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In this paper, based on the regular Korteweg–de Vries (KdV) system, we study negative-order KdV (NKdV)
equations, particularly their Hamiltonian structures, Lax pairs, conservation laws, and explicit multisoliton and
multikink wave solutions thorough bilinear Bäcklund transformations. The NKdV equations studied in our paper
are differential and actually derived from the first member in the negative-order KdV hierarchy. The NKdV
equations are not only gauge equivalent to the Camassa-Holm equation through reciprocal transformations but
also closely related to the Ermakov-Pinney systems and the Kupershmidt deformation. The bi-Hamiltonian
structures and a Darboux transformation of the NKdV equations are constructed with the aid of trace identity
and their Lax pairs, respectively. The single and double kink wave and bell soliton solutions are given in an
explicit formula through the Darboux transformation. The one-kink wave solution is expressed in the form of
tanh while the one-bell soliton is in the form of sech, and both forms are very standard. The collisions of
two-kink wave and two-bell soliton solutions are analyzed in detail, and this singular interaction differs from
the regular KdV equation. Multidimensional binary Bell polynomials are employed to find bilinear formulation
and Bäcklund transformations, which produce N -soliton solutions. A direct and unifying scheme is proposed for
explicitly building up quasiperiodic wave solutions of the NKdV equations. Furthermore, the relations between
quasiperiodic wave solutions and soliton solutions are clearly described. Finally, we show the quasiperiodic wave
solution convergent to the soliton solution under some limit conditions.
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I. INTRODUCTION

The Korteweg–de Vries (KdV) equation

ut + 6uux + uxxx = 0

was proposed by Korteweg and de Vries in fluid dynamics [1],
starting from the observation and subsequent experiments by
Russell [2]. There are many excellent sources that detail the
highly interesting background and historical development of
the KdV equation, which bring it to the forefront of modern
mathematical physics. In 1967, Gardner, Greener, Kruskal,
and Miura found the inverse-scattering transformation method
to solve the Cauchy problem of the KdV equation with
sufficiently rapidly decaying initial data [3]. Soon thereafter,
Lax explained the magical isospectral property of the time-
dependent family of Schrödinger operators by what is now
called the Lax pair and introduced the KdV hierarchy through
a recursive procedure [4]. In the same year a sequence of
infinitely many polynomial conservation laws was obtained
with the help of the Miura transformation [5,6].

There are some tools to view the KdV equation as a
completely integrable system by Gardner and Zakharov and
Faddeev [7,8]. The bilinear derivative method was developed
by Hirota to find N -soliton solutions of the KdV equation [9].
The KdV hierarchy was constructed by Lax [10] through
a recursive approach and further studied by Gel’fand and
Dikii [11]. The extension of the inverse-scattering method to

*qiao@utpa.edu
†Corresponding author: faneg@fudan.edu.cn

periodic initial data, based on both the inverse spectral theory
and algebrogeometric methods, was developed by Novikov,
Dubrovin, Lax, Its, Matveev et al. [12–15]. For more recent
reviews on the KdV equation one may refer, for instance, to
Refs. [16–25].

All the work done in the above-mentioned publications
dealt with the positive-order KdV hierarchy, which includes
the KdV equation as a special member. However, there was
little work on the NKdV hierarchy. Verosky [26] studied
symmetries and negative powers of recursion operator and
gave the following negative-order KdV (NKdV) equation,

vt = wx, wxxx + 4vwx + 2vxw = 0, (1.1)

and Lou [27] presented additional symmetries based on
the invertible recursion operator of the KdV system and
particularly provided the following NKdV equation (called
the NKdV-1 equation thereafter):

vt = 2uux, uxx + vu = 0, ⇐⇒
(

uxx

u

)
t

+ 2uux = 0,

(1.2)

which can be reduced from the NKdV equation (1.1) under
the following transformation:

w = u2, v = −uxx

u
. (1.3)

Moreover, the second part of NKdV-1 equation (1.2) is a linear
Schrödinger equation or Hill equation,

uxx + vu = 0.
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Fuchssteiner [28] pointed out the gauge-equivalent relation
between the NKdV equation (1.1) and the Camassa-Holm
(CH) equation [29],

mt + mxu + 2mux = 0, m = u − uxx,

through some hodograph transformation, and, later, Hone pro-
posed the associate CH equation, which is actually equivalent
to NKdV equation (1.1), and gave soliton solutions through
the KdV system [30]. Zhou generalized the Kupershmidt
deformation and proposed a kind of the mixed KdV hierarchy,
which contains NKdV equation (1.1) as a special case [31].

Very recently, Qiao and Li [32] gave a unifying formulation
of the Lax representations for both negative- and positive-order
KdV hierarchies and, furthermore, studied all possible travel-
ing wave solutions, including soliton, kink wave, and periodic
wave solutions, of the integrable NKdV-1 equation (1.2),
which possesses the following Lax pair:

Lψ ≡ ψxx + vψ = λψ,
(1.4)

ψt = 1
2u2λ−1ψx − 1

2uuxλ
−1ψ.

The most interesting fact is that the NKdV-1 equation has
both soliton and kink solutions, which is the first integrable
example, within our knowledge, to have such a property in
soliton theory.

Studying negative-order integrable hierarchies plays an
important role in the theory of peaked solitons (peakons) and
cusp solitons (cuspons). For instance, the well-known CH
peakon equation is actually produced through its negative-
order hierarchy while its positive-order hierarchy includes the
remarkable Harry-Dym–type equation [33]. The Degasperis-
Procesi (DP) peakon equation [34] can also be generated
through its negative-order hierarchy [35]. Both the CH
equation and the DP equation are typical integrable peakon and
cupson systems with nonlinear quadratic terms [29,33,36–38].
Recently, some nonlinear cubic integrable equations have also
been found to have peakon and cupson solutions [39–42].

In this paper, we study the NKdV hierarchy and, in
particular, focus on the NKdV equation (1.1) and the NKdV-1
equation (1.2). Actually, as in Refs. [27,43], the NKdV
equation (1.1) can embrace other possible differential-integro
forms according to the kernel of the operator K = 1

4∂3
x +

1
2 (v∂x + ∂xv). Here we just list the NKdV-1 equation (1.2) as
it is differential and we find that the first negative-order KdV
equation is also equivalent to a nonlinear quartic integrable
system,

uuxxt − uxxut − 2u3ux = 0,

with both classic soliton and kink wave solutions.
The purpose of this paper is to investigate integrable

properties, the N -soliton and N -kink solutions of the NKdV
equation (1.1) and NKdV-1 equation (1.2). In Sec. II, the
trace identity technique is employed to construct the bi-
Hamiltonian structures of the NKdV hierarchy. In Sec. III,
we show that the NKdV equation (1.1) is related to the
Kupershmidt deformation and the Ermakov-Pinney systems
and is also able to reduced to the NKdV-1 equation (1.2) under
a transformation. The relation between the solution of the
NKdV equation (1.1) and that of NKdV-1 equation (1.2) is
given. In Sec. IV, a Darboux transformation of the NKdV

equation (1.1) is provided with the help of its Lax pairs. In
Sec. V, as a direct application of the Darboux transformation,
the kink wave and bell soliton solutions are explicitly given,
and the collision of two soliton solutions is analyzed in detail
through two solitons. In Sec. VI, an extra auxiliary variable
is introduced to bilinearize the NKdV equation (1.1) through
binary Bell polynomials. In Sec. VII, the bilinear Bäcklund
transformations are obtained and Lax pairs are also recovered.
In Sec. VIII, we will give a kind of Darboux covariant Lax pair,
and in Sec. IX, infinitely many conservation laws of the NKdV
equation (1.1) are presented through its Lax equation and
a generalized Miura transformation. All conserved densities
and fluxes are recursively given in an explicit formula. In
Sec. X, a direct and unifying scheme is proposed for building
up quasiperiodic wave solutions of the NKdV equation (1.1)
in an explicit formula. Furthermore, the relations between
quasiperiodic wave solutions and soliton solutions are clearly
described. Finally, we show the quasiperiodic wave solution
convergent to the soliton solution under the assumption of
small amplitude.

II. HAMILTONIAN STRUCTURES OF
THE NKDV HIERARCHY

To find the Hamiltonian structures of the NKdV hierarchy,
let us rederive the NKdV hierarchy in matrix form.

A. The NKdV hierarchy

Consider the Schrödinger-KdV spectral problem

ψxx + vψ = λψ, (2.1)

where λ is an eigenvalue, ψ is the eigenfunction corresponding
to the eigenvalue λ, and v is a potential function.

Let ϕ1 = ψ, ϕ2 = ψx , and then the spectral problem (2.1)
becomes

ϕx = Uϕ =
(

0 1

λ − v 0

)
ϕ, (2.2)

where ϕ = (ϕ1,ϕ2)T is a two-dimensional vector of eigenfunc-
tions.

The Gateaux derivative of spectral operator U in direction
ξ at point v is

U ′[ξ ] = d

dε
U (v + εξ )|ε=0 =

(
0 0

−ξ 0

)
, (2.3)

which is injective and linear with respect to the variable ξ .
The Lenard recursive sequence {Gm} of the spectral

problem (2.1) is defined by

G−1 ∈ KerK = {G|KG = 0},
G0 ∈ KerJ = {G|JG = 0}, (2.4)

KGm−1 = JGm, m = 0, − 1, − 2 . . . ,

which directly produces the NKdV hierarchy

vt = KGm−1 = JGm, m = 0, − 1, − 2 . . . , (2.5)

where

K = 1
4∂3

x + 1
2 (v∂x + ∂xv), J = ∂x, (2.6)
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and K is exactly a recursion operator of the well-known KdV
hierarchy

vt = Knvx, n = 0,1,2, . . . .

The first equation (m = 0) in the NKdV hierarchy (2.5) is
a trivial equation,

vt = JG0 = 0, JG0 = KG−1 = 0.

The second equation (m = −1) in the NKdV hierarchy
(2.5) takes

vt = G−1,x , KG−1 = 0,

which is exactly the NKdV equation (1.1) but replacing
G−1 = w.

In a similar way to that in Ref. [32], we construct a zero-
curvature representation for the NKdV hierarchy.

Proposition 1. Let U be the spectral matrix defined in (2.2),
and then, for an arbitrarily smooth function G ∈ C∞(R), the
operator equation

Vx − [U,V ] = U ′[KG] − λU ′[JG] (2.7)

admits a matrix solution

V = V (G) =
(

− 1
4Gx

1
2G

− 1
4Gxx − 1

2vG + 1
2λG 1

4Gx

)
λ−1,

which is a linear function with respect to G, and the Gateaux
derivative is defined by (2.3).

Theorem 1. Suppose that {Gj, j = −1, − 2, . . . } is the
first Lenard sequence defined by (2.4), and Vj = V (Gj ) is a
corresponding solution to the operator equation (2.7) for G =
Gj . With Vj being its coefficients, a mth matrix polynomial in
λ is constructed as follows:

Wm =
m∑

j=1

Vjλ
−m+j .

We then conclude that the NKdV hierarchy (2.5) admits zero
curvature representation

Ut − Wm,x + [U,Wm] = 0,

which is equivalent to

ϕx = Uϕ =
(

0 1

λ − v 0

)
ϕ,

ϕt = Wmϕ

=
m∑

j=1

(
− 1

4Gj,x
1
2Gj

− 1
4Gj,xx − 1

2vGj + 1
2λGj

1
4Gj,x

)
λ−m+j−1ϕ.

