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Grand-canonical Monte Carlo method for Donnan equilibria
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We present a method that enables the direct simulation of Donnan equilibria. The method is based on a
grand-canonical Monte Carlo scheme that properly accounts for the unequal partitioning of small ions on the two
sides of a semipermeable membrane, and can be used to determine the Donnan electrochemical potential, osmotic
pressure, and other system properties. Positive and negative ions are considered separately in the grand-canonical
moves. This violates instantaneous charge neutrality, which is usually considered a prerequisite for simulations
using the Ewald sum to compute the long-range charge-charge interactions. In this work, we show that if the
system is neutral only in an average sense, it is still possible to get reliable results in grand-canonical simulations of
electrolytes performed with Ewald summation of electrostatic interactions. We compare our Donnan method with
a theory that accounts for differential partitioning of the salt, and find excellent agreement for the electrochemical
potential, the osmotic pressure, and the salt concentrations on the two sides. We also compare our method
with experimental results for a system of charged colloids confined by a semipermeable membrane and to a
constant-NV T simulation method, which does not account for salt partitioning. Our results for the Donnan
potential are much closer to the experimental results than the constant-NV T method, highlighting the important
effect of salt partitioning on the Donnan potential.
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I. INTRODUCTION

Donnan equilibria are established in systems with partitions
that selectively permit passage of some ionic species. For
example, we can consider a system of charged colloidal
particles separated from a salt solution by a semipermeable
membrane with pores smaller than the colloidal diameter, but
larger than the size of small ions or water. This leads to an
unequal distribution of the small, permeable ions across the
membrane, which induces a macroscopic electric potential
across the membrane called the Donnan potential [1].

Donnan equilibria are important for a variety of technolog-
ical and biophysical applications, including water purification
[2,3], understanding DNA and polyelectrolyte brushes [4], and
energy storage in batteries. It is also commonly encountered
in biological systems where ion concentration gradients are
maintained across semipermeable membranes. Because of
this, the Donnan effect has been the subject of numerous
theoretical [5–8] and simulation [9–14] studies aimed at
predicting properties such as the electrochemical potential and
osmotic pressure across the membrane.

Despite its importance, no existing simulation method
properly accounts for the small ions partitioning unequally
between the two sides of the membrane in an open system.
In order to account for the selectivities of the different ions
on either side of the membrane, they must be considered
independently when performing grand-canonical moves. This
violates charge neutrality, which is a requirement for the
electrostatic energy to converge when using the Ewald sum
[15]. Despite this, reliable results have been obtained in the
past for systems that are charge neutral only in an average
sense, as has been shown in Gibbs ensemble Monte Carlo
studies of phase equilibria in ionic systems [16]. In confined
systems, convergence is not a problem and the Donnan effect
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has been investigated in systems of small pores for which
different concentrations of salt on either side of the membrane
were observed [9–12]. We believe properly accounting for
the unequal distribution of salt is vital for determining the
correct Donnan potential, colloidal interactions, and other
thermodynamic properties of the system.

A simulation-based approach for Donnan equilibria is
highly desirable, as solution nonidealities and specific ion
effects can then be fully taken into account. To this end, we
outline a simulation method to study a system of charged
particles confined by a semipermeable membrane that treats
the salt ions grand-canonically. We compare our results to
a theoretical approach, which also takes the grand-canonical
nature of the problem into account. We also compare our
method to experimental results for the Donnan potential in
a system of charged colloidal particles, and in addition,
compare this to a simulation method that does not treat the
salt grand-canonically in order to highlight the importance of
taking this into account.

II. SIMULATION METHOD

Our goal is to model a system with a semipermeable
membrane that has large colloidal particles that cannot pass
through, and small ions that can pass through. A schematic of
this is shown in Fig. 1. For simplicity, we use the primitive
model where colloids and ions are treated as charged hard
spheres with diameter σ , in general different for each species,
and charge q.

