt

[
δt(uF + Fu) + 2

∑
i

cicif
(neq)
i

]
, (32)

τ = −2 − sBGK

4

[
δt(uF + Fu) + 2

∑
i

cicif
(neq)
i

]
. (33)

It is noticed that the forcing term effect has been considered in
the computation of shear stress in the BGK model [16,19,20].
For instance, Gross et al. adopted the force scheme proposed
by Ladd and Verberg [19],

F ′
i = wi

[
ci · F
c2
s

+ (uF + Fu) :
(
cici − c2

s I
)

2c4
s

]
, (34)

while Krüger et al. used a simple one [20],

F ′
i = wi

ci · F
c2
s

. (35)

However, as pointed out elsewhere [30], none of the above-
mentioned schemes enables correct hydrodynamic equations
to be recovered. To derive the correct Navier-Stokes equations,
one should use the following force scheme for the BGK model:

F ′
i = wi

(
1 − sBGK

2

)[
ci · F
c2
s

+ (uF + Fu) :
(
cici − c2

s I
)

2c4
s

]
.

(36)

C. Convergence of the shear stress or the strain rate tensor in
the multiple-relaxation-time lattice Boltzmann equation

Previous studies [2,20] have demonstrated that the velocity
and shear stress of the lattice Boltzmann equation can be
recovered to those of the Navier-Stokes equations with a
second-order accuracy in space, i.e., the global relative errors
of velocity (Eu) and shear stress (Eτ ) scale with δx2. In diffusive
scaling, the time step and the lattice spacing satisfy the relation
δt ∝ δx2, while the Mach number (Ma) linearly scales with
the lattice spacing, Ma ∝ δx [20]. It follows that the global
relative error of the velocity and shear stress are

Eu ∝ Ma2, Eτ ∝ Ma2. (37)

Note that above theoretical results have been validated numer-
ically in a recent work [20]. In what follows, we will present
an analysis of the convergence of the shear stress and the strain
rate tensor in the multiple-relaxation-time lattice Boltzmann
equation.

We can first rewrite Eq. (29) in a more complete form,

− 1

δt

∑
i

ciα ciβ (M−1SM)ij f
(1)
j

= ρc2
s

(
∂β1uα + ∂α1uβ

) + Fα1uβ + uαFβ1

−
∑

i

ciα ciβ

[
M−1

(
I − S

2

)
M

]
ij

F̃ 1
j + E1αβ

, (38)

where E1αβ
is considered as the error term neglected in Eq. (29)

and can be derived from Eq. (26),

E1αβ
= −∂γ1 (ρuαuβuγ ). (39)

Based on the analysis reported elsewhere [20], we can obtain
the following result within the diffusive scaling,

E1αβ
∝ Ma4. (40)

The above analysis suggests that the shear stress and the strain
rate tensor in the MRTLBE will converge with a second-order
accuracy if f

(1)
i is known and used in the computation. As

pointed out elsewhere [20], however, it is not practical to
compute f

(1)
i in lattice Boltzmann simulations, which is also

the reason why we use f
(neq)
i instead of f

(1)
i to compute the

shear stress and the strain rate tensor with Eqs. (31) and (30).
It should be noted that, compared to Eqs. (26) or (38), the

approximate computation of the shear stress or the strain rate
tensor [Eqs. (31) or (30)] may bring some additional errors.
To check the errors induced by the approximation of εf

(1)
i ≈

f
(neq)
i , we need to evaluate the effect of the higher orders of

the nonequilibrium part [f (k)
i , k � 2] on the shear stressand

the strain rate tensor. But in the following, we restrict our
attention to the influence of f

(2)
i since the higher orders of

the nonequilibrium part [f (k)
i , k > 2] become less important

with increasing order of ε. One can use the following equation
instead of Eq. (38) to include the effect of the nonequilibrium
part to the second order:

− 1

δt

∑
i

ciα ciβ (M−1SM)ij f
(neq)
j

= ρc2
s (∂βuα + ∂αuβ) + Fαuβ + uαFβ

−
∑

i

ciα ciβ

[
M−1

(
I − S

2

)
M

]
ij

F̃j + εE1αβ
+ ε2Eεαβ

,

(41)

where Eεαβ
is the error caused by the second order of the

nonequilibrium part f
(2)
i and defined by

Eεαβ
= − 1

δt

∑
i

ciα ciβ (M−1SM)ij f
(2)
j . (42)

With the help of Eqs. (17b) and (17c), the error Eεαβ
can be

expressed as

Eεαβ
= Eε̃αβ

+ Eε̄αβ
, (43)

where Eε̃αβ
= ∂t2

∑
i ciα ciβ f

(0)
i = ∂t2 (ρc2

s δαβ + ρuαuβ) and

Eε̄αβ
= ∑

i D1iciα ciβ [M−1(I − S
2 )M]ij [f (1)

j + δt
2 F̃ 1

j ].
We first give an evaluation of the term Eε̃αβ

, which can be
rewritten as the following equation:

Eε̃αβ
= ∂t2

(
ρc2

s δαβ + ρuαuβ

)
= c2

s δαβ∂t2ρ + uα∂t2 (ρuβ) + uβ∂t2 (ρuα) − uαuβ∂t2ρ

= uα∂t2 (ρuβ) + uβ∂t2 (ρuα), (44)

where Eq. (22a) has been used. Based on the second-order
equations [Eqs. (22b) and (22c)] in ε and the fact that uα ∝ Ma
and ∂α ∝ Ma [20], one can easily find ∂t2 (ρuα) ∝ Ma3, which
can be substituted into Eq. (44) to derive Eε̃αβ

∝ Ma4.
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To evaluate the second term Eε̄αβ
, we introduce a vector �

with nine elements, and use �i to denote [(I − S
2 )M]ij [f (1)

j +
δt
2 F̃ 1

j ]. With the aid of Eq. (19), we can obtain each element
of �,

�0 = 0, (45a)

�1 = −2ρδt

(
1

se

− 1

2

) (
∂x1ux + ∂y1uy

)
, (45b)

�2 = 2ρδt

(
1

sε

− 1

2

) (
∂x1ux + ∂y1uy

)
, (45c)

�3 = 0, (45d)

�4 = −δt

(
1

sq

− 1

2

) [
∂x1

(
ρu2

y

) + 2∂y1 (ρuxuy)
]
, (45e)

�5 = 0, (45f)

�6 = −δt

(
1

sq

− 1

2

) [
2∂x1 (ρuxuy) + ∂y1

(
ρu2

x

)]
, (45g)

�7 = −2ρδt

3

(
1

sν

− 1

2

) (
∂x1ux − ∂y1uy

)
, (45h)

�8 = −ρδt

3

(
1

sν

− 1

2

) (
∂x1uy + ∂y1ux

)
. (45i)

If we recognize the fact that uα ∝ Ma, ∂α ∝ Ma, and
δt ∝ δx2 ∝ Ma2 in diffusive scaling [20], we can find
�i ∝ Ma4 or Ma5. Substituting Eq. (45) into Eε̄αβ

, we can

also prove that Eε̄αβ
= ∑

i D1iciα ciβ [M−1(I − S
2 )M]ij [f (1)

j +
δt
2 F̃ 1

j ] ∝ Ma4, and thus the absolute error Eεαβ
defined by

Eq. (43) is of order Ma4. The above analysis indicates that
the global relative error of the shear stress or the strain rate
tensor, as computed from Eqs. (31) or (30), is second-order
accurate in Ma or the lattice spacing δx.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, the accuracy of the MRTLBE in computing
the velocity and shear stress or strain rate tensor is tested, and
the forcing term effect on the shear stress or the strain rate
tensor in the MRTLBE is then discussed. Since the MRTLBE
is an explicit time-marching method, a large number of time
steps are required to reach a steady state when it is used to
simulate steady flows. To ensure that our simulation results
are for a steady state, the following convergence criterion has
been adopted:∑

x,y |ux(x,y,t) − ux(x,y,t − 100δt)|∑
x,y |ux(x,y,t)| < �, (46)

where � is set to be 1.0 × 10−7 in the present work. We note
that a similar convergence criterion has also been used in many
previous works (e.g., [7]).