(2.8)

This theorem actually provides a unified formula of the Lax
pairs for the whole NKdV hierarchy (2.5).

According to theorem 1, the NKdV equation (1.1) admits a
Lax pair with parameter λ

Lψ ≡ ψxx + vψ = λψ,

ψt = 1
2wλ−1ψx − 1

4wxλ
−1ψ,

or, equivalently,

Lψ = (
∂2
x + v

)
ψ = λψ,

(2.9)
Mψ = (

4∂2
x ∂t + 4v∂t + 2w∂x + 3wx

)
ψ = 0.

The NKdV equation (1.1) also possesses a Lax pair without
the parameter

Lψ = (
∂2
x + v

)
ψ = 0,

(2.10)
Mψ = (

4∂2
x ∂t + 4v∂t + 2w∂x + 3wx

)
ψ = 0.

Especially, taking the constraint v = −uxx/u and w = u2 ∈
KerK , we then further get the NKdV equation (1.2) and its
Lax pair (1.4).

B. Hamiltonian structures

Proposition 2. For the spectral problem (2.2), assume that V
is a solution to the following stationary zero curvature equation
with the given homogeneous rank [24],

Vx = [U,V ] ≡ UV − V U. (2.11)

There then exists a constant β such that

δ

δv

〈
V,

∂U

∂λ

〉
=

(
λ−β ∂

∂λ
λβ

)〈
V,

∂U

∂v

〉
(2.12)

holds, where 〈·,·〉 stands for the trace of the product of two
matrices.

Let {Gm, m = −1, − 2 . . . } be the negative-order Lenard
sequence recursively given through (2.4) and

Gλ =
−1∑

m=−∞
Gmλ−m (2.13)

be a series with respect to λ. Assume that Vλ = V (Gλ) is the
matrix solution for the operator equation (2.9) corresponding
to G = Gλ. So, Vλ can be written as

Vλ =
−1∑

m=−∞
Vmλ−m.

We then have the following proposition.
Proposition 3. Vλ satisfies the following Lax form:

Vλ,x = [U,Vλ].

Proof. By (2.4), we have

(K − λJ )Gλ

=
−1∑

m=−∞
KGmλ−m −

−1∑
m=−∞

JGmλ−m+1

= KG−1λ
−1 +

−1∑
m=−∞

(KGm−1 − JGm)λ−m = 0.

Therefore, proposition 1 implies

Vλ,x − [U,Vλ] = U ′[KGλ] − λU ′[JGλ]

= U ′[KGλ − λJGλ] = 0.

�
We next discuss the Hamiltonian structures of the hierarchy

(2.5). It is crucial to find infinitely many conserved densities.
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Theorem 2.
(1) The hierarchy (2.5) possesses the bi-Hamiltonian struc-

tures

vt = K
δHm−1

δv
= J

δHm

δv
, m = −1, − 2 . . . , (2.14)

where the Hamiltonian functions Hm are implicitly given
through the following formulas:

H−1 = G−1 ∈ KerK, Hm = Gm

m
, m = −1, − 2 . . . .

(2.15)

(2) The hierarchy (2.5) is integrable in the Liouville sense.
(3) The Hamiltonian functions {Hm} are conserved densities

of the whole hierarchy (2.5) and, therefore, they are in
involution in pairs for the Poisson bracket

{Hn,Hm} =
(

δHn

δv
,J

δHm

δv

)
=

∫
δHn

δv
J

δHm

δv
dx,

where (·,·) stands for inner product of two functions.
Proof. A direction calculation leads to〈

Vλ,
∂U

∂λ

〉
= 1

2
Gλ,

〈
Vλ,

∂U

∂v

〉
= −1

2
Gλ.

By using the trace identity (2.12) and the expansion (2.13), we
obtain

δ

δv

( −1∑
m=−∞

Gmλ−m

)

=
−1∑

m=−∞
(m − 1 − β)Gm−1λ

−m

+ (−1 − β)G−1, m = −1, − 2 . . . . (2.16)

If taking G−1 
= 0 from (2.16) we find β = −1 and

δHm

δv
= Gm−1, m = −1, − 2 . . . , (2.17)

where Hm are given by (2.15). Substituting (2.17) into (2.5)
yields the bi-Hamiltonian structures (2.14).

We next consider infinitely many conserved densities to
guarantee integrability of the hierarchy (2.16). Since J and K

are skew-symmetric operators, we infer that

L∗J = (J−1K)∗J = −K∗ = K = JL,

which implies

{Hn,Hm} =
(

δHn

δv
,J

δHm

δv

)
= (LnG−1,JLmG−1)

= (LnG−1,L∗JLm−1G−1) = (Ln+1G−1,JLm−1G0)

= {Hn+1,Hm−1}, m,n � −1.

Repeating the above argument gives

{Hn,Hm} = {Hm,Hn} = {Hm+n,H−1}. (2.18)

On the other hand, we find

{Hm,Hn} = (LmG−1,JLnG−1)

= (J ∗LmG−1,LnG−1) = −{Hn,Hm}. (2.19)

Combining (2.18) with (2.19) then leads to

{Hm,Hn} = 0,

which implies that {Hm} are in involution, and, therefore, the
hierarchy (2.14) are integrable in the Liouville sense.

Especially, under the constraint (1.3), we obtain bi-
Hamilton structures of the NKdV equation (1.2)

vt = K
δH−1

δv
= J

δH0

δu
,

where two Hamiltonian functions are given by

H0 = 1
3u3, H−1 = −u2,

which can also be written in a conserved density form in terms
of an equivalence class,

H0 ∼ −1

3

∫
u3dx, H−1 ∼ −

∫
u2dx.

III. RELATIONS TO OTHER REMARKABLE SYSTEMS

In this section, we discuss relations of the NKdV hierarchy
(2.5) with Kupershmidt deformation, soliton equations with
self-consistent sources and Ermakov-Pinney systems.

Recently, a class of new integrable systems, known as the
Kupershmidt deformation of soliton equations, have attracted
much attention. This topic is the work of Kupershmidt
and Karasu-Kalkani’ [44–46]. A Kupershmidt nonholonomic
deformation of the NKdV hierarchy (2.5) takes

vt = JGm + Jw, m = 0, − 1, − 2, . . . , Kw = 0, (3.1)

where two operators K and J are given by (1.4). The first
flow (m = 0) of the hierarchy (3.1) then is exactly the NKdV
equation (1.1),

vt = wx, wxxx + 4vwx + 2vxw = 0,

which may be regarded as a Kupershmidt nonholonomic de-
formation of the trivial equation for the NKdV hierarchy (2.5).
Soliton equations with self-consistent sources have important
physical applications; for example, the KdV equation with a
self-consistent source describes the interaction of long and
short capillary-gravity waves [47–50].

For N distinct λj of the spectral problem (2.1), the
functional gradient of λ with respect to v is

δλj

δv
= ψ2

j ,

and we then define the NKdV hierarchy with self-consistent
sources by

vt = JGm + αJ
δλ

δv
= JGm + αJ

N∑
j=1

ψ2
j ,

ψj,xx + (v + λj )ψj = 0, (3.2)

m = 0, − 1, − 2, . . . ; j = 1, . . . ,N.

Taking m = −1, the hierarchy (3.4) gives the NKdV
equation with self-consistent sources,

vt = wx + α∂x

N∑
j=1

ψ2
j , wxxx + 4vwx + 2vxw = 0,

ψj,xx + (v + λj )ψj = 0, j = 1, . . . ,N.
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Obviously, taking N = 1, m = 0, α = 1, v → v + λ1 in
the hierarchy (3.4), we then get NKdV equation (1.2),

vt = (
ψ2

1

)
x
, ψ1,xx + vψ1 = 0.

The Ermakov-Pinney equation is a quite famous example of
a nonlinear ordinary differential equation. Such a system has
been shown to be relevant to a number of physical contexts,
including quantum cosmology, quantum field theory, nonlinear
elasticity, and nonlinear optics [51–58].

Theorem 3. (u,v) is a solution of NKdV-1 equation (1.2) if
and only if (w,v) with w = u2 is a solution of NKdV equation
(1.1) under the transformation

uxx + vu = 0,

which is actually a linear Schrödinger equation or Hill
equation.

Theorem 4. (u,v) is a solution of the NKdV-1 equation (1.2)
if and only if (w,v) is a solution of the NKdV equation (1.1)
as φ is a solution of the Riccati equation

φx + φ2 + v = 0,

while u is the Baker-Akhiezer function

u = exp

( ∫ x

0
φdx

)
, w = u2.

Proposition 4. Suppose that (w,v) is a solution of the NKdV
equation (1.1). Let w = pt = ψ2, v = px, then ψ satisfies a
Ermakov-Pinney equation,

ψxx + vψ = μ

ψ3
, (3.3)

where μ is an integration constant. Especially, if (u,v)
is the solution of the NKdV-1 equation (1.2), let u =
ψ exp(i

∫
μψ−2dx), then ψ also satisfies the Ermakov-Pinney

equation (3.3).
Using the Muira transformation [26]

v = −ϕxx − ϕ2
x,

the NKdV eqation (1.2) can be transformed to the sind-Gordon
equation

ϕxt = sinh ϕ.

IV. DARBOUX TRANSFORMATION OF
NKDV EQUATIONS

In this section, we shall construct a Darboux transformation
for the general NKdV equation (1.1) and then reduce it to the
NKdV-1 equation (1.2).

A. Darboux transformation

A Darboux transformation is actually a special gauge
transformation

ψ̃ = T ψ (4.1)

of solutions of the Lax pair (2.9), where T is a differential
operator (for the Lax pair (2.10), the Darboux transformation
with λ = 0 can be obtained). It requires that ψ̃ also satisfies

the same Lax pair (2.9) with some L̃ and M̃ , i.e.,

L̃ψ̃ = λψ̃, L̃ = T LT −1, M̃ψ̃ = 0, M̃ = T MT −1.

(4.2)

Apparently, we have

[L̃,M̃] = T [L,M]T −1,

which implies that L̃ and M̃ are required to have the same
forms as L and M , respectively, in order to make system (2.9)
invariant under the gauge transformation (3.4). At the same
time, the old potentials u and v in L, M will be mapped onto
new potentials ũ and ṽ in L̃, M̃ . This process can be done
continually and usually it may yield a series of multisoliton
solutions.

Let us now set up a Darboux transformation for the system
(2.9). Let ψ0 = ψ0(x,t) be a basic solution of Lax pair (2.9)
for λ0, and use it to define the gauge transformation

ψ̃ = T ψ, (4.3)

where

T = ∂x − σ, σ = ∂x ln ψ0. (4.4)

From (2.9) and (4.4), one can see that σ satisfies

σx + σ 2 + v − λ = 0 (4.5)

4σxxt + 12σxσt + 4vσt + 2wσx + 6σσxt + 3wxx = 0.

(4.6)

Proposition 5. The operator L̃ determined by (4.2) has the
same form as L, that is,

L̃ = ∂2
x + ṽ,

where the transformation between v and ṽ is given by

ṽ = v + 2σx. (4.7)

The transformation: (ψ,v) → (ψ̃,ṽ) is called a Darboux
transformation of the first spectral problem of Lax pair (2.9).