The Coulomb interaction between two particles with charge
qi and qj , respectively, that are separated by a distance rij =
|ri − rj | is given by

βV (rij ) = λBqiqj

rij

, (1)
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FIG. 1. (Color online) Schematic illustration of Donnan equilib-
rium. The large particles, each carrying a charge of −2, are not able
pass through the membrane. The small ions, with charges −1 and
+1 respectively, can pass freely between the two sides. A potential
difference is established across the membrane.

where λB = e2/4πε0εrkBT is the Bjerrum length, e is the
elementary charge, ε0 is the permittivity of free space, εr is the
relative dielectric constant, kB is Boltzmann’s constant, T is
the absolute temperature, and β = 1/kBT . These interactions
are calculated using the particle-particle–particle-mesh Ewald
method of Hockney and Eastwood [17].

To account for the small ions passing through the mem-
brane, we use a grand-canonical Monte Carlo (GCMC) scheme
where the small ions are inserted or deleted independently of
each other, however the colloidal particles are only moved lo-
cally, never inserted or deleted. By decoupling the positive and
negative salt species, electroneutrality will be instantaneously
violated during the simulation. However, as long as the system
is on average charge neutral, the effect of this is negligible.
We demonstrate this by simulating a two-component system
and either insert and delete neutral groups or treat both particle
types independently. In these simulations, the negative ion has
a charge valence of q− = −1 and hard-sphere diameter of
σ− = 1.0 nm. For the positive ion q+ = 2 and σ+ = 3.0 nm,
and we set the Bjerrum length to λB = 2.0 nm. We compare
the concentration of each ion for different chemical potentials
of the positive and negative ions, μ+ and μ− respectively, in
Table I. When the ions are treated independently, a number
of simulations are performed to determine the values of
μ+ and μ−, which result in an electroneutral system at a
target concentration. Histogram reweighting [18,19] is used to
accelerate this process. We then use these chemical potentials

TABLE I. Chemical potentials, μ+ and μ− and the corresponding
particles numbers N+ and N− for simulations where the ions are
inserted or deleted either independently or as neutral groups.

Neutral groups Independent ions

βμ+ βμ− N+ N− N+ N−
−7.139 −5.744 50.03(3) 100.1(1) 50.10(7) 100.2(1)
−6.398 −4.972 100.1(1) 200.3(1) 100.1(1) 200.3(2)
−5.240 −4.062 199.5(2) 399.1(3) 199.4(2) 399.1(4)
−2.453 −2.795 400.4(3) 800.9(7) 401.0(5) 801.3(8)

for the simulations of neutral groups, where we we adopt the
approach of Valleau and Cohen [20] to combine the values of
μ+ and μ− accordingly. The excellent agreement between the
two simulation methods shows that electroneutrality does not
need to be maintained for every configuration to get reliable
results using Ewald-based methods. We note that we do not
include the charged system term of the Ewald sum commonly
used to study one-component plasmas [21],

Ucharged = − 1

8ε0V α2

∣∣∣∣∣

N∑

i=1

qi

∣∣∣∣∣

2

, (2)

where V is the system volume and α controls the splitting of
the energy between real space and Fourier space. This is the
energy of the charged particles with a uniform neutralizing
background charge. If this term were included, a grand-
canonical move would compare the energies between two
different systems, each with a different value for the uniform
background charge. By excluding this term, the physical
system does not change, however, the energy of non-neutral
configurations diverges for periodic systems. Since the Ewald
sum is truncated in both real and in Fourier space, we do
not end up with infinite energies and the resulting error is
negligible, as is evidenced by our results in Table I. It would be
necessary to perform such tests to ensure this holds for future
systems of interest. We believe this method, while not ideal,
is nonetheless better than alternative methods for electrostatic
interaction such as reaction-field [22], using the minimum
image convention [23], or simple truncation or the Coulomb
potential. Another more practical consideration is that Ucharged

favors a system with a net charge and including it results in
an unstable simulation. Once a system obtains a net charge,
Monte Carlo moves that increase that net charge are favored
and this leads to the system being filled with only positive or
only negative particles.