A. The accuracy and convergence of the
multiple-relaxation-time lattice Boltzmann equation in

computing the velocity and shear stress or strain rate tensor

To test the accuracy of the MRTLBE in computing the
velocity and shear stress or strain rate tensor, we take the sim-
plified four-roll mill problem, shown in Fig. 1, as an example.

FIG. 1. Schematic of two-dimensional four-roll mill problem.

The geometry of the problem is a two-dimensional periodic
box with a size [0,2π ] × [0,2π ]. In this tested example, the
four cylinders rotate in such a way that an elongational flow is
formed in the vicinity of a central stagnation point. In this work,
the four rollers are replaced by a body force to drive flow, which
can produce four vortices at the locations of the rollers [33].
The purpose for choosing such a problem is twofold. First,
the problem has an analytical solution, which is suitable as
an accuracy test of numerical methods [33]; and second, the
boundary condition of the problem is periodic, which can be
used to exclude the boundary effect on the numerical results.
Provided that the flow is incompressible (the fluid density ρ0 is
assumed to be a constant, for example, ρ0 = 1.0), and driven
by the following acceleration:

ax = u2
0 sin(x) cos(x) + 2νu0 sin(x) cos(y),

(47)
ay = u2

0 sin(y) cos(y) − 2νu0 sin(y) cos(x),

we can derive analytical solutions for the velocity and shear
stress

ux = u0 sin(x) cos(y), (48a)

uy = −u0 sin(y) cos(x), (48b)

τxx = 2ρ0νu0 cos(x) cos(y), (48c)

τxy = τyx = 0, (48d)

τyy = −2ρ0νu0 cos(x) cos(y), (48e)

which can also be used to obtain elements of the strain rate
tensor ė.

We performed some numerical experiments to test the
accuracy of the MRTLBE in computing the velocity and
shear stress, and the results for one case are presented in
Figs. 2 and 3, where a lattice size 64 × 64, which is large
enough to derive accurate results, is used. The velocity u0

in Eq. (47) and the relaxation factor sν are set to be 0.1
and 1.24, which can also be used to derive the kinematic
viscosity ν = 0.01; the other relaxation parameters in Eq. (13)
are given as se = sε = 0.8,sq = 1.9. As seen from Figs. 2
and 3 (left), the numerical results are in good agreement
with analytical solutions. Besides that, Fig. 3 (right) seems
to present some obvious differences between the numerical
results and analytical solutions, but after a careful observation,
one can find that the numerical results are of order 10−6, which
is very close to the analytical solution (τxy = 0). In addition,
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FIG. 2. Profiles of velocity component ux at different positions
(solid lines, analytical results; symbols, numerical results).

the results in Fig. 3 also show that the forcing term effect
on the shear stress seems to be invisible; the reason for this
observation is as follows. The acceleration a = (ax,ay) given
by Eq. (47) can be expressed as

a = u · ∇u − ν∇2u = u · ∇u − 1

3

(
1

sν

− 1

2

)
δt∇2u. (49)

If we substitute Eq. (49) into Eq. (31) and use the relation
F = ρa, we find that the terms associated with F in Eq. (31)
have the same order as those we omitted in the process of
deriving Eq. (31). For this reason, we can conclude that the
forcing term effect on the shear stress can be neglected, and
also that the four-roll problem considered here is not a typical
problem to reflect the importance of the forcing term effect.