Proof. According to (4.2), we just prove

L̃T = T L,

that is, (
∂2
x + ṽ

)
(∂x − σ ) = (∂x − σ )

(
∂2
x + v

)
,

which is true through (4.5) and (4.7).
Proposition 6. Under the transformation (4.3), the operator

M̃ determined by (4.2) has the same form as M , that is,

M̃ = 4∂2
x ∂t + 4ṽ∂t − 2w̃∂x − 3w̃x, (4.8)

where the transformations between w, v and w̃, ṽ are given by

w̃ = w + 2σt , ṽ = v + 2σx. (4.9)

The transformation (ψ,w,v) → (ψ̃,w̃,ṽ) is the Darboux trans-
formation of the second spectral problem of Lax pair (2.9).

Proof. To see that M̃ has the form (4.8) the same as M , we
just prove

M̃T = T M, (4.10)

where

M̃ = 4∂2
x ∂t + f ∂t + g∂x + h, (4.11)
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with three functions f , g, and h to be determined. Substituting
M̃, M, L into (4.10) and comparing the coefficients of all
distinct operators leads to the following.

Coefficient of operator ∂x∂t :

f = 4v + 8σx = 4ṽ,

which holds by using (4.9).
Coefficient of operator ∂2

x :

g = 2w + 4σt = 2w̃,

which is implied from (4.9).
Coefficient of operator ∂x :

h = 8σxt + 5wx − 2σw + gσ

= 6σxt + 3wx + 2(σx + σ 2 + v)t
= 6σxt + 3wx = 3w̃x.

Here we have used equations (4.5) and (4.9).
Coefficient of operator ∂t :

−4σxx − f σ = 4vx − 4vσ,

that is,

σxx + 2σσx + vx = 0.

which holds by using (4.5).
Coefficient of nonoperator:

4σxxt + f σt + gσx + σh + 3wxx − 3σwx = 0,

that is,

4σxxt + 12σxσt + 4vσt + 2wσx + 6σσxt + 3wxx = 0,

which is Eq. (4.6). We complete the proof. �
Propositions 4 and 5 tell us that the transformations (4.3)

and (4.9) send the Lax pair (2.9) to another Lax pair (4.2)
in the same type. Therefore, both Lax pairs lead to the
same NKdV equation (1.1). So we call the transformation
(ψ,w,v) → (ψ̃,w̃,ṽ) a Darboux transformation of the NKdV
equation (1.1). In summary, we arrive at the following theorem.

Theorem 5. A solution w, v of the NKdV equation (1.1)
is mapped onto its new solution w̃, ṽ under the Darboux
transformations (4.3) and (4.9).

B. Reduction of the Darboux transformation

To get the Darboux transformation for NKdV-1 equation
(1.2), we consider two reductions of Darboux transformations
(4.3) and (4.9).

Corollary 1. Let λ = k2 > 0, then under the constraints
w = u2, v = −uxx/u, the Darboux transformations (4.3) and
(4.9) can be reduced to a Darboux transformation of the NKdV-
1 equation (1.2), (ψ,v,u) → (ψ̃,ṽ,ũ), where

ψ̃ = T ψ, ṽ = v + 2σx, ũ = k−1(ux − σu) = k−1T u.

(4.12)

Proof. For λ > 0, suppose that (v,u) is a solution of the
NKdV-1 equation and ψ is an eigenfunction of Lax pair (1.4),
and then we have

λ−1(uψx − uxψ) = ∂−1
x (uψ).

Therefore, the Lax pair (1.4) can be written as

ψxx + vψ = λψ,

ψt = 1
2uλ−1(uψx − uxψ)

= 1
2u∂−1

x (uψ) = N (u,λ)ψ, (4.13)

where N = N (u,λ) = 1
2u∂−1

x u.
According to proposition 6, the first spectral problem of

Lax pair (4.13) is covariant under the transformation (4.12),
that is,

ψ̃xx + ṽψ̃ = λψ̃.

So we only need to prove that

ψ̃t = N (ũ,λ)ψ̃. (4.14)

Substituting (4.12) into the left-hand side of (4.14) gives

ψ̃t = (ψt )x − (σψ)t = (Nψ)x − σNψ − (
ψ−1

0 Nψ0
)
x
ψ,

= 1
2

[
(ux − σu)∂−1

x (uψ) − ψ−1
0 ψ(ux − σu)∂−1

x (uψ0)
]
,

= 1
2kũ

[
∂−1
x (uψ) + k−2(ux − σu)ψ

]
. (4.15)

In the same way, substituting (4.12) into the right-hand side of
(4.14) gives

N (ũ,λ)ψ̃ = 1
2 ũ∂−1

x [k−1(ux − σu)(ψx − σψ)],

= 1
2k−1ũ

[
uxψ − ∂−1

x (uxxψ) − σuψ

+ ∂−1
x

(
ψ−1

0 ψ0,xxuψ
)]

,

= 1
2k−1ũ

[
k2∂−1

x (uψ) + (ux − σu)ψ
]
. (4.16)

Combining (4.15) and (4.16) implies that (4.14) holds. �
Corollary 2. Let λ = 0, then under the constraints w =

u2, v = −uxx/u, the Darboux transformation (4.3) and (4.9)
can be reduced to Darboux transformation of the NKdV-1
equation (1.2): (ψ,v,u) → (ψ̃,ṽ,ũ), in which

ṽ = v + 2σx, ψ̃ = ψ − ψ−1
0 σ∂−1

x (ψ0ψ),
(4.17)

ũ =
{

ψ−1
0 σ , u = 0,

u − ψ−1
0 σ∂−1

x (ψ0u), u 
= 0,

with σ = ∂x ln(1 + ∂−1
x ψ2

0 ).

V. APPLICATIONS OF THE DARBOUX
TRANSFORMATION

In this section, we shall apply the Darboux transformations
(4.3) and (4.9) to obtain kink and bell types of explicit solutions
for the NKdV equation (1.1).

A. The kink wave solutions

For the case of λ = k2 > 0, we substitute v = 0,w = 1 into
the Lax pair (2.9) and choose the following basic solution:

ψ = eξ + e−ξ = 2 cosh ξ, ξ = kx − 1

2k
t + γ, (5.1)

where γ and k are two arbitrary constants.
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Taking λ = k2
1, (4.4) and (5.1) then lead to

σ1 = ∂x ln ψ = k1 tanh ξ1, ξ1 = k1x − 1

2k1
t + γ1.

The Darboux transformation (4.9) gives a bell-type solution
for the NKdV equation (1.1),

ṽI = 2σ1,x = 2k2
1sech2ξ1, w̃I = 1 − 2σ1,t = tanh2 ξ1. (5.2)

By using Darboux transformation (4.12), we get a kink-type
wave solution for the NKdV equation (1.2),

ũI = k−1
1 (ux − σu) = − tanh ξ1,

(5.3)

ξ1 = k1x − 1

2k1
t + γ1.

Remark 1. There is a large difference between the traveling
waves of the NKdV equation (1.2) and those of the classical
KdV equation. For the NKdV equation (1.2), its one-wave
solution is a negative-moving (i.e., from right to left) kink
wave with velocity −1/2k2

1 , amplitude ±1, and width 1/k1.

Its amplitude is independent of velocity, and width is directly
proportional to the velocity. For the KdV equation

ut + 6uux + uxxx = 0, (5.4)

the one-soliton solution is

u = k2

2
sech2 k(x − k2t)

2
, (5.5)

which is a bell-type positive-moving wave with velocity k2,
amplitude k2/2, and width 1/k, respectively. Its amplitude is
directly proportional to velocity, and the width is inversely
proportional to the velocity.

Let us now construct two-kink solutions to see the interac-
tion of two-kink solutions. According to (4.4),

ψ̃ = T ψ = (∂x − σ1)(eξ + e−ξ ) (5.6)

is also an eigenfunction of Lax pair (2.9). Taking λ = k2
2, we

have

σ2 = −k1 tanh ξ1 + k2
1 − k2

2

k1 tanh ξ1 − k2 tanh ξ2
. (5.7)

Repeating the Darboux transformation (4.9) one more time,
we get a two-soliton solution for the NKdV equation (1.1)

ṽI I = ṽI + 2σ2,x =
(
k2

1 − k2
2

)(
k2

2sech2ξ2 − k2
1sech2ξ1

)
(k1 tanh ξ1 − k2 tanh ξ2)2

,

w̃II = w̃I − 2σ2,t =
(

k1 tanh ξ2 − k2 tanh ξ1

k1 tanh ξ1 − k2 tanh ξ2

)2

.

Therefore, we obtain a two-kink wave solution of the NKdV
equation (1.2),

˜̃u = k2 tanh ξ1 − k1 tanh ξ2

k1 tanh ξ1 − k2 tanh ξ2
. (5.8)

Let us use the two-kink wave solution (5.8) to analyze the
interaction of the two one-soliton solutions (Fig. 1). Without
loss of generality, we suppose k1 > k2 > 0, and then we have

ξ2 = k2

k1

[
ξ1 − k1

2

(
1

k2
2

− 1

k2
1

)
t

]
.
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FIG. 1. (Color online) The two-kink wave solution u(x,t) with
parameters k1 = 1, k2 = 0.6. (a) Perspective view of the wave. (b)
Overhead view of the wave, with contour plot shown. The bright lines
are crests and the dark lines are troughs.

Therefore, on the fixed line ξ1 = const, we get

tanh ξ2 ∼ −1, t → +∞,

and it follows (5.8) that

˜̃u ∼ k2 tanh ξ1 + k1

k1 tanh ξ1 + k2

= coth

(
ξ1 − 1

2
ln

k1 − k2

k1 + k2

)
, t → +∞. (5.9)

In a similar way, one can get

tanh ξ2 ∼ 1 as t → −∞,

which are the main parts compared with terms 1 and e2ξ1 , and
it follows (3.19) that

˜̃u ∼ k2e
2ξ1 − k1

k1e2ξ1 − k2
= coth

(
ξ1 + 1

2
ln

k1 − k2

k1 + k2

)
, t → −∞.

(5.10)
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In a similar way, on the line ξ2 = const, we will arrive at

˜̃u ∼ tanh

(
ξ2 + 1

2
ln

k1 − k2

k1 + k2

)
, as t → +∞, (5.11)

˜̃u ∼ tanh

(
ξ2 − 1

2
ln

k1 − k2

k1 + k2

)
, as t → −∞. (5.12)

Remark 2. From expressions (5.9) to (5.12), we see that
the two-kink wave solution (5.8) is a singular solution, which
is able to be decomposed into a singular kink-type solution
and a smooth kink wave solutions. The expressions (5.10) and
(5.12) show that the wave tanh ξ2 is on the left of the wave
coth ξ1 before their interaction, while the expressions (5.9)
and (5.11) show that the wave coth ξ1 is on the left of the wave
tanh ξ2 after their interaction. The shapes of the two kink waves
coth ξ1 and tanh ξ2 do not change except their phases. Their
phases of the two waves coth ξ1 and tanh ξ2 are ln k1−k2

k1+k2
> 0 and

− ln k1−k2
k1+k2

< 0, respectively, as the wave is negatively going
along the x axis. A very interesting case is particular at t = 0:
Collision of such two kink waves forms a smooth bell-type
soliton and its singularity disappears (see Fig. 2).

After their interaction, it can be seen that the two kink
waves resume their original shapes. At the right moment
of interaction, the two kink waves are fused into a smooth
bell-type soliton. The two-kink wave interactions possess the
regular elastic-collision features and pass through each other,
and their shapes keep unchanged with a phase shift after
the interaction. Here, we also demonstrate a fact that the
large-amplitude kink wave with faster velocity overtakes the
small-amplitude one and, after collision, the smaller one is left
behind.