With this now established, we can proceed to devise
a method to accurately determine properties of the Don-
nan system. We first perform a simulation with only salt
ions, representing the reservoir salt concentration. Histogram
reweighting [18,19] is used to determine the values of μbulk,+
and μbulk,−, which result in a system that is on average
electroneutral and has the target salt concentration. A second
simulation is then performed, which contains the colloidal
particles at a fixed concentration. In general, using μbulk,+
and μbulk,− will result in a system with a net charge. In order
to satisfy the global electroneutrality condition, the chemical
potentials must be shifted by a value βqUDonnan, where UDonnan

is the Donnan potential, such that μ+ = μbulk,+ + βq+UDonnan

and μ− = μbulk,− + βq−UDonnan. In general, a number of
simulations must be performed to find the value of UDonnan

that results in a neutral system and to accelerate this process
we use histogram reweighting techniques [18,19]. In this way
we have a simple, robust method to determine the Donnan
potential using GCMC simulations of two separate systems,
one with only salt at the target reservoir concentration, and
one with the target colloid concentration. Because moving
colloids in a system with much smaller particles is difficult,
causing the colloids decorrelate slowly, we use the geometric
cluster algorithm for charged systems. However, it has been
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shown that for these systems the colloid degrees of freedom
have little impact on the Donnan potential [5].

III. RESULTS

The Donnan equilibrium method outlined in Sec. II al-
lows us to perform simulations that overcome an important
limitation of prior simulation studies of Donnan equilibria
in open systems, namely the ability of the salt to partition
unequally between both sides of the membrane. Our simulation
method does correctly take this into account. In this section,
we compare results from this approach to a theory that also
treats the salt grand-canonically, and indeed predicts unequal
salt partitioning [8].

In the system we use to compare our results with the
theory, the colloidal particles have a hard-sphere diameter of
43.8 nm and charge of Z = 50, the reservoir salt concentration
is 10−5 mol/l and λB = 2.37 nm, which corresponds to a
solvent of ethanol at room temperature. We use monovalent
salt; in the theory, the size of the ions is not taken into account.
In the simulations however, we choose a hard-sphere diameter
of 0.4 nm. To demonstrate the effect of salt partitioning, we
determine both the total number of ions in the system and the
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FIG. 2. (Color online) Total ion concentration (a) and added salt
(b) as a function of colloid concentration. The red line is computed
using Eqs. (25) and (27) of Ref. [8]. The error bars for the simulation
results are smaller than the symbol size.
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FIG. 3. (Color online) Donnan potential as a function of colloid
concentration. The line is computed using the theory described in
Ref. [8]. The error bars for the simulation results are smaller than the
symbol size.

amount of added salt. Following the convention in Ref. [8],
the total ion concentration is ρ+ + ρ− while the amount of
added salt is ρ+ + ρ− − Zn = 2ρ−, where n is the colloid
concentration. In this way, the amount of added salt does
not count the counterions coming from colloidal particles.
The results for these quantities as the colloid concentration
is increased are given in Fig. 2. Our results for the total
ion concentration match very well with the theory, while
the results for added salt show only a small quantitative
difference at high η, which is likely due to the finite size of
the ions in the simulations. We also compare our results for the
Donnan potential and osmotic pressure, 
, and find excellent
agreement as shown in Figs. 3 and 4.

The Donnan potential calculations can also be directly
compared to experimental results for a colloidal system with
added salt [24]. Here λB as well as the charges and sizes of the
colloids and ions are the same as before, however the semiper-
meable membrane separates one compartment with a colloid
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FIG. 4. (Color online) Osmotic pressure, 
, as a function of
colloid concentration. The line is computed using the theory described
in Ref. [8]. The error bars for the simulation results are smaller than
the symbol size.
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TABLE II. Chemical potentials, μ+ and μ− and the corresponding particle numbers N+ and N− for our method using GCMC and for
constant-NV T simulations using the Widom insertion method [25] to determine the chemical potentials assuming the same salt concentration
in each compartment.