To test the convergence property of the MRTLBE in
computing the velocity and shear stress or strain rate tensor,
the following global relative error (E) is used, and defined by

Euk
=

∑
x,y |uk,n(x,y) − uk,a(x,y)|∑

x,y |uk,a(x,y)| , (50)

Eτij
=

∑
x,y |τij,n(x,y) − τij,a(x,y)|∑

x,y |τij,a(x,y)| , (51)

where i,j,k = x or y, and the subscripts a and n denote
analytical and numerical solutions, respectively. We also
carried out several numerical simulations with different lattice
sizes, ranging from 17 × 17 to 129 × 129, and show the
results in Fig. 4. In our simulations, the Reynolds number
(Re = Lu0/ν, L = 2π ) and the relaxation factor sν are fixed
to be 10 and 1.11, which can be used to derive the desired
kinematic viscosity ν. As shown in Fig. 4, we find that, like
BGK model [20], the MRT model is also a second-order
scheme for computing the velocity and shear stress including
or without including the forcing term effect. In addition, for the
fixed Reynolds number and relaxation factor sν , one can also
conclude that the MRT model is second-order accurate in the
Mach number (Ma = u0/cs) based on the following equation:

Ma

Re
=

1
sν

− 1
2√

3N
, (52)

where N = L/δx is the grid number.
We further tested whether there is any deviation from

the second-order convergence of the MRTLBE in computing
the velocity and shear stress when the Reynolds number is
increased to a critical value at which the numerical method is
unstable. To this end, we first derive such a critical Reynolds
number (Rec = 50) for the case of δx = 1/16 and sν = 1.11
where the Mach number is about 0.72, and we then perform
several numerical simulations when the Reynolds number and
relaxation factor sν are fixed to be 50 and 1.11, and present
the global relative errors under different grid sizes in Fig. 5.

0 1 2 3 4 5 6
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−0.5

0
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1.5

2

2.5
x 10
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x
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y =π

0 1 2 3 4 5 6
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1

2

3
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x
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x =π/4

x =π/2

x =0
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FIG. 3. Profiles of shear stress components τxx (left) and τxy (right) at different positions (solid lines are analytical results; symbols �, 	, ◦,
and � are numerical results including the forcing term effect; •, ∗, ×, and + are numerical results without including the forcing term effect).
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FIG. 4. The global relative errors of velocity ux (left) and shear stress τxx (right) with different grid sizes (δx =
2π/16, 2π/32, 2π/64, 2π/96, and 2π/128). 	 and ∗ are the results including and without including the forcing term effect, respectively; the
slope of the line is 2, indicating a second-order accuracy of the multiple-relaxation-time lattice Boltzmann equation in computing velocity and
shear stress.

As seen from this figure, the velocity and shear stress obtained
by the MRTLBE are also second-order accurate in the lattice
spacing δx or equivalently Ma [Eq. (52)] at such a critical
Reynolds number.

Finally, we also give a special discussion of the relaxation
factor sν because of its great influence on the accuracy of
the lattice Boltzmann equation [20,34]. Following the method
proposed in the previous work [20], the Reynolds number
and Mach number are first specified at some reasonable
values without changing the physics of the problem, and then
according to Eq. (52), one can study the effect of the relaxation
factor sν by changing the grid number. Some numerical
simulations with different relaxation factors or equivalently

grid numbers are conducted, and the results are presented in
Fig. 6.

When the Mach number is small enough (for example,
Ma = 0.003 or 0.03), the errors of the velocity and shear stress
shown in Fig. 6 decrease with decrease of the relaxation factor
sν ; the reason is that a smaller sν leads to a larger grid number
(or smaller δx), and also to more accurate results. However,
the effect of the relaxation factor sν is relatively small for a
large Mach number (Ma = 0.3); this may be because the error
induced by a smaller sν at a large Mach number is compensated
by a higher grid resolution. From the results in Fig. 6 we can
also find that the Mach number should be small enough if one
wants to obtain more accurate results.
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FIG. 5. The global relative errors of the velocity ux (left) and shear stress τxx (right) with different grid sizes (δx =
2π/16, 2π/32, 2π/64, 2π/96, and 2π/128). The slope of the line is 2, indicating that the shear stress derived from the multiple-relaxation-time
lattice Boltzmann equation is second-order accurate.
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FIG. 6. The global relative errors of the velocity ux (left) and shear stress τxx (right) with different relaxation factors (◦, Re = 1, Ma = 0.003;
, Re = 10, Ma = 0.03; 	, Re = 100, Ma = 0.3).