B. The bell-type soliton solutions

(i) For the case of λ = 0 (i.e., without parameter λ), we
substitute v = −k2, w = 0 into the Lax pair (2.10), and choose
the following basic solution as

ψ = eξ + e−ξ , ξ = kx + 1

2k
t,

where k is an arbitrary constant.
Taking k = k1, (4.4) gives

σ = σ1 = ∂x ln ψ = k1 tanh ξ1, ξ1 = k1x + 1

2k1
t. (5.13)

Using the Darboux transformation (4.9), we have a one-soliton
solution for the NKdV equation (1.1),

ṽ = v + 2σ1,x = 2k2
1sech2ξ1 − k2

1, w̃ = −2σ1,t = sech2ξ1.

(5.14)

So we get a one-soliton solution for the NKdV-1 equation
(1.2) by using Darboux transformation (4.17)

ũ = sechξ1, ξ1 = k1x + 1

2k1
t. (5.15)

Remark 3. For the negative-order KdV equation (1.2), its
one-soiton solution (5.15) is a smooth bell-type negative-
moving wave, whose velocity, amplitude, and width are 1/2k2

1,
±1, and 1/k1, respectively. Its amplitude is independent of
velocity, and the width is directly proportional to the velocity.

-10 -5 5 10

-7.5

-5

-2.5

2.5

5

7.5

10

(a)

-4 -2 2 4

-1

-0.5

0.5

1

(b)

-10 -5 5 10

-1

-0.8

-0.6

-0.4

-0.2

(c)

-4 -2 2 4

-2

-1

1

(d)

-10 -5 5 10

-10

-5

5

10

(e)

FIG. 2. (Color online) Interaction between singular soliton cothξ1

and smooth soliton tanhξ2 with the following parameters: (a) t = −3,
(b) t = −0.05, (c) t = 0, (d) t = 0.05, and (e) t = 3.

(ii) For the case of λ = −k2, we take a seed solution of v =
−2k2,w = 1 in the Lax pair (2.9) and choose the following
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basic solution as

ψ = eξ + e−ξ , ξ = kx − 1

2k
t + γ,

where k is an arbitrary constant.
Taking k = k1 sends (5.1) to

σ = σ1 = ∂x ln ψ = k1 tanh ξ1, ξ1 = k1x − 1

2k1
t + γ1.

(5.16)

Using the Darboux transformation (3.12), we then get the
one-soliton solution

ṽI = v + 2σ1,x = −2k2
1tanh2ξ1 + γ1,

(5.17)
w̃I = 1 − 2σ1,t = 1 + sech2ξ1,

which cannot satisfies the constraint (3.3), so
√

w̃I is not
soliton for the NKdV equation (1.2).

Remark 4. For the NKdV equation (1.1), its one-soiton
solution (5.14) is a smooth bell-type positive-moving wave,
whose velocity, amplitude, and width are 1/2k2

1 , ±1, and 1/k1,
respectively. Its amplitude is independent of velocity, and the
width is directly proportional to the velocity.

Let us construct a two-soliton solution of the NKdV
equation (1.1). According to the gauge transformation (4.4),

ψ̃ = T ψ = (∂x − σ1)(eξ + e−ξ )

is also an eigenfunction of Lax (2.9). We have

σ2 = −k1 tanh ξ1 + k2
1 − k2

2

k1 tanh ξ1 − k2 tanh ξ2
.

Repeating the Darboux transformation (4.9) one more time,
we obtain

ṽI I = ṽI + 2σ2,x =
(
k2

1 − k2
2

)(
k2

2sech2ξ2 − k2
1sech2ξ1

)
(k1 tanh ξ1 − k2 tanh ξ2)2

,

w̃II = w̃I − 2σ2,t =
(

k1 tanh ξ2 − k2 tanh ξ1

k1 tanh ξ1 − k2 tanh ξ2

)2

,

which is the same for NKdV-1 equation (1.2). So we get two-
soliton solution with (5.8)

˜̃u = ±k1 tanh ξ2 − k2 tanh ξ1

k1 tanh ξ1 − k2 tanh ξ2
,

but here ξj = kjx − 1
2kj

t, j = 1,2.

VI. BILINEARIZATION OF THE NKDV EQUATION

The bilinear derivative method, developed by Hirota [9],
has become a powerful approach to construct exact solutions of
nonlinear equations. Once a nonlinear equation is written in a
bilinear form by using some transformation, then multisolitary
wave solutions or quasiperiodic wave solutions usually can
be obtained [59–63]. However, unfortunately, this method is
not as direct as many people might wish because the original
equation is reduced to two or more bilinear equations under
new variables called Hirota variables. Since there is no general
rule to select Hirota variables, there is no rule to choose some
essential formulas (such as exchange formulas) either. The
construction of a bilinear Bäcklund transformation especially
relies on a particular skill and appropriate exchange formulas.
On the other hand, in recent years, Lambert and his coworkers
have found a type of generalized Bell polynomial that plays an
important role in seeking the characterization of bilinearized
equations. Based on the Bell polynomials, they presented an
alternative procedure to obtain parameter families of a bilinear
Bäcklund transformation and Lax pairs for soliton equations
in a quick and short way [64–66].

A. Multidimensional binary Bell polynomials

The main tool we use here is a class of generalized
multidimensional binary Bell polynomials.

Definition 1. Let nk � 0, k = 1, . . . ,� denote arbitrary
integers, f = f (x1, . . . ,x�) be a C∞ multivariable function,
and then

Yn1x1,...,n�x�
(f ) ≡ exp(−f )∂n1

x1
. . . ∂n�

x�
exp(f ) (6.1)

is a polynomial in the partial derivatives of f with respect to
x1, . . . ,x�, which we call a multidimensional Bell polynomial
(a generalized Bell polynomial or Y polynomial).

For the two-dimensional case, let f = f (x,t), and then the
associated Bell polynomials through (6.1) can produce the
following representatives:

Yx(f ) = fx, Y2x(f ) = f2x + f 2
x ,

Y3x(f ) = f3x + 3fxf2x + f 3
x ,

Yx,t (f ) = fx,t + fxft ,

Y2x,t (f ) = f2x,t + f2xft + 2fx,tfx + f 2
x ft ,

. . . . . . .

Definition 2. Based on the use of the above Bell polyno-
mials (6.1), the multidimensional binary Bell polynomials (Y
polynomials) are defined as follows:

Yn1x1,...,n�x�
(g,h) = Yn1x1,...,n�x�

(f ) |
fr1x1 ,...,r�x�

=
⎧⎨
⎩

gr1x1,...,r�x�
, r1 + · · · + r� is odd,

hr1x1,...,r�x�
, r1 + · · · + r� is even,

which is a multivariable polynomial with respect to all partial
derivatives gr1x1,...,r�x�

(r1 + · · · + r� is odd) and hr1x1,...,r�x�

(r1 + · · · + r� is even), rk = 0, . . . ,nk, k = 0, . . . ,�.
The binary Bell polynomials also inherit the easily recog-

nizable partial structures. The first few lower-order binary Bell

polynomials are

Yx(g) = gx, Y2x(g,h) = h2x + g2
x,

Yx,t (g,h) = hxt + gxgt . (6.2)

Y3x(g,h) = g3x + 3gxh2x + g3
x, . . . .
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Proposition 7. The link between binary Bell polynomials
Yn1x1,...,n�x�

(g,h) and the standard Hirota bilinear expression
Dn1

x1
. . . Dn�

x�
FG can be given by an identity

Yn1x1,...,n�x�
(g = ln F/G,h = ln FG)

= (FG)−1Dn1
x1

. . . Dn�

x�
FG, (6.3)

in which n1 + n2 + · · · + n� � 1 and operators Dx1 , . . . ,Dx�

are classical Hirota bilinear operators defined by

Dn1
x1

. . . Dn�

x�
FG = (

∂x1 − ∂x ′
1

)n1
. . .

(
∂x�

− ∂x ′
�

)n�
F (x1, . . . ,x�)

×G(x ′
1, . . . ,x

′
�)|x ′

1=x1,...,x
′
�=x�

.

In the special case of F = G, the formula (6.4) becomes

F−2Dn1
x1

. . . Dn�

x�
GG

= Yn1x1,...,n�x�
(0,q = 2 ln G)

=
{

0, n1 + · · · + n� is odd,

Pn1x1,...,n�x�
(q), n1 + · · · + n� is even.

(6.4)

The first few P polynomial are

P2x(q) = q2x, Px,t (q) = qxt , P4x(q) = q4x + 3q2
2x,

(6.5)
P6x(q) = q6x + 15q2xq4x + 15q3

2x, . . . .

The formulas (6.4) and (6.5) will prove particularly useful in
connecting nonlinear equations to their corresponding bilinear
forms. This means that if a nonlinear equation is expressible
by a linear combination of P polynomials, then the nonlinear
equation can be transformed into a linear equation.

Proposition 8. The binary Bell polynomials
Yn1x1,...,n�x�

(v,w) can be separated into P polynomials
and Y polynomials

(FG)−1Dn1
x1

Dn�

x�
F · G

= Yn1x1,...,n�x�
(g,h)|g=ln F/G,h=ln FG

= Yn1x1,...,n�x�
(g,g + q,)|g=ln F/G,q=2 ln G

=
∑

n1+···+n�=even

n1∑
r1=0

· · ·
n�∑

r�=0

�∏
i=1

(
ni

ri

)

×Pr1x1,...,r�x�
(q)Y(n1−r1)x1,...,(n�−r�)x�

(v). (6.6)

The key property of the multidimensional Bell polynomials

Yn1x1,...,n�x�
(g)|g=ln ψ = ψn1x1,...,n�x�

/ψ (6.7)

implies that the binary Bell polynomials Yn1x1,...,n�x�
(g,h) still

can be linearized by means of the Hopf-Cole transformation
g = ln ψ , that is, ψ = F/G. The formulas (6.6) and (6.7) will
then provide the shortest way to the associated Lax system of
nonlinear equations.

B. Bilinearization

Theorem 6. Under the transformation

v = v0 + 2(ln G)2x, w = w0 + 2(ln G)xt ,

the NKdV equation (1.1) can be bilinearized into(
D4

x + 12v0D
2
x − DxDy

)
GG = 0,

(6.8)(
2DtD

3
x + 6w0D

2
x + DtDy

)
GG = 0,

where y is an auxiliary variable and u0, v0 are two constant
solutions of the NKdV equation (1.1).

Proof. The invariance of the NKdV equation (1.1) under
the scale transformation

x → λx, t → λαt, v → λ−2v, w → λ−α−1w

shows that the dimensions of the fields v and w are −2 and
−(α + 1), respectively. So we may introduce a dimensionless
potential field q by setting

v = v0 + q2x, w = w0 − qxt . (6.9)

Substituting the transformation (6.9) into Eq. (1.1), we can
write the resulting equation in the following form:

q4x,t + 4q2xq2x,t + 2q3xqxt + 4v0q2x,t + 2w0q3x = 0,

which is regrouped as follows:
2
3q4x,t + 2(q2xq2x,t + qxtq3x) + 1

3q4x,t

+ 2q2xq2x,t + 4v0q2x,t + 2w0q3x = 0, (6.10)

where we will see that such an expression is necessary to get
a bilinear form of the equation (1.1). Further integrating the
equation (6.10) with respect to x yields

E(q) ≡ 2
3 (q3x,t + 3q2xqxt + 3w0q2x)

+ 1
3∂−1

x ∂t

(
q4x + 3q2

2x + 12v0q2x

) = 0. (6.11)

In order to write Eq. (6.11) in a local bilinear form, let us,
first, get rid of the integral operator ∂−1

x . To do so, we introduce
an auxiliary variable y and impose a subsidiary constraint
condition

q4x + 3q2
2x + 12v0q2x − qxy = 0. (6.12)

Equation (6.10) then becomes

2(q3x,t + 3q2xqxt + 3w0q2x) + qyt = 0. (6.13)

According to the formula (6.5), Eqs. (6.12) and (6.13) are
then cast into a pair of equations in the form of P polynomials,

P4x(q) + 12v0P2x(q) − Pxy(q) = 0,

2P3x,t (q) + 6w0P2x(q) + Pyt (q) + 3γ = 0.