GCMC Vlachy and Prausnitz [5]

βμ+ βμ− N+ N− βμ+ βμ− N+ N−
Reservoir −10.992 −10.992 662.8(8) 662.9(8)
η = 1.2 × 10−3 −10.951 −11.032 695.2(9) 644.9(9) −10.926(4) −11.005(1) 712 662
η = 1.3 × 10−2 −10.592 −11.392 1033.9(9) 484.3(8) −10.404(4) −11.122(4) 1212 662

volume fraction of η = 1.2 × 10−3 and one compartment with
a volume fraction of η = 1.3 × 10−2 and the reservoir salt
concentration is 30 × 10−6 mol/l. To determine the Donnan
equilibrium for this system, where there are colloids in both
compartments, three systems need to be simulated. A system
with no colloids is simulated to determine the values of
μbulk,+ and μbulk,−, which yield the correct reservoir salt
concentration. In addition, both colloid concentrations need to
be simulated to find the corresponding values of UDonnan, which
yield a neutral system. The Donnan potential between the two
compartments is then the difference between UDonnan for the
two systems. The chemical potentials and particle numbers for
these three systems are given in Table II. The Donnan potential
determined from our simulations is −9.22 ± 0.01 mV, while
the experimental result is −12.9 ± 0.5 mV [24]. This is likely
due to a limitation of the model as the theory of Zoetekouw
and Roij [8] predicts a value of −9 mV for the same system.

We demonstrate the importance of considering the salt
grand-canonically by comparing our results to those obtained
assuming that the salt concentration is identical on both
sides of the semipermeable membrane as done in the work
of Vlachy and Prausnitz [5]. Using the method of Ref. [5],
one simply performs a constant-NV T simulation for the two
colloid concentrations and determines the chemical potentials
for the positive and negative ions in each system using the
Widom insertion method [25]. As before, the counterions
that neutralize the colloidal particles are not included in the
salt concentration hence different values for N+ while N−
remains constant in Table II. We do this for the experimental
system described above and find a Donnan potential of
−3.00 ± 0.01 mV, which is much lower than either our
method or the experiments. The chemical potentials from
the two methods are given in Table II and we can see that
the ion concentrations are also quite different when they are
treated grand-canonically. When the salt concentration in each
compartment is assumed to be the same, there is no guarantee
that the systems will be in electrochemical equilibrium with

each other. Using our proposed grand-canonical scheme solves
this problem. Interestingly, in the experimental system, when
salt bridges were used to maintain an equal amount of salt on
both sides of the membrane, a Donnan potential of −3.00 mV
was measured [24].

IV. CONCLUSION

In this work, we have presented a simulation approach to
study a system of charged particles confined by a semiper-
meable membrane. A key aspect of this method is using a
single ion instead of neutral ion groups for the grand-canonical
moves. This decouples the positive and negative ions and
allows for different ionic concentrations on either side of the
membrane. The method was validated by comparing the results
to theoretical calculations that take into account the different
ionic concentrations on either side of the membrane. Donnan
potentials from experimental measurements were also found
to be in excellent agreement with the simulation results.

While we have focused on colloidal systems to demonstrate
this method, it can be easily applied to a variety of other
systems including polymers and biological systems: for exam-
ple, proteins confined by a semipermeable membrane. These
systems generally include specific interaction with the salt ions
or ion correlations close to the impermeable particle, which
are difficult to account for using theoretical approaches. These
effects are usually easy to include in simulations, however.
One potential drawback of our method is that grand-canonical
moves pose a great challenge if the solvent is included
explicitly. However, for many systems of interest, the solvent
need not be modeled explicitly to get reliable results.
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