B. The forcing term effect in the multiple-relaxation-time lattice
Boltzmann equation on the shear stress or strain rate tensor

To test the forcing term effect on the shear stress or the
strain rate tensor, the problem of two-phase Poiseuille flow in a
two-dimensional channel is adopted since one can easily obtain
its theoretical solution [16]. The problem under consideration
is illustrated in Fig. 7, where the flow is driven by an external
force F = (ρG,0) (G is a constant) and assumed to be periodic
in the x direction; the length (L) and height (H ) of the channel
are set to be 1.0. Following the work of Gross et al. [16], the
theoretical solution for the shear stress can be derived,

τxy(y) = −G

∫ y

0
ρ(y ′)dy ′ + C = τ̃xy(y) + C, (53)

where C is a constant and is given by

C = −
∫ H

0
τ̃xy (y ′)
ρ(y ′) dy ′∫ H

0
1

ρ(y ′)dy ′
. (54)

G

V apor

Liquid

FIG. 7. Configuration of two-dimensional two-phase Poiseuille
flow driven by a constant acceleration G.

To simulate two-phase Poiseuille flow, the Shan-Chen
(SC) single-component multiphase lattice Boltzmann equation
coupled with the MRT model (see Refs. [27,35] for details)
is used for its simplicity. In the following simulations, the
interaction strength Gint in the SC multiphase model is fixed
to be −5.0, the equilibrium densities of liquid and vapor
are 1.8884 and 0.1194 by including the interaction between
the fluid and the solid wall. The parameter G and the lattice
size are set to be 1.0 × 10−6 and 64 × 64, and the elements of
the relaxation matrix S are given as sρ = sj = 0.0, se = sε =
sν = 1.1, and sq = 1.9. We present numerical results for the
shear stress including and without including the forcing term
effect in Fig. 8.

As seen from this figure, the numerical result agrees well
with the theoretical solution once the forcing term effect
is included. On the contrary, if the forcing term effect is
not incorporated into the computation of the shear stress,
the numerical result will present a serious oscillation at the
interface between liquid and vapor and deviate from the
theoretical solution.

To measure the deviation of the shear stress between ana-
lytical solutions and numerical results quantitatively, we also
carried out numerical simulations under different interaction
strengths (Gint), and present the global relative errors in
Table I. As shown in this table, the forcing term indeed has a

TABLE I. The global relative errors of shear stress τxy between
analytical solutions and numerical results. E∗

τxy
is the global relative

error without including the forcing term effect, and ρv and ρl are the
vapor and liquid densities.

Gint ρv ρl Eτxy
E∗

τxy

−4.5 0.2330 1.4704 5.0042 × 10−4 0.3266
−4.8 0.1560 1.7313 4.8377 × 10−4 0.3756
−5.0 0.1194 1.8884 6.1021 × 10−4 0.3966
−5.4 0.0670 2.1794 6.1784 × 10−4 0.4234
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FIG. 8. The distribution of the shear stress component τxy in the y direction; left, τxy including the forcing term effect; right, τxy without
including the forcing term effect (solid lines, theoretical results; symbols, numerical results).

very serious effect on the shear stress and must be included in
practical computation.

IV. CONCLUSIONS

In this paper, the effect of the forcing term in the multiple-
relaxation-time lattice Boltzmann equation on the shear stress
and the strain rate tensor is studied. The theoretical analyses
and numerical simulations demonstrate that the proposed
scheme [Eqs. (31) and (30)] in computing the shear stress and
the strain rate tensor is also second-order accurate in space. We
further show that the effect of the forcing term is significant and
must be included in calculating the shear stress or the strain rate
tensor with the nonequilibrium part of the distribution function.
Based on the advantages of the MRTLBE and the role of the
shear stress and the strain rate tensor in practice, the present
work may promote the MRTLBE in studying the blood flows,

non-Newtonian flows, and multiphase flows, to name but
a few.
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