Finally, by the property (6.4), making the following variable

q = 2 ln G ⇐⇒ v = v0 + 2(ln G)2x, w = w0 + 2(ln G)xt ,

we change the above system to the following bilinear forms of
the NKdV equation (1.1):(

D4
x + 12v0D

2
x − DxDy

)
GG = 0,

(6.14)(
2DtD

3
x + 6w0D

2
x + DtDy

)
GG = 0,

which is also simultaneously the bilinear system in y. This
system is easily solved with multisoliton solutions by using
the Hirota bilinear method. �

Finally, we show that the NKdV-1 equation (1.1) can
be directly bilinearized through a transformation, not Bell
polynomials. Making a dependent-variable transformation,

v = v0 + 2(ln F )xx, u = G/F, (6.15)

we can change Eq. (1.2) into

2(Fxt − FxFt ) = G2,

FxxG − 2FxGx + GxxF + v0FG = 0,
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which is equivalent to the bilinear form

DxDtFF = G2,
(
D2

x + v0
)
FG = 0. (6.16)

It is obvious that the bilinear form of the NKdV-1 (6.16) is
more simple than the bilinear form of NKdV (6.15).

C. N-soliton solutions

In the same procedure as the normal perturbation method,
let us expand G in the power series of a small parameter ε as
follows:

G = 1 + εg(1) + ε2g(2) + ε3g(3) + · · · .

Substituting the above equation into (6.8) and arranging each
order of ε, we have

ε :
(
D4

x + 12v0D
2
x − DxDy

)
g11 = 0,

(6.17)(
2DtD

3
x + 6w0D

2
x + DtDy

)
g(1)1 = 0,

ε2 :
(
D4

x + 12v0D
2
x − DxDy

)
(2g(2)1 + g(1)g(1)) = 0,

(6.18)(
2DtD

3
x + 6w0D

2
x + DtDy

)
(2g(2)1 + g(1)g(1)) = 0,

ε3 :
(
D4

x + 12v0D
2
x − DxDy

)
(g(3)1 + g(1)g(2)) = 0,(

2DtD
3
x + 6w0D

2
x + DtDy

)
(g(3)1 + g(1)g(2)) = 0,

(6.19)

. . . . . .

By employing the formulas mentioned above, the system
(6.17) is equivalent to the following linear system:

g(1)
xxxx + 12v0g

(1)
xx − g(1)

xy = 0,

2g
(1)
xxxt + 6w0g

(1)
xx + g

(1)
yt = 0,

which has solution

g(1) = eξ , ξ = kx − 2kw0

k2 + 4v0
t + (k3 + 12v0k)y + σ,

(6.20)

where k and σ are two arbitrary parameters.
Substituting (6.12) into (6.10) and (6.11) and choosing

g(2) = g(3) = · · · = 0, the G expansion then is truncated with
a finite sum as

G = 1 + eξ ,

which gives regular one-soliton solution of the NKdV equation
(1.1),

v = v0 + 2∂2
x ln(1 + eξ ) = v0 + k2

2
sech2ξ/2,

w = w0 + 2∂t∂x ln(1 + eξ )
(6.21)

= w0 + k2w0

k2 + 4v0
sech2ξ/2,

ξ = kx − 2kw0

k2 + 4v0
t + γ,

where γ = (k3 + 12v0k)y + σ and k, v0, w0 are constants.

Let w0 = 1, v0 = 0, and then the solution (6.21) reads as a
kink-type solution of the NKdV-I equation (1.2),

u = ± tanh ξ/2, ξ = kx − 2

k
t + γ.

In a similar way, taking

g(1) = eξ1 + eξ2 , ξj = kjx − 2kjw0

k2
j + 4v0

t + γj , j = 1,2,

we get a two-soliton wave solution,

v = v0 + 2∂2
x ln(1 + eξ1 + eξ2 + eξ1+ξ2+A12 )

w = w0 − 2∂t∂x ln(1 + eξ1 + eξ2 + eξ1+ξ2+A12 ), (6.22)

A12 = ln

(
k1 − k2

k1 + k2

)2

.

In general, we can get a N -soliton solution of the NKdV
equation (1.1)

v = v0 + 2∂2
x ln

⎛
⎝ ∑

μj =0,1

exp
N∑

j=1

μjξj +
N∑

1�j�N

μjμlAjl

⎞
⎠ ,

w = w0 − ∂t∂x ln

⎛
⎝ ∑

μj =0,1

exp
N∑

j=1

μjξj +
N∑

1�j�N

μjμlAjl

⎞
⎠ ,

Ajl = ln

(
kj − kl

kj + kl

)2

,

where the notation
∑

μj =0,1 represents all possible com-

binations μj = 0,1, and ξj = kjx − 2kj w0

k2
j +4v0

t + γj , j =
1,2, . . . ,N.

In the following, we discuss the soliton solutions for the
NKdV-1 equation by using the bilinear equation (6.16). Let us
expand F and G in the power series of a small parameter ε as
follows:

F = 1 + f (2)ε2 + f (4)ε4 + f (6)ε6 + · · ·
G = g(1)ε + g(3)ε3 + g(5)ε5 + · · · .

Substituting the above equation into (6.16) and arranging each
order of ε, we have

g(1)
xx + v0g

(1) = 0,

g(3)
xx + v0g

(3) = −(
D2

x + v0
)
f (2)g(1),

g(5)
xx + v0g

(5) = −(
D2

x + v0
)
(f (2)g(3) + f (4)g(1)),

· · · · · · (6.23)

2f
(2)
xt = (g(1))2,

2f
(4)
xt = 2g(1)g(3) − DxDtf

(2)f (2),

2f
(6)
xt = 2g(1)g(5) + 2(g(3))2 − 2DxDtf

(3)f (3),

· · · · · · (6.24)

Let v0 = −k2. It follows from the first equation of (6.23) and
(6.24) that

g(1) = eξ , f (2) = 1

4
e2ξ , ξ = kx + 1

2k
t + γ. (6.25)
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Substituting (6.25) into the second equation of (6.23) leads to

g(3)
xx − k2g(3) = 0,

from which we may take g(3) = 0 and further choose g(5) =
· · · = 0, f (4) = · · · = 0. So F and G are truncated with a finite
sum as

F = 1 + 1
4e2ξ , G = eξ .

Finally, the formula (6.14) gives one-soliton solution of the
NKdV-1 equation (1.2),

v = 2k2sech2ξ − k2, u = sechξ.

VII. BILINEAR BÄCKLUND TRANSFORMATION

In this section, we search for the bilinear Bäcklund
transformation and Lax pair of the NKdV equation (1.1).

A. Bilinear Bäcklund transformation

Theorem 7. Suppose that F is a solution of the bilinear
equation (6.8), and if G satisfies (

D2
x − λ

)
FG = 0,

(7.1)[
DtD

2
x + 2w0Dx + (4v0 + 3λ)Dt

]
FG = 0,

then G is another solution of Eq. (6.8).
Proof. Let

q = 2 ln G, q̃ = 2 ln F

be two different solutions of Eq. (6.10). Introducing two new
variables

h = (q̃ + q)/2 = ln(FG), g = (q̃ − q)/2 = ln(F/G),

makes the function E invariant under the two fields q̃ and q,

E(q̃) − E(q) = E(h + g) − E(h − g)

= 8v0gxt + 4w0g2x + 2g3x,t + 4h2xgx,t

+ 4hx,tg2x + 4∂−1
x (h2xg2x,t + h2x,tg2x)

= 2∂x(Y2x,t (g,h) + 4v0Yt (g) − 2w0Yx(g))

+R(g,h) = 0, (7.2)

where

R(g,h) = −2∂x

[(
h2x + g2

x

)
gt

] + 4h2xgxt − 4h2x,t gx

+ 4∂−1
x (h2xg2x,t + h2x,tg2x).

This two-field invariant condition can be regarded as a natural
ansatz for a bilinear Bäcklund transformation and may produce
some required transformations under additional appropriate
constraints.

In order to decouple the two-field condition (7.2), let us
impose a constraint to express R(g,h) in the form of the x

derivative of Y polynomials. The simple possible choice of
the constraint may be

Y2x(g,h) = h2x + g2
x = λ, (7.3)

which directly leads to

R(g,h) = 2λgxt + 4h2xgxt − 4h2x,tgx − 4g2
xgxt = 6λgxt ,

(7.4)

where h2x,t = −2gxgxt and h2x = λ − g2
x are used.

Using the relations (7.2)–(7.4), we derived a coupled system
of Y polynomials

Y2x(g,h) − λ = 0,
(7.5)

Y2x,t (g,h) + (4v0 + 3λ)Yt (g) + 2w0Yx(g) = 0,

where we prefer the second equation to be expressed in the
form of conserved quantity without integration with respect
to x. This is very useful to construct conservation laws.
Apparently, the identity (6.2) directly sends the system (7.5)
to the following bilinear Bäcklund transformation(

D2
x − λ

)
FG = 0,

(7.6)[
DtD

2
x + 2w0Dx + (4v0 + 3λ)Dt

]
FG = 0,

where we have integrated the second equation in the system
(7.5) with respect to x, and w0 is the corresponding integration
constant. �

B. Inverse-scattering formulation

Theorem 8. The NKdV equation (1.1) admits a Lax pair

ψ2x + vψ = λψ,
(7.7)

4ψ2x,t + 4vψt − 2wψx − 3wxψ = 0.

Proof. By the transformation v = ln ψ , it follows from the
formulas (6.5) and (6.6) that

Yt (g) = ψt/ψ, Yx(g) = ψx/ψ,

Y2x(g,h) = q2x + ψ2x/ψ,

Y2x,t (g,h) = 2qxtψx/ψ + q2xψt/ψ + ψ2x,t /ψ,

which makes the system (7.5) linearized into a Lax pair with
parameter λ,

Lψ ≡ (
∂2
x + q2x

)
ψ = λψ, (7.8)

Mψ ≡ [
∂t∂

2
x + (4v0 + q2x)∂t + 2(qxt + w0)∂x + 3λ∂t

]
ψ,

(7.9)

or, equivalently,

ψ2x + vψ = λψ, 4ψ2x,t + 4vψt − 2wψx − 3wxψ = 0,

where Eq. (7.8) is used to get the second equation. One can
easily verify from Eqs. (7.8) and (7.9) that the integrability
condition

[L,M] = q4x,t + 4(v0 + q2x)q2x,t + 2q3x(qxt + w0) = 0

exactly gives the NKdV equation (1.1) through replacing v0 +
q2x and w0 + qxt with v and w, respectively. �

VIII. DARBOUX COVARIANT LAX PAIR

In this section, we will give a kind of Darboux covariant Lax
pair, whose form is invariant under the gauge transformation
(4.3).

Theorem 9. The NKdV equation (1.1) possesses the
following Darboux covariant Lax pair:

Lψ = λψ, Mcovψ = 0, Mcov = M + 3∂xL,
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under the gauge transformation ψ̃ = T ψ . This is actually
equivalent to the Lax pair (2.9).

Proof. In Sec. IV, we have shown that the gauge transfor-
mation (4.1) maps the operator L(q) onto a similar operator

L̃(q̃) = T L(q)T −1,

which satisfies the following covariance condition:

L̃(q̃) = L(q + �q), q̃ = q + �q, with �q = 2 ln φ.

We next want to find a third-order operator Mcov(q) with
appropriate coefficients, such that Mcov(q) is mapped by gauge
transformation (4.3) onto a similar operator M̃cov(q̃), which
satisfies the covariance condition

M̃cov(q̃) = Mcov(q + �q), q̃ = q + �q.

Suppose that φ is a solution of the following Lax pair:

Lψ = λψ, Mcovψ = 0,
(8.1)

Mcov = 4∂t∂
2
x + b1∂x + b2∂t + b3,

where b1, b2, and b3 are functions to be determined. We require
that the transformation T is necessary to map the operator Mcov

to the similar one,

T McovT
−1 = M̃cov, L̃2,cov = 4∂t∂

2
x + b̃1∂x + b̃2∂t + b̃3,

(8.2)

where b̃1, b̃2, and b̃3 satisfy the covariant condition

b̃j = bj (q) + �bj = bj (q + �q), j = 1,2,3. (8.3)

It follows from (8.1) and (5.3) that

�b1 = b̃1 − b1 = 4σt , �b2 = b̃2 − b2 = 8σx, (8.4)

�b3 = b̃3 − b3 = σ�b1 + 8σxt + b1,x, (8.5)

and σ satisfy

4σ2x,t + b̃1σx + b̃2σt + σ�b3 + b3,x = 0. (8.6)

According to the relation (8.4), it remains to determine b1, b2,
and b3 in the form of polynomial expressions in terms of q

derivatives,

bj = Fj (q,qx,qy,qxy,q2x,q2y,q2x,y, . . . ), j = 1,2,3,

such that

�Fj = Fj (q + �q,qx + �qx,qt + �qt , . . . )

−Fj (q,qx,qt , . . . ) = �bj , (8.7)

with �qkx,lt = 2(ln φ)kx,lt , k,l = 1,2, . . . , and �bj being
given through the relations (8.4)–(8.6).

Expanding the left-hand side of Eq. (8.7), we obtain

�b1 = �F1 = F1,q�q + F1,qx
�qx + F1,qy

�qy

+F1,qxy
�qxt + · · · = 4σt = 2�qxt ,

which implies that we can determine b1 up to a arbitrary
constant c1, namely

b1 = F1(qxt ) = 2qxt + c1, (8.8)

where c1 is an arbitrary constant. Proceeding in the same way,
we deduce the function b2 as follows:

b2 = F2(q2x) = 4q2x + c2, (8.9)

where c2 is an arbitrary constant.
We see from the relation (8.5) that �b3 contains the term

b1,x = q2x,t , which should be eliminated such that �b3 admits
the form (8.7). By the Lax pair (8.1), we have the following
relation:

q2x,t = −σxt − 2σσt . (8.10)

Substituting (8.8) and (8.10) into (8.5) yields

�b3 = 4σσt + 8σxt + 2q2x,t = 6σxt = 3�q2x,t .

If choosing

b3 = F3(q2x,t ) = 3q2x,t + c3, (8.11)

the third condition

�F3 = F3,q�q + F3,qx
�qx + F3,qt

�qt · · · = �b3

can be satisfied, where c3 is an arbitrary constant.
Letting c1 = −2v0, c2 = 0, c3 = w0 in (8.8), (8.9), and

(8.11), it then follows from (8.1) that we have the following
Darboux covariant evolution equation:

Mcovψ = 0, Mcov = 4∂t∂
2
x + 2qxt ∂x + 4q2x∂t + 3q2x,t ,

which coincides with Eq. (8.6). Moreover, the relation between
the two operators L2,cov and L2 are related through

Mcov = M + 3∂xL.

The compatibility condition of the Darboux covariant Lax
pair (8.1) exactly gives the NKdV equation (1.1) in the Lax
representation

[Mcov,L] = q4x,t + 4(v0 + q2x)q2x,t + q3x(qxt + w0)

= vxxx + 4vwx + 2vxw = 0.

�
In the above-repeated procedure, we are able to obtain

higher-order operators, which are also Darboux covariant
with respect to T , to produce higher-order members of the
negative-order KdV hierarchy.

IX. CONSERVATION LAWS OF NKDV EQUATIONS

In this section, we will derive the conservation laws in a
local form for the NKdV equation (1.1) based on a generalized
Miura transformation.

Theorem 10. The NKdV equation (1.1) possesses the
following infinitely many conservation laws:

Fn,t + Gn,x = 0, n = 1,2, . . . , (9.1)

where the conversed densities Fn are recursively given by
recursion formulas explicitly,

F0 = vxx − v2, F1 = −vxxx + 2vvx,

Fn = In,xx −
n∑

k=0

IkIn−k +
n−2∑
k=0

IkIn−2−k,x, (9.2)

n = 2,3, . . . ,
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and the fluxes Gn are

G0 = 2wI0 = 2wv, G1 = 2wI1 = −2wvx,
(9.3)

Gn = 2wIn, n = 2,3, . . . .

Proof. For the simplicity, let us select v0 = w0 = 0 in the
transformation (6.9). We introduce a new potential function,

q2x = η + εηx + ε2η2, (9.4)

where ε is a constant parameter. Substituting (9.4) into the Lax
equation (7.10) leads to

0 = [L,M] = (1 + ε∂x + 2ε2η)[−4(η + ε2η2)ηt

− 2(qx − εη)t ηx + η2x,t ],

which implies that v = q2x, w = −qxt given by (6.9) are a
solution of the NKdV equation (1.1) if η satisfies the following
equation:

−4(η + ε2η2)ηt − 2(qx − εη)t ηx + η2x,t − 4ηt = 0. (9.5)

On the other hand, it follows from (9.4) that

[(qx − εη)t ]x = −(η + ε2η2)t .

Therefore, Eq. (9.5) can be rewritten as

(η2x − η2)t + [2η(ε2η − qx)t ]x = 0

or a divergent-type form,

(η2x + 2ε2ηηx − η2)t + (2ηw)x = 0, (9.6)

by replacing −qxt = w.
To proceed, inserting the expansion

η =
∞∑

n=0

In(q,qx,qt . . . )εn (9.7)

into Eq. (9.4) and equating the coefficients for power of ε,
we obtain the recursion relations to calculate In in an explicit
form,

I0 = q2x = v, I1 = −I0,x = −vx,
(9.8)

In = −In−1,x −
n−2∑
k=0

IkIn−2−k, n = 2,3, . . . .

Substituting (9.7) into (9.6) and simplifying terms in the
power of ε provide us infinitely many conservation laws,

Fn,t + Gn,x = 0, n = 1,2, . . . ,

where the conversed densities Fn and the fluxes Gn are from
(9.2) and (9.3), respectively. �

Here, we already give recursion formulas (9.7) and (9.8)
to show how to generate conservation laws (9.6) based on the
first few explicitly provided. Apparently, the first equation in
conservation laws (9.6)

vxxt − 2vvt + 2wvx + 2wxv = 0

is exactly the NKdV equation (1.1)

vt + wx = 0, wxxx + 4vwx + 2wvx = 0,

which is reduced to the NKdV equation (1.2) under the
constraints v = −uxx/u and w = u2.

In conclusion, the NKdV equation (1.1) is completely
integrable and admits the bilinear Bäcklund transformation,
the Lax pair, and infinitely many local conservation laws.

X. QUASIPERIODIC SOLUTIONS OF
THE NKDV EQUATION

In this section, we study quasiperiodic wave solutions of
the NKdV equation (1.1) by using the bilinear Bäcklund
transformation (7.1) and bilinear formulas derived in Sec. IX.
In fact, quasiperiodic solutions, also called algebrogeometric
solutions or finite gap solutions, are often obtained based
on the inverse spectral theory and algebrogeometric method
[21,33,67–76]. The algebrogeometric theory, however, needs
Lax pairs and is also involved in complicated analysis
procedures on the Riemann surfaces. It is rather difficult to
directly determine the characteristic parameters of waves,
such as frequencies and phase shifts, for a function with
given wave numbers and amplitudes. Based on the Hirota
forms, Nakamura proposed a convenient way to find a kind
of explicit quasiperiodic solution of nonlinear equations [77].
For example, it does not need any Lax pair and Riemann
surface for the given nonlinear equation and is also able to find
the explicit construction of multiperiodic wave solutions. The
method relies on the existence of the Hirota bilinear form
as well as arbitrary parameters appearing in the Riemann
matrix [59,78,79].

A. Multidimensional Riemann θ functions

Let us, first, begin with some preliminary work about mul-
tidimensional Riemann θ functions and their quasiperiodicity.
The multidimensional Riemann θ function is defined by

ϑ(ζ ,ε,s|τ ) =
∑

n∈ZN

exp{2πi〈ζ + ε,n + s〉

−π〈τ (n + s),n + s〉}, (10.1)

where n = (n1, . . . ,nN )T ∈ ZN is an integer value vector
and s = (s1, . . . ,sN )T ,ε = (ε1, . . . ,εN )T ∈ CN is a complex
parameter vector; ζ = (ζ1, . . . ,ζN )T , ζj = αjx + βj t + δj ,
αj ,βj ,δj ∈ �0, j = 1,2, . . . ,N are complex phase variables,
where x,t are ordinary real variables and θ is a Grassmann
variable. The inner product of two vectors f = (f1, . . . ,fN )T

and g = (g1, . . . ,gN )T is defined by

〈 f ,g〉 = f1g1 + f2g2 + · · · + fNgN.

The matrix τ = (τij ) is a positive definite and real-valued
symmetric N × N matrix. The entries τij of the periodic matrix
τ can be considered as free parameters of the θ function (10.1).

In this paper, we choose τ to be purely imaginary matrix
to make the θ function (10.1) real valued. In definition (10.1)
for the case of s = ε = 0, we denote ϑ(ζ ,τ ) = ϑ(ζ ,0,0|τ ) for
simplicity. Therefore, we have ϑ(ζ ,ε,0|τ ) = ϑ(ζ + ε,τ ).

Remark 4. The above periodic matrix τ differs from the one
in the algebrogeometric approach discussed in Refs. [15–21],
where it is usually constructed on a compact Riemann surface
� with genus N ∈ N. One may see that the entries in the
matrix τ are not free and are difficult to be explicitly given. �

Definition 3. A function g(x,t) on CN × C is said to be
quasiperiodic in t with fundamental periods T1, . . . ,Tk ∈ C
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if T1, . . . ,Tk are linearly dependent over Z and there exists a
function G(x, y) ∈ CN × Ck such that

G(x,y1, . . . ,yj + Tj , . . . ,yk) = G(x,y1, . . . ,yj , . . . ,yk),
for all yj ∈ C, j = 1, . . . ,k.

G(x,t, . . . ,t, . . . ,t) = g(x,t).

In particular, g(x,t) becomes periodic with T if and only if
Tj = mjT . �

Let us, first, see periodicity of the θ function ϑ(ζ ,τ ).
Proposition 9. Let e j be the j th column of the N × N

identity matrix IN ; let τj be the j th column of τ and τjj the
(j,j ) entry of τ [80]. The θ function ϑ(ζ ,τ ) then has the
periodic properties

ϑ(ζ + e j + iτ j ,τ ) = exp(−2πiζj + πτjj )ϑ(ζ ,τ ).

The θ function ϑ(ζ ,τ ) which satisfies the condition (5.4)
is called a multiplicative function. We regard the vectors
{e j , j = 1, . . . ,N} and {iτ j , j = 1, . . . ,N} as periods of the
θ function ϑ(ζ ,τ ) with multipliers 1 and exp(−2πiζj + πτjj ),
respectively. Here, only the first N vectors are actually periods
of the θ function ϑ(ζ ,τ ), but the last N vectors are the periods
of the functions ∂2

ζk,ζl
ln ϑ(ζ ,τ ) and ∂ζk

ln[ϑ(ζ + e,τ )/ϑ(ζ +
h,τ )], k,l = 1, . . . ,N .

Proposition 10. Let e j and τ j be defined as above in
proposition 2. The meromorphic functions f (ζ ) are as follows:

(i) f (ζ ) = ∂2
ζkζl

ln ϑ(ζ , τ ), ζ ∈ CN, k,l = 1, . . . ,N,

(ii) f (ζ ) = ∂ζk
ln

ϑ(ζ + e,τ )

ϑ(ζ + h,τ )
, ζ , e, h ∈ CN,

j = 1, . . . ,N,

and then, in cases (i) and (ii), it holds that

f (ζ + e j + iτ j ) = f (ζ ), ζ ∈ CN, j = 1, . . . ,N,

which implies that f (ζ ) is a quasiperiodic function.

B. Bilinear formulas of θ functions

To construct a kind of explicitly quasiperiodic solutions of
the NKdV equation (1.1), we propose some important bilinear
formulas of multidimensional Riemann θ functions, whose
derivations are similar to the case of super bilinear equations
[79], so we just list them without proofs.

Theorem 11. Suppose that ϑ(ζ ,ε′,0|τ ) and ϑ(ζ ,ε,0|τ ) are
two Riemann θ functions, in which ε = (ε1, . . . ,εN ), ε′ =
(ε′

1, . . . ,ε
′
N ), and ζ = (ζ1, . . . ,ζN ), ζj = αjx + ωj t + δj , j =

1,2, . . . ,N . The operators Dx , Dt , and S then exhibit the
following perfect properties when they act on a pair of θ

functions:

Dxϑ(ζ ,ε′,0|τ )ϑ(ζ ,ε,0|τ )

=
∑

μ

∂xϑ(2ζ ,ε′ − ε,−μ/2|2τ )|ζ=0ϑ(2ζ ,ε′ + ε,μ/2|2τ ),

(10.2)

where μ = (μ1, . . . ,μN ) and the notation
∑

μ represents
2N different transformations corresponding to all possible
combinations μ1 = 0,1; . . . ; μN = 0,1.

In general, for a polynomial operator H (Dx,Dt ) with
respect to Dx and Dt , we have the following useful formula:

H (Dx,Dt )ϑ(ζ ,ε′,0|τ )ϑ(ζ ,ε,0|τ )

=
∑
μ

C(ε′,ε,μ)ϑ(2ζ ,ε′ + ε,μ/2|2τ ), (10.3)

in which, explicitly,

C(ε,ε′,μ) =
∑

n∈ZN

H (M) exp[−2π〈τ (n − μ/2),n − μ/2〉

− 2πi〈n − μ/2,ε′ − ε)]. (10.4)

where we denote M = (4πi〈n − μ/2,α〉, 4πi〈n − μ/2,ω〉).
Remark 6. The formulas (10.3) and (10.4) show that if the

following equations are satisfied:

C(ε,ε′,μ) = 0, (10.5)

for all possible combinations μ1 = 0,1; μ2 = 0,1; . . . ; μN =
0,1 [in other words, all such combinations are solutions of
Eq. (10.5)], then ϑ(ζ ,ε′,0|τ ) and ϑ(ζ ,ε,0|τ ) are N -periodic
wave solutions of the bilinear equation

H (Dx,Dt )ϑ(ζ ,ε′,0|τ )ϑ(ζ ,ε,0|τ ) = 0.

We call the formula (10.5) constraint equations, whose
number is 2N . This formula actually provides us with a
unified approach to construct multiperiodic wave solutions for
supersymmetric equations. Once a supersymmetric equation is
written in bilinear forms, then its multiperiodic wave solutions
can be directly obtained by solving system (10.5).

Theorem 12. Let C(ε,ε′,μ) and H (Dx,Dt ) be given in
theorem 10, and make a choice such that ε′

j − εj = ±1/2, j =
1, . . . ,N . Then

(i) If H (Dx,Dt ) is an symmetric operator, i.e.,

H (−Dx, − Dt ) = H (Dx,Dt ),

then C(ε,ε′,μ) vanishes automatically for the case when∑N
j=1 μj is an odd number, namely

C(ε,ε′,μ)|μ = 0, for
N∑

j=1

μj = 1, mod 2.

(ii) If H (Dx,Dt ) is a skew-symmetric operator, i.e.,

H (−Dx, − Dt ) = −H (Dx,Dt ),

then C(ε,ε′,μ) vanishes automatically for the case when∑N
j=1 μj is an even number, namely

C(ε,ε′,μ)|μ = 0, for
N∑

j=1

μj = 0, mod 2.

Proposition 11. Let ε′
j − εj = ±1/2, j = 1, . . . ,N . As-

sume H (Dx,Dt ) is a linear combination of even and odd
functions

H (Dx,Dt ) = H1(Dx,Dt ) + H2(Dx,Dt ),

where H1 is even and H2 is odd. In addition, C(ε,ε′,μ)
corresponding (10.8) is given by

C(ε,ε′,μ) = C1(ε,ε′,μ) + C2(ε,ε′,μ),
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where

C1(ε,ε′,μ) =
∑

n∈ZN

H1(M) exp[−2π〈τ (n − μ/2),n − μ/2〉

− 2πi〈n − μ/2,ε′ − ε)],

C2(ε,ε′,μ) =
∑

n∈ZN

H2(M) exp[−2π〈τ (n − μ/2),n − μ/2〉

− 2πi〈n − μ/2,ε′ − ε)].

Then

C(ε,ε′,μ) = C2(ε,ε′,μ) for
N∑

j=1

μj = 1, mod 2,

C(ε,ε′,μ) = C1(ε,ε′,μ), for
N∑

j=1

μj = 0, mod 2.

Theorem 2 and corollary 1 are very useful to deal with
coupled super-Hirota bilinear equations, which will be seen in
the following Sec. X.

By introducing differential operators

∇ = (∂ζ1 ,∂ζ2 , . . . ,∂ζN
),

∂x = α1∂ζ1 + α2∂ζ2 + · · · + αN∂ζN
= α · ∇,

∂t = β1∂ζ1 + β2∂ζ2 + · · · + βN∂ζN
= β · ∇,

we then have

∂k
x ∂l

t ϑ(ζ ,τ ) = (α · ∇)k(β · ∇)lϑ(ζ ,τ ), k,l = 0,1, . . . .

C. One-periodic waves and asymptotic analysis

Let us, first, construct one-periodic wave solutions of the
NKdV equation (1.1) by using bilinear Bácklund transforma-
tion (7.6). As a simple case of the θ function (10.1) with
N = 1,s = 0, we choose F and G as follows:

F = ϑ(ζ,0,0|τ ) =
∑
n∈Z

exp(2πinζ − πn2τ ),

G = ϑ(ζ,1/2,0|τ ) =
∑
n∈Z

exp[2πin(ζ + 1/2) − πn2τ ]

=
∑
n∈Z

(−1)n exp(2πinζ − πn2τ ), (10.6)

where ζ = αx + βt + δ is the phase variable and τ > 0 is a
positive parameter.

By theorem 6, in Sec. IX, the operator H1 = D2
x − λ in

bilinear equation (7.6) is symmetric, and its corresponding
constraint equation in the formula (10.5) automatically van-
ishes for μ = 1. Meanwhile, H2 = DtD

2
x − 2w0Dx + (4v0 +

3λ)Dt are skew symmetric, and its corresponding constraint
equation automatically vanishes for μ = 0. Therefore, the
Riemann θ function (10.6) is a solution of the bilinear equation
(7.6), provided the following equations:∑

n∈Z
{[4πi(n − μ/2)]2α2 − λ} exp ( − 2πτ (n − μ/2)2

+πi(n − μ/2))|μ=0 = 0,∑
n∈Z

{[4πi(n − μ/2)]3α2β + 8πi(n − μ/2)αw0

+ 4πi(n − μ/2)(4v0 + 3λ)β} exp ( − 2πτ (n − μ/2)2

+πi(n − μ/2))|μ=1 = 0 (10.7)

hold.
We introduce the notations by

ρ = e−πτ/2,

ϑ1(ζ,ρ) = ϑ(2ζ,1/4, − 1/2|2τ )

=
∑
n∈Z

ρ(2n−1)2
exp[4iπ (n − 1/2)(ζ + 1/4)],

ϑ2(ζ,ρ) = ϑ(2ζ,1/4,0|2τ ) =
∑
n∈Z

ρ4n2
exp[4iπn(ζ + 1/4)],

Eq. (10.7) then can be written as a linear system about β and
λ as follows:

ϑ ′′
2 α2 − ϑ2λ = 0, ϑ ′′′

1 α2β + 2ϑ ′
1αw0 + (4v0 + 3λ)ϑ ′

1β = 0,

(10.8)

where the derivative value of ϑj (ζ,ρ) at ζ = 0 is denoted by
simple notations

ϑ ′
j = ϑ ′

j (0,ρ) = dϑj (ζ,ρ)

dζ

∣∣∣∣
ζ=0

, j = 1,2.

It is not hard to see that the system (10.8) admits the
following solution for the NKdV equation (1.1):

λ = ϑ ′′
2 α2

ϑ2
, β = −2ϑ ′

1ϑ2w0

ϑ ′′′
1 ϑ2α2 + 4ϑ ′

1ϑ2v0 + 3ϑ ′
1ϑ

′′
2 α2

. (10.9)

So we obtain the following one-periodic wave solution:

V = v0 + 2∂2
x ln ϑ(ζ,0,0|τ ), W = w0 + 2∂x∂t ln ϑ(ζ,0,0|τ ),

(10.10)

where ζ = αx + βt + δ and parameter β is given by (10.9),
while other parameters, α, τ , v0, w0, are arbitrary. Among the
four parameters, α and τ completely dominate a one-periodic
wave. In summary, the one-periodic wave (10.10) is one
dimensional and has two fundamental periods 1 and iτ in
phase variable ζ (see Fig. 3).

In the following theorem, we will see that the one-periodic
wave solution (10.10) can be broken into soliton solution (6.21)
under a long time limit and their relation can be established as
follows.

Theorem 13. In the one-periodic wave solution (10.6), the
parameter β is given by (10.9), and other parameters are chosen
as

α = k

2πi
, δ = γ + πτ

2πi
, (10.11)

where k1 and γ are the same as those in (6.21). Then, under a
small amplitude limit, the one-periodic wave solution (10.10)
can be broken into the single soliton solutions (6.21), that is,

V −→ v, W −→ w, as ρ → 0. (10.12)

In particular, in the case of v0 = 0,w0 = 1, the one-periodic
solution (10.5) tends to the kink-type soliton solution (5.2), that
is,

V −→ ṽI , W −→ w̃I , as ρ → 0. (10.13)
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FIG. 3. (Color online) One-periodic wave for the NKdV equation
(1.1) with parameters α = 0.6, τ = 2, v0 = 0.5, w0 = 1. (a) and (b)
show that every one-periodic wave is periodic in both the x and y

directions. (c) Perspective view of the wave. (d) Overhead view of
the wave, with contour plot shown. The bright hexagons are crests
and the dark hexagons are troughs.

Proof. Here we use the system (10.8) to analyze asymp-
totic properties of the one-periodic solution (10.10). Let us
explicitly expand the coefficients of the system (10.8) as

follows:

ϑ ′
1 = −4πρ + 12πρ9 + · · · ,

ϑ ′′′
1 = 16π3ρ + 432π3ρ9 + · · · ,

(10.14)
ϑ2 = 1 + 2ρ4 + · · · ,

ϑ ′′
2 = 32π2ρ4 + · · · .

Suppose that the solution of the system (10.8)(10.8) has the
following form:

λ = λ0 + λ1ρ + λ2ρ
2 + · · · = λ0 + o(ρ),

(10.15)
β = β0 + β1ρ + β2ρ

2 + · · · = β0 + o(ρ).

Substituting the expansions (10.14) and (10.15) into the
system (10.8) and letting ρ → 0, we immediately obtain the
following relation:

λ0 = 0, β0 = −αw0

−2π2α2 + 2v0
. (10.16)

Combining (10.11) and (10.16) leads to

λ −→ 0,

2πiβ −→ 2πiβ0 = −2πiαw0

−2π2α2 + 2v0
= −2kw0

k2 + 4v0
, as ρ → 0,

or, equivalently, rewritten as

ζ̂ = 2πiζ − πτ = kx + 2πiβt + γ

−→ kx − 2kw0

k2 + 4v0
t + γ = ξ, as ρ → 0. (10.17)

It remains to verify that the one-periodic wave (10.11) has
the same form as the one-soliton solution (6.21) under the limit
ρ → 0. Let us expand the function F in the following form:

F = 1 + ρ2(e2πiζ + e−2πiζ ) + ρ8(e4πiζ + e−4πiζ ) + · · · .

It follows from (10.11) and (10.17) that

F = 1 + eζ̂ + ρ4(e−ζ̂ + e2ζ̂ ) + ρ12(e−2ζ̂ + e3ζ̂ ) + · · ·
−→ 1 + eζ̂ −→ 1 + eξ , as ρ → 0. (10.18)

So combining (10.11) and (10.18) yields

v −→ v0 + 2∂xx ln(1 + eξ ),

w −→ w0 + 2∂t∂x ln(1 + eξ ), as ρ → 0.

Thus, we conclude that the one-periodic solution (10.10) may
go to a bell-type soliton solutions (6.21) as the amplitude
ρ → 0. �

D. Two-periodic waves and asymptotic properties

Let us now consider two-periodic wave solutions to the
NKdV equation (1.1). For the case of N = 2, s = 0, ε =
1/2 = (1/2,1/2) in the Riemann θ function (10.1), we choose
F and G as follows:

F = ϑ(ζ ,0,0|τ ) =
∑
n∈Z2

exp{2πi〈ζ ,n〉 − π〈τn,n〉},

G = ϑ(ζ ,1/2,0|τ ) =
∑
n∈Z2

exp{2πi〈ζ + 1/2,n〉 − π〈τn,n〉}

=
∑
n∈Z2

(−1)n1+n2 exp{2πi〈ζ ,n〉 − π〈τn,n〉}, (10.19)
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where n = (n1,n2) ∈ Z2, ζ = (ζ1,ζ2) ∈ C2, ζi = αjx +
βj t + δj , j = 1,2, and α = (α1,α2), β = (β1,β2) ∈ C2. The
matrix τ is a positive definite and real-valued symmetric 2 × 2
matrix, that is,

τ = (τij )2×2, τ12 = τ21, τ11 > 0, τ22 > 0, τ11τ22 − τ 2
12 > 0.

According to theorem 5, constraint equations associ-
ated with H1 = D2

x − λ and H2 = DtD
2
x − 2w0Dx + (4v0 +

3λ)Dt automatically vanish for (μ1,μ2) = (0,1),(1,0) and
for (μ1,μ2) = (0,0),(1,1), respectively. Hence, making the θ

functions (10.19) satisfy the bilinear equation (7.6) gives the
following constraint equations:

∑
n1,n2∈Z

[−16π2〈n − μ/2,α〉2 − λ] exp{−2π〈τ (n − μ/2),n − μ/2〉 + πi

2∑
j=1

(nj − μj/2)}|μ=(μ1,μ2) = 0,

for (μ1,μ2) = (0,0), (1,1) = 0,∑
n1,n2∈Z

[−64π3i〈n − μ/2,α〉2〈n − μ/2,β〉 + 8πi〈n − μ/2,α〉w0 + 4πi〈n − μ/2,β〉(4v0 + 3λ)]

× exp{−2π〈τ (n − μ/2),n − μ/2〉 + πi

2∑
j=1

(nj − μj/2)}|μ=(μ1,μ2) = 0, for (μ1,μ2) = (0,1), (1,0). (10.20)

Next, let us introduce the following notations:

ρkl = e−πτkl/2,k,l = 1,2,ρ = (ρ11,ρ12,ρ22)

ϑj (ζ ,ρ) = ϑ(2ζ,1/4, − sj /2|2τ ) =
∑

n1,n2∈Z

exp{4πi〈ζ + 1/4,n − s j/2〉}
2∏

k,l=1

ρ
(2nk−sj,k )(2nj −sj,l )
kl ,

s j = (sj,1,sj,2), j = 1,2, s1 = (0,1), s2 = (1,0), s3 = (0,0), s4 = (1,1)

and then the system (10.20) can be rewritten as a linear system

(α · ∇)2ϑj − λϑj = 0, j = 3,4, (10.21)

(β · ∇)(α · ∇)2ϑj + 2w0(α · ∇)ϑj + (4v0 + 3λ)(β · ∇)ϑj

= 0, j = 1,2, (10.22)

where ϑj represent the derivative values of functions ϑj (ζ ,ρ)
at ζ1 = ζ2 = 0.

The system (10.22) admits a unique solution(
β1

β2

)
=

[
∂(f,g)

∂(ζ1,ζ2)

]−1
(

2w0(α · ∇)ϑ1

2w0(α · ∇)ϑ2

)
, (10.23)

where ∂(f,g)
∂(ζ1,ζ2) is the Wronskinan matrix given by

∂(f,g)

∂(ζ1,ζ2)
=

(
∂ζ1f ∂ζ2f

∂ζ1g ∂ζ2g

)
, f = [(α · ∇)2 + 4v0 + 3λ]ϑ1,

g = [(α · ∇)2 + 4v0 + 3λ]ϑ2.

With the help of the above (β1,β2), we are able to get a two-
periodic wave solution to the NKdV equation (1.1),

V = v0 + ∂2
x ln ϑ(ζ ,0,0|τ ), W = w0 + ∂x∂tϑ(ζ ,0,0|τ ),

(10.24)

where α1, α2, τ12, δ1, and δ2 are arbitrary parameters, while
other parameters, β1,β2 and τ11, τ22, are given by (10.23) and
(10.21), respectively.

In summary, the two-periodic wave (10.24) is a direct
generalization of two one-periodic waves (Fig. 4). Its surface
pattern is two dimensional with two phase variables ζ1 and ζ2.

The two-periodic wave (10.24) has four fundamental periods
{e1,e2} and {iτ1,iτ2} in (ζ1,ζ2) and is spatially periodic in two
directions ζ1,ζ2. Its real part is not periodic in the θ1 direction,
while its imaginary part and modulus are all periodic in both
the x and t directions.

Finally, we study the asymptotic properties of the two-
periodic solution (10.24). In a way similar to that in theorem
5, we figure out the relation between the two-periodic solution
(10.24) and the two-soliton solution (6.22) as follows.

Theorem 14. Assume that (β1,β2) is a solution of the
system (10.22), and in the two-periodic wave solution (10.24),
parameters αj , δj , and τ12 are chosen as

αj = kj

2πi
, δj = γj + πτjj

2πi
, τ12 = −A12

2π
, j = 1,2,

(10.25)

where kj ,γj ,j = 1,2 and A12 are those given in (6.22). We
then have the following asymptotic relations:

λ −→ 0, ζj −→ ηj + πτjj

2πi
, j = 1,2,

(10.26)
F −→ 1 + eη1 + eη2 + eη1+η2+A12 , as ρ11,ρ22 → 0.

So the two-periodic wave solution (10.24) just tends to the
two-soliton solution (6.22) under a limit condition

V −→ v, W −→ w, as ρ11,ρ22 → 0.
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FIG. 4. (Color online) Two-periodic wave for the NKdV equation
(1.1). (a) and (b) show that every one-periodic wave is periodic in both
the x and y directions. (c) Perspective view of the wave. (d) Overhead
view of the wave, with contour plot shown. The bright hexagons are
crests and the dark hexagons are troughs.

Proof. Using (10.20), we may expand the function F in the
following explicit form:

F = 1 + (e2πiζ1 + e−2πiζ1 )e−πτ11 + (e2πiζ2 + e−2πiζ2 )e−πτ22

+ (e2πi(ζ1+ζ2) + e−2πi(ζ1+ζ2))e−π(τ11+2τ12+τ22) + · · · .

Furthermore, adopting (10.25) and making a transformation,
we infer that

F = 1 + eζ̂1 + eζ̂2 + eζ̂1+ζ̂2−2πτ12 + ρ4
11e

−ζ̂1

+ ρ4
22e

−ζ̂2 + ρ4
11ρ

4
22e

−ζ̂1−ζ̂2−2πτ12 + · · ·
−→ 1 + eζ̂1 + eζ̂2 + eζ̂1+ζ̂2+A12 , as ρ11,ρ22 → 0,

where ζ̂j = αjx + β̂j t + δj , j = 1,2, and β̂j = 2πiβj ,j =
1,2.

We now need to prove

β̂j −→ −2kjw0

k2
j + 4v0

, ζ̂j −→ ξj , j = 1,2, as ρ11,ρ22 → 0.

(10.27)

As in the case of N = 1, the solution of the system (10.23)
has the following form:

β1 = β1,0 + β1,1ρ11 + β2,2ρ22 + o(ρ11,ρ22),

β2 = β2,0 + β2,1ρ11 + β2,2ρ22 + o(ρ11,ρ22), (10.28)

λ = λ0 + λ1ρ11 + λ2ρ22 + o(ρ11,ρ22).

Expanding functions ϑj , j = 1,2,3,4 in Eqs. (10.21) and
(10.22) with substitution of assumption (10.28), and letting
ρ11,ρ22 −→ 0, we will obtain

λ0 = 0, 16πi
( − π2α2

1 + v0
)
β1,0 − 8πiw0α1 = 0,

(10.29)
16πi

( − π2α2
2 + v0

)
β2,0 − 8πiw0α2 = 0.

Using (10.28) and (10.29), we conclude that

λ = o(ρ11,ρ22) −→ 0,

βj = −2kjw0

k2
j + 4v0

+ o(ρ11,ρ22) −→ −2kjw0

k2
j + 4v0

, as ρ11,ρ22 → 0,

and therefore we have (10.26). So the two-periodic wave
solution (10.24) tends to the two-soliton solution (6.22) as
ρ11,ρ22 → 0. �

In this paper, we only consider one- and two-periodic wave
solutions of the NKdV equation (1.1). There are still certain
computation difficulties in the calculation for the case of N >

2, which will be studied in the future.
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